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Spatially ordered equilibrium states — crystals — and their excitations — phonons — are the mainstay of
condensed matter physics. Flowing, nonequilibrium crystalline states of microparticles and droplets are
desirable for microfluidic logic, assembly, and control, and have been achieved in recent work via
exploitation of viscous hydrodynamic interactions in geometric confinement. For the most part, these
studies considered large ensembles of particles and, accordingly, large scale collective modes arising
from small displacements of individual particles. Via theoretical modeling and computational
simulations, we show that for small clusters of flowing particles tightly confined in a shallow, “quasi-
two-dimensional” microchannel, new types of ordered behavior emerge, varying from steady states in
which particles maintain their relative positions, to exquisitely coordinated collective motion with large
particle displacements. These new collective behaviors require a thin channel geometry: strong
confinement in one spatial direction and weak confinement in another. We elucidate principles and
techniques for the a priori construction or rapid numerical discovery of these states, which could be
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exploited for the orchestration of particle motion in lab-on-a-chip devices and other applications.

1 Introduction

Imposing spatial and temporal order on flowing streams of parti-
cles is growing in practical significance for microfluidic applica-
tions. For bioanalysis, including on-chip flow cytometry' and
multiplexed assays with functionalized particles,” the suspended
objects must be individually distinguishable and addressable as
they flow through a scanning region. Flowing, tunable lattices of
particles are desirable for optofluidics® and continuous fabrication
of metamaterials or cell-laden microtissues.* Order can be achieved
by via hydrodynamic focusing with sheath flows® or by positioning
with external fields.® However, these methods can be limited in
generality and scalability. Recently, researchers have sought to
understand how particles can organize themselves through forces
generic to the flow of suspended objects through microchannels,
such as viscous hydrodynamic interaction forces. For instance,
trains of spherical particles at finite Reynolds number self-assemble
into a lattice ordered both perpendicular to and along the direction
of external flow, as determined by the balance of inertial lift and
viscous hydrodynamic forces.” This inertial ordering effect was
exploited to efficiently encapsulate cells in droplets® and for high
throughput cytometry.® In another study, simulations predict
clustering, axial symmetry breaking, and alignment of deformable
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particles driven by fluid pressure drop in a tube.'® Particles optically
driven around a ring will pair via an effective attraction that arises
from the hydrodynamic interaction between them and the curva-
ture of their trajectories." The flowing ordered states of these
studies occur far from thermodynamic equilibrium, sustained by
energy provided by the external forces or flow. While still lacking a
settled body of theory, nonequilibrium self-organization offers a
promising framework for engineering systems with new classes of
programmable complexity.'?

Hydrodynamic interactions can be dramatically changed in
the presence of confining boundaries.’**5 They take a novel form
for flowing suspensions of particles with characteristic size
comparable to the height of a confining slit, such that the
particles are geometrically constrained to two-dimensional
motion. In this “quasi-two-dimensional” (q2D) slit-like geom-
etry, friction from the walls screens momentum flux from a force
multipole. The leading far field hydrodynamic interaction is
therefore determined by mass conservation as a source
dipole.’*® In contrast to hydrodynamic interactions in bulk
fluid, this dipolar form lends itself to realization of crystalline
states, since ensemble summations of velocity fluctuations
converge even in the limit of infinite system size.' Microfluidic
crystals have been realized in 2D as flowing, ordered trains of
droplets driven by external flow, exhibiting transverse and
longitudinal acoustic waves (“phonons”) and nonlinear insta-
bilities.?® Arrays of q2D particles form large scale patterns when
driven by an external flow?! and sharp interfaces in sedimenta-
tion.?? The addition of side walls distinguishes the thin channel
geometry, shown schematically in Fig. 1(a), from the slit, which is
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unbounded in the xy plane. The side walls screen the hydrody-
namic interaction in the flow direction, modulating the dipolar
form by an exponential decay, and modifying phonon dispersion
relations for droplet trains.?® Recent efforts have examined jams
and shock waves occurring in one-dimensional droplet trains®*
and disordered two-dimensional droplet suspensions® flowing in
the thin channel geometry. A comprehensive review of this work
is provided by Beatus et al.*®

These studies examined large ensembles of particles, whether
flowing in a linear train or a two dimensional swarm. Due to the
size of these systems and the long-range nature of the dipolar
interaction, the details of spatial microstructure average out of the
description of collective behavior, permitting coarse-grained
modeling via continuum approximations and mean-field theory.
Moreover, for typical amplitudes of collective modes in these
systems, the spatial displacement of an individual particle is
generally small. For the dynamics of small clusters, on the other
hand, we anticipate sensitive dependence on spatial configuration
and larger, individualistic, and more complex excursions of single
particles. Accordingly, cluster dynamics must be resolved at the
single particle level. Recently, we showed theoretically that a pair of
particles flowing in a thin channel will either scatter to infinity or
oscillate together as a “quasiparticle” in a region of marginal
stability, depending on the initial spatial configuration.?® In this
paper, we study the emergent dynamics of clusters of multiple
flowing rigid particles in a thin channel via theory and Lattice
Boltzmann simulations. We find a rich variety of dynamical
behaviors, including stable and metastable configurations in which
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Fig. 1 (a) In the thin channel geometry considered in this work, a cluster
of N particles (here N = 3) is tightly confined in a gap of height H between
plates normal to the z direction. They are free to move in x and y between
side walls, where W is the width of the channel. The position of particle i
is labelled by x; and y; in a frame fixed to the channel walls. The particles
are driven by an external flow. (b) System of real and virtual particles
used to derive the thin channel hydrodynamic interaction tensor. The real
particles (dark colors) are subject to an external flow (black vectors) and
are dressed by an infinite set of images (light colors) that are constructed
iteratively, via mirror reflections across the real and virtual channel
boundaries. Due to friction from the confining plates, each particle lags
its own local flow field; gray vectors show the velocities of the real
particles in frames moving with local flow. This relative motion gives rise
to hydrodynamic disturbance fields (black streamlines) that couple the
particles, and is dominated by motion in the direction opposed to that of
external flow. We also show particle velocity in a frame moving with the
particle cluster’s center of mass for two of the virtual particles (green
vectors).

particles maintain their relative positions, collective modes with
relative particle displacements in two dimensions, cycles in which
particles exchange positions, and stochastic cluster dispersion. We
provide symmetry principles for the a priori construction of stable
configurations and demonstrate techniques for rapid identification
of more complex dynamical motifs. These findings could be used
for control of highly confined particles in lab-on-a-chip devices,
especially where complex motion of individual particles is desired.
Furthermore, we suggest implications for the role of hydrodynamic
interactions in hydrodynamic diffusion and irreversibility.

2 Theory and simulation method
2.1 Theoretical model

In a previous work, we developed a minimal theoretical model
that treated the particles as coupled dipolar flow singularities,
dressed by a set of virtual particles in order to impose the
boundary conditions at the side walls.?® For a thin slit or channel,
we take the flow field to have a parabolic dependence in z, where
z is the channel direction with smallest geometric length, the
height H. We consider the flow field U(r), where U(r) is flow
relative to the walls, and r is position in the channel midplane z =
H/2 in a frame fixed to the walls. We model the effect of the walls
normal to z (the “plates”) through a frictional force with areal
density y.HU(r), with v. = 8u/H?, where u is the bulk dynamic
viscosity of the fluid. A rigid cylindrical particle of radius R
(diameter L = 2R) confined between the plates will lag the local
flow field, as its own friction coefficient vy, determined by the
thin lubricating layers separating it from the plates, will be higher
than y.. In the zero Reynolds number limit, the velocity of
particle i, U?, is determined by a force balance:

LU = Ulry) + v RRHU(r)) — vpeRPHU? = 0 (M

where U(r;) is the local flow field at particle i. The drag coefficient
{ can be estimated from solving the two dimensional Brinkman
equation for a particle in a uniform external flow.?¢*” For
lubrication layers of thickness ¢, the coefficient y, can be
calculated numerically via the model developed in Halpern and
Secomb.?® However, we note that with no external forces on the
particle, the particle velocity is directly related to the local flow
velocity by a parameter «:

o (C+TRHy, _

Ui = (m) U(r)=aU(r;). 2

Experimentally, & can determined from the velocity of a single
particle driven by external flow through a slit or wide channel.
This parameter is bounded by 0 < « < 1. For small (large) values
of «, a particle significantly (barely) lags the local flow field.

In lagging the local flow, the particle creates a hydrodynamic
disturbance. This can be understood most easily when the
particle is considered in a frame moving with the local flow. In
Fig. 2(b), a lagging particle is moving in —x with respect to the
local flow (gray vector), and therefore pushes fluid away from its
leading edge and draws fluid into its trailing edge (black
streamlines). This dipolar disturbance can be modeled as due to a
mass source and mass sink, i.e. a source dipole. Mass transport
provides the leading order far-field flow disturbance in 2D,
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since momentum transport is damped by friction from the
confining plates.'”

For a system of N particles subject to a uniform external flow
Uy, the local flow field at particle i is determined through an
implicit equation

Ulr) = Up+ Y V7 (rgor)- (U] = U(ry)), 3)

where r; = r; — r;, and V?(r;r)) is a tensor determining the
contribution of particle j to the local field at i. This hydrody-
namic interaction tensor couples the particles and encodes
information about the system geometry. For unbounded q2D
flow, it is dipolar, and depends only on particle separation r;;. It is
given in detail in Appendix C.

Modeling the thin channel geometry requires that the effect of
side walls be included in ®. In analogy to electrostatics, the no-
mass flux boundary condition at these walls can be enforced via
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Fig. 2 Fixed points obtained a priori via symmetry considerations,
depicted in top down view. The first column shows particles in a frame
moving in the center of mass when the theoretical model is integrated. In
this frame, particles remain in fixed positions. Side walls are indicated by
black lines. The second column shows particles in the center of mass
frame for the corresponding Lattice Boltzmann simulations. Colors
indicate the magnitude of the fluid velocity field. In the simulations,
particles move slightly, but remain within one radius of their initial
positions. Due to this motion, the fluid velocity field can be slightly
asymmetric. (a) A “dimer column” for channel width W/L =9. The LBM
simulation is shown after the particles were advected downstream by X,/
L = 241 particle lengths at Re = 0.2, where x, is the position of the
center of mass in the flow direction. (b) A “column” fixed point and LBM
simulation after advection by x.,/L = 833 particle lengths at Re = 0.2. (c)
A “double column” fixed point and LBM simulation after advection by
Xem/L = 524 particle lengths at Re = 0.2.

the method of images. Each real particle is dressed by an infinite
set of virtual particles, iteratively constructed by mirror reflec-
tions across the boundaries of real and virtual channels. The y
component of particle velocity is negated in each successive
reflection. (Fig. 1) Summing over these virtual particles gives the
dressed self- and two body interactions for real particles. Particle
pairs are now coupled by dipolar interactions that are screened in
the flow direction over a length scale proportional to W, the
distance between the side walls. (Appendix C) This screened
dipolar field has been analogized to the field from a “leaky”
capacitor, with the “leakiness” arising from the inherently
discrete nature of the charge distribution.?®* Moreover, the tensor
now depends on particle position r;, since the disturbance field
created by a particle now depends on its distance from the
channel walls.

Eqn (2) and (3) can be rearranged into matrix form AU? = B,
where UP is a vector containing all 2N particle velocities, 4 is a
resistance matrix that includes all pairwise interactions, and B
collects terms involving the external flow U,. Although A4 is
constructed from pairwise interactions, inverting it solves a
many-body problem for particle velocities; numerically, we can
form A at each timestep, solve for UP, and integrate forward to
the next timestep.

Substituting eqn (2) into eqn (3) and using the thin channel
interaction tensor, we can identify two dimensionless parameters
that govern particle dynamics. These are W/L, the dimensionless
channel width, and a parameter ( that characterizes the
strength of hydrodynamic coupling between the particles. This
parameter is

4)

ﬁE(l—a)(1+ ZKI(“R))

aRKy(aR)

where a> = 8/H?, and K, and K, are modified Bessel functions.
The first term in parentheses immediately arises from making the
substitution. The second term scales V“(r;,r;) and accounts for
fluid entrained in the viscous boundary layer of a particle, which
increases the particle’s effective hydrodynamic radius. Since the
boundary layer thickness is order H, this term asymptotes to one
as the channel height is decreased. We demonstrate the validity of
G as a governing dimensionless parameter in Appendix A via
recovery of a predicted scaling and collapse of data onto a single
curve.

Finally, we note that by approximating the local flow as
uniform, we have neglected velocity gradients, even though the
typical particle separation for our system is only a few particle
diameters. However, the Faxén correction determining the
contribution of velocity gradients to the force on a cylinder in a
Brinkman medium was shown to be proportional to V>U(r;).?®
Since the far field flow disturbance is the gradient of a potential ¢
that obeys Laplace’s equation, V¢ = 0, this correction vanishes.

2.2 Lattice Boltzmann method

By construction, the theoretical model includes only far-field
hydrodynamic interactions. We complement it with Lattice
Boltzmann simulations. The Lattice Boltzmann Method (LBM)
simulates hydrodynamics from the “bottom up,” through a
coarse-grained model of populations of particles colliding and
streaming on a grid. In the collision step, the populations at a
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fluid node relax to an equilibrium distribution that maximizes
local entropy while conserving the collision invariants, density
and momentum. These two macroscopic fields are computed for
each node by taking moments of the local fluid populations. In
the streaming step, populations are shifted to neighboring nodes
along lattice links. For the correct choice of lattice architecture,
this model recovers hydrodynamics for length scales larger than
the grid spacing and time scales above the step size. Whereas with
the singularity model, we took the dipolar form of hydrodynamic
interactions as our starting point, in LBM, this form should
emerge from the underlying lattice dynamics. Moreover, LBM
naturally includes hydrodynamic near fields and the effects of
finite inertia and easily handles complicated geometries. While in
this work we consider rigid discs, deformable particles or parti-
cles with complicated shape can also be coupled to LBM.

We use a D2Q9 grid with the popular single relaxation time
(BGK) model, which is detailed extensively elsewhere.3®3!
However, modifications are required to simulate g2D flow. We
include the effect of the walls normal to z via a drag term linear
in the local velocity. Such a term had been used in several
previous LBM studies of Hele-Shaw flow.3*** However, for the
large flow domains and small channel heights we simulate, the
pressure drop in the flow direction is substantial. In typical,
weakly compressible BGK models, pressure and density are
related by an equation of state, P = p/3. Large pressure drops
introduce compressibility error. Moreover, continuity requires
an increase in flow velocity between the inlet and outlet, (pv.)ier
= (PVy)righ- This undesirable unidirectional extensional flow
breaks the fore-aft symmetry of the velocity field in the Stokes
regime, and would tend to align particle clusters with the flow.
Therefore, we adopt the incompressible, “pressure-based” BGK
model of Guo et al.**

Hereafter we apply the method of that work for a thin channel
of height H. By construction, the numerical model is two
dimensional, but we are interested in simulating a three dimen-
sional system; therefore, we must take care with quantities that
depend on spatial dimension. The mass density is fixed as p,p =
1. Therefore, psp = 1/H. Dynamic viscosities u3p and u,p also
depend on spatial dimension, but the kinematic viscosity » does
not: v = usp/p3p = won/pop. From above, the force of friction on
a column of fluid of height H, area 4, and midplane velocity u is
v.AHu, where v. = 8usp/H> (Recall that we assume a Poiseuille
profile in z, and u is the maximum of this profile.) Substituting
w3p = vp3p and psp = 1/H, we obtain A8v/H*u. The area of a
fluid node is, in lattice units, 4 = 1, so that 8»/H?u is the frictional
force we need to apply on a fluid node with local velocity u.

The fluid populations are designated g;, with equilibrium
distributions given by
P eru un: (ee; —¢l)

g =w

Nepp | ¢ 2¢¢ ’ )
where w; and e; are the usual D2Q9 weights and lattice vectors,
and ¢ = 1/3.

In this model, the macroscopic fields are velocity and pressure,
not velocity and density. We define A = 8»/H>. The velocity at a
node is computed as

u= Z,'giei
1+2/2

(6)

and the pressure as

P=c’p) g (7
The collision step is

gi(x, 1) = gi(x,1) ! [g,-(x, 1) — g (x, z)] +F (8

T

where

1 4 : (eie; — ¢
Fi= *wiPZD(l 77)/.{1! jl +M} &)

2t Cs ¢t

is the contribution of the force of friction.

In comparison with weakly compressible BGK models, the
incompressible BGK model introduces a new error term for
unsteady flow that is ¢(Ma?), where the Mach number Ma = u/
¢s. However, as we simulate low Reynolds number flow, i.e. the
quasi-steady regime, this term is small. For all simulations, we
use relaxation time t = 1 timesteps, so that the kinematic
viscosity » = 1/6 in LBM units.

Particles are included as a rigid discs. The discs are coupled to
LBM fluid via transfer of momentum in the “bounce-back”
boundary condition, using a first-order boundary interpolation
method. This coupling determines the drag forces and drag tor-
ques on the disc. In Appendix B, we show that the coupling
recovers the theoretical translational and rotational drag coeffi-
cients determined by Evans and Sackmann.?” LBM nodes within
the boundaries are taken to be solid. As the discs move over the
grid, LBM nodes are transferred between the solid and fluid
domains, requiring removal or refill of fluid populations. In
order to conserve momentum, this transfer requires calculation
of additional forces on the discs, although we find that these
forces do not significantly affect particle dynamics.

The discs are also subject to frictional forces and torques from
the walls. The discs follow Newton’s equations of motion, which
are integrated via the DPD-VV scheme in Nikunen ez al.?* This
scheme adapts the familiar velocity Verlet numerical integration
method for velocity dependent forces. We use the iterative
version of this scheme, recalculating disc velocities, as well as the
components of outgoing fluid populations that depend on the
disc velocities, until a specified tolerance in the disc velocities is
satisfied. However, we note that even a single pass seems accurate
and numerically stable for rigid particles.

The discs are advected by the flow, and we are interested in
dynamics over hundreds of advected particle lengths. For
computational efficiency, we move the computed flow domain as
a window containing the particles. In order that flow remain fully
developed, a buffer of length W is maintained between the left-
most and rightmost particles and the boundaries. At the
boundaries, we impose the velocity profile for steady flow in a
thin channel via the method of Zou and He.?® The profile is
given by:

(10)

e 17cosh(\/§(y—W/2)/H) <
- cosh(vV8W /2H)

This profile is approximately uniform for most of the channel.
Boundary layers at the channel walls satisfy the no-slip condi-
tion. When fluid nodes are added to the right edge of the domain,
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we extrapolate the local pressure and fill the nodes with equi-
librium populations. We did not find variation of this method to
have significant effect.

3 Results and discussion

The geometry of our quasi-two-dimensional system is shown in
Fig. 1. A channel of width W and height H contains N discs of
diameter L. The position of particle i is denoted by x; and y;. In the
theoretical model, L = 1 is taken as the fundamental length scale,
and Uy = 1 as the velocity scale. In simulations, we set L = 10
lattice lengths, and define a Reynolds number Re = uyH/v, where
ug 1s the maximum velocity at the channel boundaries, appearing in
eqn (10). In both theoretical model and the simulations, we fix H/L
= 2/3 for simplicity. We also fix the ratio of particle and channel
friction coefficients as vyp/y. = 25. The parameter § is therefore
fixed as § = 1.82. In what follows, we generally consider the
evolution of the cluster with the position of the center of mass in the
flow direction, x.,, = 1/NY_;x;, instead of with time 7. In the limit of
Stokes flow, velocity can be arbitrarily rescaled (¢f. eqn (3)), and
therefore so can the dimensionless time tUy/L.

3.1 Fixed points and oscillatory modes

Even before working with the equations of motion developed
above, it is possible to construct special “fixed point” particle
configurations on the basis of symmetry and the functional form
of hydrodynamic interactions. These configurations are fixed
points of the dynamical system constituted by eqn (2) and (3).
Particles in these configurations maintain their relative positions
as the cluster flows down the channel.

Recall that our theoretical model imposed boundary condi-
tions at the channel side walls via the method of images, in which
each real particle is dressed by an infinite set of virtual particles.
When the distinction between real and virtual particles is dis-
regarded and all are considered together, they can be taken to be
coupled through simple dipolar interactions, as in a slit, rather
than through screened dipolar interactions, as restricting our
attention to the real particles would require. If each particle is
subject to the same local flow field, then there is no relative
motion, and the particles maintain their spatial configuration in
the center of mass frame. This is possible if each particle “looks
like” every other particle through translational symmetry; rela-
tive motion would break this symmetry. In Fig. 2, we show three
classes of fixed point that can be constructed through this prin-
ciple: the “dimer column,” the “column,” and the “double
column.” Each of these fixed points can be obtained for any
number N of particles. As shown, Lattice Boltzmann simulations
confirm that these are fixed points.

In order to illustrate the symmetry principle, in Fig. 3(a) we
show the “dimer column” geometry for three particles, including
nearby virtual particles. Each of the infinite set of real and virtual
particles resembles the dipole in Fig. 3(b), moving in the negative
x direction with respect to the local flow, and therefore
contributing a component of velocity strictly in positive x to the
other particles’ local flow fields, which are identical to its own. By
the image construction we obtain N(a + b) = 2W. Therefore,
while rows (a) and (b) in Fig. 2, showing only real particles,
appear quite distinct, we see that the “column” configuration is

only the “dimer column” configuration with @ = b. In the
“double column,” particles now contribute components in y
and —y to the local flow fields of other particles, due to the
angular dependence of the dipolar form, but these components
cancel because of the symmetry of the arrangement. (On the
other hand, this would not be true of a “double dimer column,”
which is therefore not a fixed point.) In view of the translational
symmetry of the set of real and virtual particles, these fixed points
can be regarded as “flowing crystals.”

As with crystals, these fixed points are associated with char-
acteristic oscillatory modes, which can be obtained in the model
via numerical calculation and diagonalization of the Jacobian
matrix. Fig. 4 shows the two oscillatory modes of a three particle
column. The eigenvalues of the Jacobian for these modes are
strictly imaginary: the modes are marginally stable in linear
theory. To further probe stability, we displace the particles from
their fixed point positions along an eigenvector with finite
amplitude and integrate the equations of motion. The initial
displacement neither grows nor decays in time. This marginal
stability, in which we obtain a nested set of closed orbits, recalls
our earlier study of two particle dynamics, discussed in Appendix
A. When we simulate the eigenmodes in Lattice Boltzmann, we
find that the modes can either slowly grow or decay with time, i.e.
the eigenvalues can have a small real part. This is not surprising,
as Lattice Boltzmann is inherently a finite Reynolds number
technique. Inertia increases the order of the differential equations
governing particle dynamics, potentially affecting the stability of
the dynamical states found for Re = 0. The effect of decreasing
Re in the simulations is to decrease the significance of the effect,
as we show quantitatively for the case of two particles in
Appendix A.

There are also fixed points for unbounded q2D flow (i.e.
without side walls.) The case of N = 2 is trivial; the pair simply

(a) : (b)
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Fig.3 Geometric construction of the “dimer column” fixed point. In (a),
three real particles are accompanied by an infinite set of virtual particles,
the closest of which are at y = —a/2, y = W+ b/2,and y = W+ b/2 + a.
These quantities are related by 3(a + b) = 2W. Each of the real and virtual
particles is identical, resembling the particle shown in (b), moving in —x
with respect to the local flow field and contributing components of
velocity in positive x to the local flow fields of the other particles. The
gray vector shows the velocity of a particle with respect to the local flow,
while the black streamlines illustrate the dipolar disturbance field thus
created. Because this configuration is one dimensional, the angular
dependence of the dipolar form is not relevant here.
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Fig.4 Oscillatory modes of a three particle column fixed point with W/L
= 8 and lattice length a/L = 8/3. The top row shows trajectories found via
numerical integration of the theoretical model, starting from an initial
condition in which the particles are displaced from the fixed point along
an eigenvector. In the bottom row we show the corresponding LBM
simulations. Particles are shown in their final positions, while the crosses
indicate initial positions. The red, blue, and green curves are the “tracks”
showing particle positions over time. Arrows indicate the direction of
particle motion. In the simulations, the oscillations in (a) slowly grow
with time, while those in (b) slowly decay. As discussed in the text, this
effect diminishes as Re is decreased. (a) Theory and simulation results
after x.,/L = 482 advected particle lengths. For the simulations, Re =
0.2. The particles were initially displaced from the fixed point by Ay,
= —0.34L, where particle 1 is the green (bottom) particle; Ay, = —0.68L,
for the blue (middle) particle; and Ay; = —0.34L for the red (top) particle.
(b) Results after x.,,/L = 205 advected particle lengths. For the simula-
tions, Re = 0.05. The initial displacements from the fixed point are Ax,
= —0.22L, Ax, = —0.43L, and Ax; = —0.22L. In contrast with (a), here
Re and x.,,/L are too small for a discernible phase difference between
theory and simulations.

translates with fixed particle separation, and there are no oscil-
latory eigenmodes. At the other extreme are infinite one dimen-
sional or two dimensional lattices. The lattices include those
constructed above, with virtual particles replaced by real parti-
cles, as well as lattices that are periodic in the flow direction, as in
Tlusty.®” These lattices do have eigenmodes, such as the
“microfluidic phonons” of that work. However, infinite lattices
can be destabilized by nonlinear instabilities, whereas the cluster
fixed points constructed here are sustained for hundreds of
advected particle lengths. We do not know of any fixed points for
N =3 or N=4. For N =5, there is a fixed point with particles
arranged at the vertices of a regular pentagon. In the theoretical
model, its Jacobian has only two eigenvalues of any significance:
a pair of real numbers. There are no oscillatory collective modes,
and the cluster is linearly unstable. The magnitude of the
eigenvalue depends on the length scale of the pentagon. For
instance, when the radius of the circumscribing circle is 3L, the
cluster breaks up after approximately x../L = 240 particle
lengths with even a very modest amount of noise applied to the
initial particle positions. (Two separate noise terms were applied
to the x and y positions of each particle, where the noise was
uniformly distributed over the interval [—0.00025L,0.00025L].)
Experimentally, the unbounded 2D geometry can only be

approximately realized as a very wide channel. When the cluster
is positioned in the center of a channel with W/L = 50, the
residence length of the cluster is reduced even further, to x.,/L =
160. We suggest that the effect of the side walls should be
considered for nearly all practical channel sizes.

3.2 Metastable states and stochastic dispersion

Within the theoretical model, fixed points constructed via
symmetry considerations are marginally stable. There are still
other, “metastable” configurations for which particles remain
together for many advected lengths x.,/L before eventual break-
up of the configuration, both in the theoretical model and in
simulations. For instance, Fig. 5 shows LBM results for a
“triangle” configuration. The cluster only disperses after x /L =
1047 advected particle lengths. Moreover, for much of this initial
transient period, relative positions are roughly maintained, as in
the first two panels. We find such szeady metastable states by
setting the relative particle velocities found via eqn (2) and (3) to
zero and solving the resulting algebraic equations numerically.
These states provide new steady particle configuration geome-
tries beyond the linear configurations of Fig. 2.

We characterize the eventual break-up and dispersion of the
configuration via the quantity

N
O/ YO/~ nlO/D, (D)
recalling previous studies of collective diffusion of confined
Brownian colloids;*® however, the particles we consider are non-
Brownian. The dispersion ¢%/L? is shown for four realizations of
this metastable triangle in Fig. 6, with each trajectory subject to a
slight random perturbation to its initial particle positions. (Each
individual particle is spatially displaced by a vector with
magnitude 0.025L and random angle.) Break-up occurs for
various values of dimensionless time Uy?/L. The cluster disperses
stochastically, owing to sensitivity to initial conditions.
To determine whether chaotic three body hydrodynamics can
account for this sensitivity, we examine the three particle

e o W

Xcm/L = O Xcm/L = 582

()~
S =104

Fig.5 Snapshots of simulation results for a metastable steady “triangle”
configuration with Re = 0.2 and W/L = 8 at four values of the cluster
center of mass x.,. Particle motion, initially limited to small excursions
from the initial positions, grows in magnitude until the magenta and
green particles pair. Ultimately, the red and green particles escape
together. Colors indicate the magnitude of the fluid velocity.
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configuration of Fig. 7(a) by integrating the theoretical model.
Recall that, by construction, this model contains only far-field
hydrodynamics. We integrate several thousand trajectories,
again with each starting with a small, random perturbation to the
initial particle positions. (In this case, we apply two separate
noise terms to the x and y positions of each particle, where the
noise is uniformly distributed over the interval
[—0.0125L,0.0125L].) We find two modes of cluster break-up:
either the blue particle escapes from the red and green particles,
(Fig. 7(a), top panel) or the blue and green particles escape
together as a dimer and leave the red particle behind (Fig. 7(a),
bottom panel). Qualitatively, this break-up can be understood on
the basis of the so-called transverse “anti-drag” inherent in the
dipolar form of hydrodynamic interactions. (Fig. 1(b)) The blue
particle leaves the red and green particles behind when it is close
to the lower wall, so that it is significantly sped up by interaction
with its nearest image. Similarly, when two particles form a pair
oriented perpendicular to the external flow — such as when the
green and blue particles escape together — “anti-drag” increases
the speed of the pair relative to that of a single particle. Once
particles are separated by a distance comparable to W, their
interaction is screened, and break-up is complete. The distribu-
tion of these escape pathways is shown in Fig. 7(b). This
stochastic break-up process arises from sensitivity to initial
particle positions, which can be quantified by measuring the
characteristic time for exponential divergence of initially neigh-
boring trajectories, as in Fig. 7(c).

Our results on chaotic dispersion of three particle clusters
recall a pioneering numerical study of the chaotic dynamics of
three sedimenting spheres, represented mathematically as Sto-
keslets.** Once again, unbounded 2D provides a point of
contrast. Clusters of three particles in the unbounded geometry
immediately break up as a dimer and a single particle. The bare
dipolar form is not sufficient for three body chaotic dynamics.
This does not rule out metastable states and chaotic dispersion
for higher N in unbounded q2D, which could be explored with
the techniques described here.

3.3 Cyclical dynamical motifs

The techniques discussed above are used to find configurations in
which particles maintain their relative positions as the cluster flows

40

30

L L 1 |
0 2000 4000 6000
t/L

0
Fig. 6 Dispersion ¢*/L* with dimensionless time Uy#/L for four trajec-
tories of the metastable “triangle” configuration of Fig. 5, simulated with
the Lattice Boltzmann method. For each trajectory, the initial particle
positions are spatially perturbed by a displacement vector with magni-
tude 0.025L and random angle. The four trajectories break up at different
times.
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Fig. 7 (a) Particle motion in the center of mass frame for two realiza-
tions of a metastable three particle configuration with W/L = 8§, as
determined by integration of the theoretical model. The two realizations
differ by slight noise in the initial particle positions. A random pertur-
bation uniformly distributed over the interval [—0.0125L,0.0125L] is
applied to the x and y positions of each particle. The green (middle)
particle pairs and escapes with either the red (left) particle, as shown in
the first panel, or the blue (right) particle, as shown in the second panel.
(b) Distribution of escape pathways for the three particle configuration.
Bins are labeled by which two particles pair. For each trajectory, the
initial particle positions are given a random perturbation, as in (a). The
escape outcome is sensitive to this perturbation. (c) Euclidean distance
A1) = (Al — xip(0)* + (A0 — yia(0))] between the two real-
izations (trajectories in phase space) in (a) as a function of dimensionless
time, where i indexes the three particles, and A and B label the two
trajectories. For some initial transient period, both trajectories are bound
as three particle configurations and diverge exponentially in phase space,
A ~ UL with a Lyapunov exponent of 4 = 0.00185.

down the channel, whether indefinitely, as with the marginally
stable fixed points, or for many advected particle lengths, as with
the metastable steady states. For the marginally stable fixed points,
there are collective modes in which particles oscillate around their
equilibrium positions. However, these are not the only ordered
motions possible. There are metastable dynamical motifs in which
particles follow cyclical paths. These configurations cannot be
found by minimizing the particles’ relative velocities, as above,
since the particles are constantly in motion. Instead, we scan for
these dynamical motifs by directly integrating the equations of
motion for various initial particle configurations and sorting out
trajectories for which the final configuration is close to the initial
configuration in phase space. The simplicity of the theoretical
model permits computation of thousands of trajectories overnight
on a single processor. Candidate motifs can then be studied in
greater detail via Lattice Boltzmann simulations. Via direct inte-
gration and LBM simulations, we find the “juggling” motif of
Fig. 8(a), in which three particles cyclically exchange positions, and
the “bowtie” configuration of Fig. 8(b). As metastable states, these
configurations also eventually disperse.

4 Conclusions

Using a theoretical approach and Lattice Boltzmann simula-
tions, we revealed new classes of nonequilibrium ordered states
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for small particle clusters flowing in quasi-two-dimensional
channels. For several of these classes, particles maintain their
relative configurations either indefinitely (the marginally stable
configurations, which are fixed points of a dynamical system) or
for hundreds of advected particle lengths (the steady metastable
configurations.) The marginally stable configurations can be
regarded as “flowing crystals,” since they are constructed by
exploiting the translational symmetry of an infinite set of real and
virtual particles. As with crystals, they have collective modes in
which particles oscillate around their equilibrium positions. The
oscillations are not strictly transverse or longitudinal, but occur
in two dimensions. Moreover, these “crystals” may, in fact, be
more stable than the one-dimensional trains and two-dimen-
sional arrays examined in other studies, since the virtual particles
are completely slaved to the real particles.

Metastable states provide new configuration geometries in
which particles remain in steady relative positions. They are
sensitive to initial particle configuration, and their eventual
break-up is characterized by individualistic particle motion. This
sensitivity affects even a gross and discrete outcome, how three
particles in a “triangle” split into a bound pair and an isolated
particle. Moreover, sensitivity requires only three hydrodynam-
ically interacting particles. Our system offers a facile experi-
mental and theoretical platform for the study of irreversible
behavior that arises from reversible equations of motion. For
example, a possible line of investigation is the effect of number of
particles N on the statistics of dispersion. For small N, the
dynamically “sticky” metastable states could contribute to
anomalous diffusion. For large N, the dimensionality of the

(a)

particles’ configuration space is large, and mean-field theory
should be applicable. Furthermore, the metastable states can be
harnessed for lab-on-a-chip devices. Consider Fig. 5. If a steady
state with little relative motion is desired, the particles scarcely
move as the cluster flows x.,/L = 582 particle lengths down-
stream, as shown by the second panel. For a HeL A cell with L =
20 pm, this corresponds to an advected length ~1.1 cm, which is
a typical microchannel length. For a channel twice as long, the
three particles come to “mix” and closely interact through indi-
vidualistic trajectories.

For other classes of metastable states — the cyclical dynamical
motifs — particle motion is complex but still spatially and
temporally ordered, with particle excursions occurring over
many particle diameters in two dimensions.

We elucidated the principles for a priori construction of fixed
points, as well as numerical techniques for rapid numerical
discovery of metastable steady and cyclical states. These can be
applied to any number N of particles; for the sake of brevity, we
omitted results on N = 4, N = 5, and so on. Moreover, our
findings and techniques suggest future directions of research
incorporating other physical effects. Lattice Boltzmann can be
coupled to deformable particles instead of rigid discs. For
deformable particles, distant segments move relatively and
interact hydrodynamically, and the collective behaviors revealed
here could couple to the particles’ internal elastic modes. Like-
wise, spring forces can be incorporated in the theoretical model.
The particles can be made non-identical, either through varying
particle size, or through varying the friction coefficient 7.
Practically speaking, the latter might vary through the course of

(b)

Fig. 8 Cyclical motifs for N = 3 particles discovered via a “brute force” search with the theoretical model and confirmed with LBM simulations. In a
search, we sweep over initial spatial configurations of N particles, integrating the model forward in time for a specified time span and identifying
candidate cycles as those with small Euclidean distance between the initial and final spatial configurations. The Euclidean distance d is defined as &* =
S {(xdtana) — x40))* + (¥ltana) — ¥40))?]. The simplicity of the model makes this approach computationally tractable. Colors indicate the magnitude of
the fluid velocity field. (a) In the “juggling” motif, the three particles move clockwise, as indicated by the black arrow, cyclically exchanging positions.
Particles pause in the bottom position, recalling how a juggler will momentarily have a ball in hand. Each exchange of particle positions occurs after
about 115 advected particle lengths, so that the entire cycle takes about x.,,/L = 345 lengths. (b) The “bowtie” motif. At first glance, it might appear that
this motif is associated with a fixed point in which particles are positioned on the centerline, aligned with the flow. However, such a configuration would
quickly disperse. Particles return roughly to their initial positions after approximately x.,/L = 960 particle lengths.
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an experiment, either in a time invariant manner, through
particle polydispersity, or transiently, through fluctuations in the
z direction for weakly confined particles. If particles are non-
identical, they no longer have the same interaction parameter 3,
and hydrodynamic interactions are no longer symmetric on the
two particle level.'' For instance, when v, varies for three
particles by £10% for a “column” fixed point in the theoretical
model, they no longer maintain steady relative positions, but
adopt complicated quasi-periodic orbits. A limitation of the
marginally stable fixed points constructed above is that they are
not attractors for particle dynamics; that is, disordered suspen-
sions of particles will not spontaneously “crystallize,” and access
to the fixed points is limited by initial particle configuration. It is
conceivable that particles could be induced to assemble when
time reversal symmetry is broken, as when particles are
deformable, and/or when particle symmetry is broken, as when
particles have dissimilar size or shape. Our theoretical frame-
work can also incorporate Brownian noise, and potentially be
applied to the dynamics of macromolecules in slit-like confine-
ment. Experimental evidence and theoretical arguments indicate
that hydrodynamic interactions can be neglected in the mean-
field limit for g2D confined macromolecules, although this still a
subject of discussion.?”** Our work suggests that hydrodynamics
could significantly affect chain dynamics when the number of
interacting segments N is small. We anticipate that this work will
provide a starting point for further discovery of rich physics in
2D particle-laden flows.

5 Appendix A: two particle oscillations

The theoretical model was developed in a previous work, where it
was applied to a system of two particles. It was found that,
depending on the initial conditions, the two particles will either
break apart and scatter to infinity, or remain together as a
oscillatory bound state.?® These bound states are marginally
stable orbits around two types of fixed point. The first type of
fixed point has particle separation in the flow direction Ax = 0,
where Ax = x, — x1, and Ay # 0, where Ay = y, — y;. The
center of mass position is on the channel centerline, y., = W/2.
For this type of fixed point, the particle separation vector rj, =
r, — ry is oriented at 90° with respect to the external flow. The
second, 0° fixed point has y.,, = W/2, Ax # 0, and Ay = 0.

We quantitatively compare Lattice Boltzmann and the theo-
retical model for two initial conditions and channel geometries
that lead to oscillations around a 90° fixed point. For initial Ax =
0, Ay = 3L, yen = WI2 + L, and W/L = 9, we find that LBM
results at Re = 0.2 closely correspond to theoretical predictions,
with very slight attenuation of amplitude over several wave-
lengths. This can be seen in Fig. 9 (left), which show particle
positions y; and y, with center of mass position X ,.

On the other hand, decay of amplitude with x.,, is much faster
at Re = 0.2 for another, less dilute configuration with initial Ay =
2L, initial Ax = 0, and initial ye, = W/2 + L. Fig. 10 shows
results for this trajectory and for other values of Re. Since y; is
plotted against x,, instead of with time, these curves should
overlap if the velocity scale is unimportant, i.e. in the absence of
inertial effects. As Re is reduced, the effect diminishes in signif-
icance, and the trajectories approach overlap. We conclude that
the marginal stability of the theoretical model can be recovered in

the limit of Re — 0, although the inertial effect is more signifi-
cant for configurations with closer contact between surfaces.

We also show a trajectory at Re = 1, for which decay is rapid.
For this trajectory, it can be easily seen that y; and y, drift
towards focusing positions. This is reminiscent of the focusing
effect exploited in inertial microfluidics.*! Inertia could provide
another axis of control for particles flowing in q2D confinement,
although the design rules, theory, and experimental results
developed for weakly or moderately confined spheres may not be
directly transferable to 2D particles.

Finally, we use this initial particle configuration and channel
geometry to demonstrate the universality of our theoretical
model and the effect of varying the parameter 3. Since the
hydrodynamic interaction term in eqn (3) is order g relative to
the external flow Uj, then the wavelength of oscillation of y; or y,
with x¢, should vary as 87!, since the particles’ motion in y arises
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Fig. 9 (left) Oscillation of a particle pair with initial Ay = 3L, initial Ax
= 0 and initial center of mass position y.,, = W/2 + L. The positions of
the two particles in y are shown as a function of center of mass position
Xem. The solid black curve shows LBM simulation results at Re = 0.2, and
the dashed red curve shows the result of numerically integrating the
theoretical model. These curves closely agree, though very slight atten-
uation in amplitude can be seen in the LBM results. (right) Simulation
results for the particle pair, shown after advection by x.,,/L = 859 particle
lengths. The red and blue curves show particle positions at prior times,
and crosses indicate initial particle positions. Colors indicate the
magnitude of the fluid velocity field.
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Fig. 10 Oscillation of a particle pair with initial separation Ay = 2L, Ax
= 0 and initial center of mass position y.,, = W/2 + L for various values
of Re. Particle positions in y are shown as a function of center of mass
position x.p, in the flow direction. As Re decreases, there is less decay of
amplitude per wavelength. For clarity, we omitted the theoretical curve
for one of the particles.
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strictly from hydrodynamic interactions. For H/L = 2/3 and H/L
= 1/3, we vary the value of vy, to tune 8, and find that A/L, the
wavelength of oscillation, does follow the predicted scaling, and
that the data for both values of H/L collapse onto one curve
(Fig. 11).

6 Appendix B: validation of q2D Lattice Boltzmann
model

In order to test our q2D Lattice Boltzmann model quantitatively,
we measure dimensionless drag forces and torques for compar-
ison with the theoretical values derived in Evans and Sack-
mann.?” In the following, we use a square domain of side length
25L, while we vary disc size L and dimensionless height H/L.
Larger values of L resolve more spatial detail, improving
numerical accuracy, at the cost of greater computation time. We
measure the dimensionless drag force F./4wu,pU on a disc
translating with fixed velocity U in a quiescent fluid. We fix ReP
= [UPL/y as Re? = 0.1. Likewise, we measure the dimensionless
torque /471t R*uypw on a disc rotating with fixed angular velocity
w in a quiescent fluid, keeping Re® = 0.1, where Re” = 2wR/v.
The size of the domain allows us to neglect boundary effects. As
Fig. 12 demonstrates, there is negligible improvement in accu-
racy when L is increased beyond the value L = 10 used
throughout this work.

7 Appendix C: hydrodynamic interaction tensor

As detailed in a previous work,?® a rigid particle of radius R in an
unbounded g2D geometry can be modeled with the two dimen-
sional Brinkman equation:

7VP2D + ,l,LzDVzll — ,uHazu = 0, (12)

where &> = 8/H? and u,p = wH. The external flow velocity and
the particle velocity supply boundary conditions for solution of
the equation. Solution yields the drag coefficient

B a’R*> aRK;(aR)
C_47U’LZD( 4 K()(aR) )7

(13)

as well as the hydrodynamic interaction tensor V%, which is non-
zero only for i # j:
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Fig. 11 The two particle configuration of Fig. 10 has an characteristic
wavelength A/L with which y; and y, oscillate as x.,, increases. This
wavelength A/L scales with the hydrodynamic interaction parameter
with a fitted exponent of —0.963, close to the predicted value of —1.

BE(1+

X=@—-—x), Y=0—y

2K1 (CIR) o)
aRKO(aR)) R

XX

VD = B(X* = Y?)/ry*, VD = 2BXY [r;*

ViR = V8, Vi =~V

The tensor V¥ should be read as “the disturbance at particle
in direction « due to motion of particle j in direction 8.”

To obtain V) for the thin channel geometry, we sum over
particle images, as described in Section 2.1 and detailed in our
previous work. This procedure introduces new self-interaction
terms, and changes the form of the two particle coupling to be a
screened dipolar interaction. The self-interaction (i = j) is

determined as:
_ 2K (aR) \ [ R\’
€= (1 + aRKO(aR)) (2 W)

va”))c,far = —C/S, V%;,far = - V.(y;)c,far

, o , . ; _ .,
V(Jé’})/,far - 05 )X\)',far = 0> V()é'))c,near = —(/sin (TCy,/W)
V%Z,near = VEY“))C,HCE{I" V‘)g)f,near =0, V()I*;,near =0

V(o'z% = V(oi%,near + V(o’;%’,fan

For i # j, the screened dipolar interaction is given by:

X = 7w(x; — xp2W, Y* = n(y; £ y)2W

2cos? Y-cosh®? X~ — cosh> X~ —cos? Y~
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Fig. 12 Dimensionless drag forces and torques vs. dimensionless
channel height H/L for a disc translating or rotating in a quiescent fluid
for various disc sizes L, where L characterizes the level of spatial coarse-
graining. For L = 10, the disc size used in this study, there is negligible
gain in accuracy with further improvement in resolution.
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For fixed Y* and Y-, the two body interaction decays expo-
nentially with screening length W/m or W/2m as |[X| — .
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