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DNA conformation in slitlike confinement is studied using Monte Carlo simulation and scaling theory.
We focus on analysing the in-plane DNA extension as a function of slit height and DNA properties,
such as contour length, persistence length and width. Similar to tube confinement, we identify an
extended de Gennes regime which is prevalent in many experimental studies. However, unlike previous
studies in tubes, we find two highly confined regimes (so called Odijk regimes) that depend on chain
crossing. Our results support the majority of experiments which display a gradual transition into the
Odijk regime and give new insight into the importance of chain width for DNA in nanoslits.

1. Introduction

Advancements in nanofabrication techniques have given rise to
a new generation of micro and nanodevices for use in biological
assays."™ A subset of these devices, used in DNA separation and
genome analysis, are predicated on confinement-induced changes
in molecular structure. In pursuit to better control molecular
conformation, researchers have carried out a wide range of single
molecule studies focused on understanding biopolymers in
confined environments.5 Experimentally, many studies measure
a mean size or extension of DNA in the unconfined dimen-
sions.* ! As such, here we will focus on the static, equilibrium
properties of DNA. In this correspondence, we examine and
elaborate on subtleties of theory and simulations for DNA
confined in a slit (confined between two infinite parallel plates).
We seek to show that the current understanding of uniaxial
confinement is more complex than previously described. More-
over, we show that subtle deviations from existing theories may
account for apparent disagreements in the existing literature.
Statistical properties of DNA confined to nanofluidic channels
deviate from their free solution or bulk values and depend on the
degree of confinement and confinement geometry. New fabrica-
tion techniques provide an attractive route to develop a number
of complex channel geometries.’*"” Nevertheless, slits and tubes
act as canonical examples of uniaxial and biaxial confinement,
respectively. Furthermore, more complex geometries can be
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understood as combinations of tubes and slits.'>'® Therefore,
tubes and slits have received the majority of attention. DNA
conformation in confinement has typically been viewed as being
dependent on a competition between three length scales: the
three-dimensional bulk radius of gyration R, ;.. the persistence
length L,, and the characteristic size of the channel confining
dimension H. For slits, the confining dimension is the channel
height. In weak confinement where i ~ 3R, 1, the DNA coil is
only slightly perturbed by the presence of the confining walls. In
moderate confinement (also known as the de Gennes regime)
L, < H < R, pur and the polymer is viewed as a series of self-
avoiding isometric blobs of diameter H, which leads to scaling
predictions for static and dynamic properties of the polymer.'®2°
The blob description of the DNA breaks down once H
approaches L, because the orientational and translational
degrees of freedom become restricted at the length scale of
a statistical segment. Thus, Odijk? proposed a deflection chain
model in which the entire polymer contour consists of a series of
segments that deflect off of the channel walls.

To date, tubes have been the most widely studied geometry, and,
as a result, the theories describing polymer conformation in tube
confinement are well in hand. However, sufficient controversy still
exists for polymers confined to slits. Much progress has been made
experimentally in understanding slit confined polymer configura-
tion in the de Gennes regime.?*?” Consistent, accurate predictions
of polymer equilibrium size versus chain contour length and
channel height in experiments provide compelling evidence that
the framework of blob theory provides an acceptable description
of polymer conformation in moderate slit confinement.

In contrast to our understanding of DNA conformation in
moderate confinement, remarkable disagreement exists among
the experimental studies in nanoslits trying to probe the transi-
tion from de Gennes to Odijk regime. Several studies have sug-
gested that the transition from de Gennes to Odijk regime is
gradual and broad. Balducci er al.?® measured the diffusivity of
DNA in nanoslits over a range of heights spanning from weak to
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strong (Odijk) confinement. They did not see any significant
changes in scaling for diffusivity as channel height H approached
DNA persistence length L,. Studies by Strychalski et al.'*** also
support a gradual transition. They extended the measurements of
DNA diffusivity into more shallow slits well below the DNA
persistence length without any apparent signature of transition-
ing into the Odijk regime. They instead observed a single power
law scaling for diffusivity for channels heights from 541 nm to
28 nm. More recently Tang et al.* reported power law scalings
for dynamics and static properties of DNA, which extend into
the Odijk regime. Contrary to the aforementioned results, Bon-
thuis et al.*® measured the in plane radius of gyration Ry scaling
as a function of the slit height A and found a sharp change at
H = 100 nm. For H smaller than this value, R did not vary. A
similar plateau in nanoslits was observed by Lin et al.,*® albeit
this transition occurred at heights below the persistence length.

We now turn our attention to the current simulation literature
of polymers confined in slits. There is consensus among coarse-
grained simulations of DNA in weak and moderate confinement.
In weak confinement, the 3D radius of gyration of a polymer
shows an initial dip and then increases when decreasing the
channel height,?33 in accord with the theoretical prediction.?*3**
This nonmonotonic behaviour of 3D polymer size is due to
acompetition between compression in the z-direction and swelling
in the x-y plane.?® However, the in-plane 2D polymer size
(projection on the confining planes) increases monotonically with
decreasing channel height.?®3-% In moderate confinement,
simulations of equilibrium in-plane radius of gyration for DNA
have consistently shown the expected power law scaling derived
from blob theory.>**” However, the transition from the de Gennes
to Odijk regime of slit-like confinement has not been studied
extensively. Cifra ez al.*” performed worm-like chain simulations
of short chains confined to slits. A small change in the scaling for
the end-to-end distance was observed. These simulations consist
of relatively short chains, and it is not evident how this changes
with chain length. A variety of other researchers have probed the
Odijk regime by means of worm-like chain models to explore the
physics in strong confinement.?*** However, these prior studies do
not extend into the de Gennes regime.’%3°

In this paper, we aim to obtain a comprehensive understanding
of DNA conformation in slitlike confinement. An issue with the
simulations in the existing literature is that they do not span
across all relevant length scales. Weak and moderate confine-
ment simulations require significant coarse graining which
approximates multiple statistical segments as single entities.
Traditional semi-flexible chain models are too computationally
expensive and therefore cannot be used to simulate large poly-
mers. Inspired by Wang et al,** we find a middle ground to
simulate DNA in slits that allows us to probe all regimes of
confinement. In doing so, we shed new light on the existing
experimental data and also demonstrate the existence of another
regime under strong confinement.

2. Theory and computer simulation
2.1 de Gennes regime and extended de Gennes regime

The free energy of DNA in a nanotube was derived by Jun et al.*!
using Flory theory.?*** Later, it was applied to analyse the

simulation results of DNA in a square channel by Wang et al.*°
In the current study, we use similar free energy arguments to
derive scaling laws for DNA in slit confinement. In the de Gennes
regime, a DNA chain confined in a slit can be considered as
a series of self-avoiding isometric blobs in two-dimensions, as
shown in Fig. 1. The free energy is expressed as:

£ il (L/Lyop) H?
koT ™ (L] L) H R

(D

where k,T is the thermal energy, R is the in-plane radius of
gyration of DNA, H is the slit height, L is the contour length of
DNA and Ly, is the contour length of DNA inside a blob. The
two terms in eqn (1) capture the elastic entropy and the excluded
volume interaction. Inside a blob, DNA behaves identically to
the bulk phase, and Ly, is determined as:*?

S513,,—1/37 —1/3
Lb/ob ~ H>*w Lp . (2)

Here, w is the effective width of the DNA chain, which takes into
account electrostatic interaction between DNA segments. Note
that the above equation uses the Flory exponent of 3/5, which is
an approximation. Sophisticated calculation gives a more precise
value of 0.5877 + 0.0006.** The in-plane DNA extension in a slit
can be achieved by substituting eqn (2) to eqn (1) and then
minimizing eqn (1) with respect to Ry:

(R”) ~ L3"‘H’”4w""‘L11,/4 (3)

Eqn (2) makes use of the Flory exponent of 3/5 inside a blob,
which is valid only when H is larger than a critical value H«« so
that the excluded volume interaction inside a blob is larger than
k,T.* The critical value for slit height H« can be approximated
as:

Hes = Lw. )

The contour length L+« of the sub-chain inside a blob of size
Hex is:

Lix = L;/M/Z (5)

If H becomes less than H.+, DNA will enter the so-called
“extended” de Gennes regime,?* which is illustrated in Fig. 1. In
this regime, the contour length contained in each spherical blob
becomes so short that the excluded volume interaction between
segments inside a blob becomes less than k,T.*° Therefore, the
sub-chain behaves like an ideal chain, and the scaling law
becomes Ly, ~ H". The blob needs to be enlarged from
a sphere to a discoid, such that the chain is now at the crossover
between real and ideal chain behaviour. The discoid has a height
H and in-plane radius B. The contour length of the sub-chain
inside this discoid is L«. The value of B needs to satisfy two
conditions.*

B~ LY?L)* ~ (LiwlH)'" (6)

The middle expression assumes ideal chain behaviour inside
a blob. The last term corresponds to the situation that the
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Fig. 1 Top and side views of representative simulation snapshots of DNA in four regimes. The red line curves represent 3D DNA conformation. The
width of the green sidewall in each scheme indicates the slit height. The light blue blobs in the de Gennes regime represent spheres with a diameter equal
to the slit height. The light blue blobs in the extended de Gennes regime represent discoids with an in-plane diameter larger than the slit height. In the first
two regimes, DNA conformation can be described by blob theory. In the last two regimes, DNA conformation in the direction perpendicular to the slit

wall can be described by deflection theory.

excluded volume interaction inside a discoid L3w/(HB?) equals 1
(in units of k, 7). Then, L« and B are determined to be:

Le ~ L,Hlw )
B ~ L,H"[w'"> (8)

The free energy in the extended de Gennes regime can be
obtained from blob theory by replacing the spherical blob by
a discoid. Accordingly, the free energy reads:

F R (L/L-)’B?
kyT (L/L+)B R

©)

Substituting eqn (7) and eqn (8) into eqn (9), the free energy is
expressed as:

F Rﬁ L*w

ksT LL, RH

(10)

Minimizing eqn (10), we obtain the same expression of the
DNA extension as eqn (3). This means that the scaling law
relating R to H is the same in the extended de Gennes regime
and the de Gennes regime, even though the free energy expres-
sions are different. A similar result was also derived by Wang
et al.* for DNA in a nanotube.

2.2 Odijk regime

To analyse the relationship between R and H in the Odijk
regime, we consider a virtual in-plane chain corresponding to
the projection of the DNA chain onto a slit wall. Then, R is
the radius of gyration for this virtual in-plane chain. This
virtual in-plane chain has a projected contour length L;, an
apparent persistence length L, and a chain width w. Before

calculating R, we need to know how L and L, are related
to H.
The scaling law for L) was previously derived by Odijk:*!

(Ly) = L[l — a«(HIL,)™ (11)

The prefactor a has been determined to be 0.09137 £ 0.00007
by Burkhardt er al.*** Regarding the relationship between L,
and H, we obtained an empirical expression by fitting simulation
results (details are given in the results section):

Lyy/L, = 129 x 0.487% +0.71 (12)

Next, we derive R from L, L, and w using Flory theory by
considering a 2D self-avoiding walk. Free energy of DNA in the
Odijk regime also consists of elastic entropy and excluded
volume interactions. The excluded area between two DNA
segments in a plane is calculated based on the assumption of
random orientations (see supplementary materials for the
derivation):

Aoy ~ (Lyy + 1.3w) (13)

As a result, the total free energy is written as:

2
F R L1 +13w/L,) 14
kyT  LjLy Rﬁ ’

Minimizing the above equation with respect to R, we obtain:

(R)) ~ LY*LY K1+ 1.3wIL, )", (15)

To eliminate the unknown prefactor in eqn (15), we normalize
R by R)| piane- Ry piane corresponds to DNA confined to a plane.
In that case, Ly = L and L, = 2L,.*
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537 /4
Ry 0.09137(5) R
(Ry\ptane) L,
Lp"‘ 174 1+l.3W/Lpl"| 12
(Z_Lp) % <1 n 0.65w/Lp)

In eqn (16), (R)/(R)plane) is independent of the contour
length, which is confirmed in our simulations of DNA in strong
confinement.

Note that the derivation of eqn (13) is based on a 2D self-
avoiding walk. It assumes the DNA projection on a slit wall
cannot cross itself. This assumption is valid when H = w. We
refer to this as Odijk regime I, or “non-self-crossing” regime, as
shown in Fig. 1. When w < H < 2L,, DNA can cross itself. We
refer to this as Odijk regime II, or “self-crossing” regime, as
shown in Fig. 1. Because of the self-crossing conformation of
DNA, the excluded volume interaction term becomes different

from eqn (13). In the self-crossing regime, we consider the DNA
as a series of deflection segments and write the free energy as:

(16)

F R N,
kT LyL,  RiH

(17)

where N, is the number of deflection lengths Ny = L/A= LI(H* 3L},/3),
and E,, is the excluded volume of a deflection segment. Odijk
derived an equation similar to eqn (17).2* The value of E,, depends
on the orientational and translational correlations between
deflection segments. There are two extreme cases for the correla-
tions. In one extreme, if we assume the deflection segments cannot
overlap each other when projected to a slit wall, we can approxi-
mate the excluded volume E,, = L|L, H. Then, eqn (17) returns
to eqn (14). In the other extreme, if we ignore the correlation
between deflection segments, we can approximate the excluded
volume E,, = A*w. Then, the excluded volume interaction
becomes identical with the de Gennes regime. If we further assume
that the entropic term is the same as in the de Gennes regime, the
expression for the in-plane radius of gyration returns to eqn (3). So
the self-crossing regime is a transition regime between non-self-
crossing regime and the extended de Gennes regime.

2.3 Monte Carlo simulation of DNA in slits

We use Monte Carlo simulation method to study DNA in a slit,
following a similar approach as Wang et al. with slight modifi-
cations.*® DNA is modelled as a chain of Np,,; beads connected
by Npewa — 1 inextensible bonds of length /p, corresponding to
a contour length L = (Npeaq — 1)I. Different from the approach
of Wang et al ,** pairwise interaction between beads in our
simulation is pure hard-core repulsion, which leads to a faster
simulation. When the distance between two beads is less than the
chain width w, the interaction potential is infinitely large, and the
configuration is rejected in the simulation. The hard-core repul-
sion does not significantly change the simulation results,
compared with other short-range interaction potentials. The
interaction between a bead and a slit wall is also a hard-core
repulsion. If the centre of a bead is beyond a slit wall, the
potential will be infinitely large, and the configuration is rejected
in Monte Carlo moves. Note that Wang ez al.*® judge whether
a bead hits the channel wall according to the surface of the bead

rather than the centre of the bead. So they subtract the bead
diameter from the slit height to obtain an effective slit height.
This effective slit height should be used when applying eqn (11).
Besides hard-core and hard-wall repulsion, the only interaction
in the simulation system is the bending energy between two
adjacent bonds. The total bending energy for a wormlike chain is

Ebend _1 (L au(s) 2
k, T ’EKJO( as ) (18)

where u(s) is local tangent vector to the chain at position s on
a continuous wormlike chain. The bending rigidity k equals to
the persistence length L,,. In the simulation, the wormlike chain is
discretized to a chain of beads and bonds. Accordingly, the
bending energy between two adjacent bonds follows:

EPrd (0,
M:lﬁﬁ%lzlﬁ?'l (19)
kT 20 M2y M

where 0, ;1 is the bending angle between the bonds i and i + 1,
and /3 is the bond length. In the previous simulation work, /5 is
usually set to be around 3-5 nm. In the current study, we use
large /3 in some simulations. In the supplementary material, we
quantify the effect of using large /p in the simulation. The
advantage of using a large /p is that it allows us to directly
simulate DNA contour length up to experimental values.
During Monte Carlo simulation, we perform two types of trial
moves, crankshaft and reptation.***” In each Monte Carlo cycle,
we perform one crankshaft move and one reptation move.
The simulation starts from a random configuration and usually
reaches equilibrium after about 107 steps. In the production run,
we perform 10" steps and record the configuration every 10°
steps for data analysis. For each DNA configuration, we calcu-
late Rﬁ from the in-plane coordinate x; and y, of each bead using:

1 Nbead

> [ =% +0i =) 20)

i=1

R=—

1™ Nyead

where x and y are the averages of x; and y; over all beads in

a given DNA configuration. We record Rﬁ for each configuration

and then, we average Rﬁ over stored configurations to calculate

the square root to obtain R). The estimated error of ensemble
averaged R is within the size of the symbols in the figures.

There are five parameters in the simulation: persistence length

L,, contour length L, chain width w, slit height A and bond

length /3. Table 1 shows the parameter sets used in the current

study.

3. Results and discussions
3.1 de Gennes regime

First, we present the simulation results for the de Gennes regime.
Fig. 2(a) and 2(b) show the normalized R — H curve for different
L. We set w to a large value of 40 nm, so that DNA can easily
enter the de Gennes regime. We apply two types of normalization
for Ry and H. In the weak confinement regime, DNA confor-
mation is close to that found in bulk and hence we normalize
both R and H by R ., as shown in Fig. 2(a). After normali-
zation, four curves with different contour lengths collapse in the
weak and moderate confinement regimes. It can also be proved
from the scaling theory that the normalized R — H curve is

This journal is © The Royal Society of Chemistry 2012
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Table 1 List of simulation parameters and the slit height ranges for different regimes.”

DNA parameter H=worH=0 H range for different regimes (nm)

Index L, (nm) [gp(mm) (nm) L (om) Rjpukc Rjpane non-self-cross self-cross extended de Gennes de Gennes weak confine
1 50 40 40 4 285 546 [0, 40] [40, 100]  skipped [100, 143]  [143, o]
2 50 40 40 8 432 916 [0, 40] [40, 100]  skipped [100, 216]  [216, «]
3 50 40 40 12 549 1239 [0, 40] [40, 100]  skipped [100, 275]  [275, ]
4 50 40 40 16 652 1537 [0, 40] [40, 100]  skipped [100, 326]  [326, =]
5 50 5 10 8 339 846 [0, 10] [10, 100]  [100, 170] skipped [170, o]
6 50 5 15 8 354 855 [0, 15] [15,100]  [100, 167] [167, 177]  [177, =]
7 50 5 20 8 372 863 [0, 20] [20, 100]  [100, 125] [125, 186]  [186, =]
8 50 10 10 22 607 1802 [0, 10] [10, 100]  [100, 170] [170, 304]  [304, =]
9 50 20 20 22 675 1834 [0, 20] [20, 100]  [100, 125] [125,338]  [338, o]
10 50 40 40 22 786 1950 [0, 40] [40, 100]  skipped [100, 393]  [393, ]
A-DNA!' 54 6.6 22 520 [0, 13] [13, 108]  [108, 260] skipped [260, o]
A-DNA? 66 6.6 20 840 [0, 13] [13, 132]  [132, 420] skipped [420, =]

“ 1st column is the index for a set of simulations using the same parameters of DNA and varying the slit height H. 2nd to 5th columns are DNA
parameters, persistence length L,, bond length /, chain width w and contour length L. 6th to 7th columns are the in-plane radius of gyration of
DNA obtained from simulations for two extreme cases H = o and H = 0. 8th to 12th columns are the slit height ranges for different regimes. The
last two rows show DNA parameters corresponding to the experimental conditions used in previous research. A-DNA' and A-DNA? refer to the
DNA molecules used in ref. 26 and ref. 25, respectively.

Irrespective of L, the best power fit to the simulation data in de
Gennes regime gives an exponent of about 1/4, which agrees with
the theoretical prediction. In addition to the scaling exponent,
our simulation results also provide the prefactor for the scaling

independent of L. From Flory theory, Ry pux ~ L¥L) w'™.
Then, the scaling for R in de Gennes regime, eqn (3), can be
rewritten as:

(Ry) _ <<vau1k>> ]/44 @1

(Rypuic) H

The above equation indicates that the normalized R — H curve
is independent of both L and w in the de Gennes regime.
Consistent with theory, the log-log plot of R — H curve
exhibits a linear behaviour in the moderate confinement regime,
which corresponds to the scaling law in de Gennes regime.

relationship. This prefactor is very important for the quantitative
comparison between simulations and experiments. The prefactor
of the best power law fit to our simulation results is approxi-
mately 1.2.

Fig. 2(b) shows the same simulation data as Fig. 2(a), but using
different normalization. In the strong confinement regime, DNA
conformation is close to the case of DNA on a plane. Thus, we
normalize R by the in-plane radius of gyration of DNA on

2.4 T T T T LA B B I e S B B (b) 1 T T T T |
(8)2.2- de Gennes 7. - 0.9+ ,:0‘0'6 ' ' -
Sl goody T ] [regime  ZE i g0 /1
A = A 0.8 3002 1 Odijk regime -
» 5 5 ©
Z1808 Y. ~o-L=4ym €07l i .
= Y51 152 25 —e—L=8um 5 g
o 18F <R >/H = —e— | =8um
v 1,bulk —&—|=12pum ¥ — K
- ~8-L=16um v 0.6 L=12um .
_~ a
é: Ll y=1.22 50236 (+0.023) ] A_ _B_ quumo.zss (+0.023)
v weak @ B 0.250 (+:0.006) o osk y=1.00 x ]
confinement y=1.20 x e - A skl | I . 0.250 (+0.006)
12 70 F | y=1.19,0252 (:0002) ] B o (:0.002)
_____ 1 19,0255 (:000) & g S G
e y=1. I 04 F | y=1.01 0255 (£0.003) |
= 0 1 2 i ol saazl i 4 53 el
10 10<R >“_I'm 10 102 107 10° 10°
II,bulk w/H

Fig. 2 Relative in-plane radius of gyration as a function of the inverse of relative slit height. Four symbols (or colors) correspond to different contour
lengths of chains in simulations. They correspond to the simulations #1, #2, #3 and #4 in Table 1. The dashed lines are the best power law fits to the
simulation data points in the de Gennes regime. (a) and (b) use different normalizations. The values in parentheses, e.g. (£0.023), refer to the uncer-
tainties of the exponents from the fits. The uncertainties for the prefactors are 1.22 + 0.02, 1.20 + 0.01, 1.19 £ 0.01, 1.19 £+ 0.01, 1.00 + 0.03, 1.01 £ 0.01,
1.01 £0.01, 1.01 £ 0.01. Ry . is the in-plane radius of gyration of DNA in bulk. R|| /. is the in-plane radius of gyration of DNA confined to a plane.
The chain width w equals 40nm. The insets in (a) and (b) show the fitting residues. The vertical line in (a) corresponds to Ry s,/ H = 2, which is used as
the lower bound of Ry s,/ H for the de Gennes regime. The vertical line in (b) corresponds to w/H = 0.4 or H = 2L, = 100 nm, which is used as the upper
bound of w/H for the de Gennes regime.
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a plane R /.. From the Flory theory, R) piue ~ L**L)*. Then,
we obtain

(Ry) (w14
m_<ﬁ> : 22)

As a result, we normalize H by w so that the normalized
R — H curve is independent of both L and w from the theory.
Using this normalization, the four curves with different contour
lengths collapse not only in the moderate confinement regime but
also in the strong confinement regime. Considering that the right
side of eqn (22) is independent of L and Ry pjan. is scaled as L™,
we can conclude that Ry is always proportional to L** from the
strong confinement to moderate confinement regime. The expo-
nent 3/4 is due to the nature of 2D self-avoiding walk. This
exponent has been confirmed experimentally in quasi-2D
confinement*® as well as the de Gennes regime.* Changing
normalization does not affect the scaling exponent, but affects
the prefactor. Surprisingly, the prefactor of the best power-law fit
is very close to unity. It is probably because the prefactor of R in
eqn (3) is cancelled by the prefactor of R piame-

It is worth noting that the best power law fit to the simulation
data depends on the H range where the fit is applied. The two
bounds of the de Gennes regime are not well defined. In the
current study, we set the H range for the de Gennes regime as H
€ [2L,, Ry pui/2] so that the simulation data points do not deviate
much from the line of best fit in this range, as shown in the insets
of Fig. 2(a) and 2(b). The lower bound of H = 2L, has also been
suggested by Wang et al.*° for the simulation of DNA in a square
channel. When H > R ;,u/2, DNA does not contain sufficient
number of blobs to make the blob theory applicable, and so it
enters weak confinement regime. In Fig. 2, the scaling exponents
appear to be maximized in the range of H € [2L,, R)p.u/2].
Therefore, if the fit is applied in a range broader than
H e [2L,, Ry pu/2], the fitted exponent will decrease. However,
when w is much less than L, the scaling exponent does not show
the maximum in the de Gennes regime. This will be shown later.

After investigating the effect of changing L on the Ry — H
curve, we proceed to the effect of changing w. Fig. 3 shows the
normalized R — H curve for different w and a fixed L = 8 um.
When we reduce w in the simulation, the extended de Gennes
regime will emerge between the de Gennes regime (moderate
confinement) and the Odijk regime (strong confinement). Recall
that the scaling exponent relating R to H remains unchanged
from the extended de Gennes regime to de Gennes regime based
on the scaling analysis. This is also confirmed by our simulation.
When w = 10 nm (blue squares in Fig. 3), the de Gennes regime is
skipped (refer to Table 1). The best power law fit (dashed blue
line) to the data points in the extended de Gennes regime (filled
blue squares) gives an exponent of 0.251 + 0.025, which agrees
with the theoretical prediction. Although the scaling exponent is
not affected by changing w, the prefactor changes with w. Fig. 3
reveals that reducing w will slightly shift down the middle part of
the curve, which means the relative DNA extension Ry/Rj piane
is smaller at the same confinement strength Ry ;,u/H. When
w = 10 nm, the best power law fit (dashed blue line in Fig. 3)
follows y = 1.11x°*'. When w = 40 nm, the best power law fit
(dashed black line in Fig. 2(a)) follows y = 1.20x%>*°. The pre-
factor of the power law increases slightly as w increases.

24_ T T ]
2.2r .
oL y=1.11 50251 (£0.025) |
Ay —=—w=10nm
3 1.8 +w=15nm iy
4 gk *w=20nm i
V .
~ —w=40nm
A_ 4
=14
Vv
1.2 .
= 0 ‘“11 2
10 10 10 10
<R /H

>
[l bulk

Fig.3 Relative in-plane radius of gyration as a function of the inverse of
relative slit height for the simulation #5,#6,#7,#2 in Table 1. The filled
symbols are the data points in both extended de Gennes and de Gennes
regimes. The open symbols are the data points in other regimes. The blue
dashed line is a best power law fit to the filled blue squares. (+0.025)
refers to the uncertainty of the exponent from the fits. The uncertainty for
the prefactor is 1.11 + 0.03.

However, the normalized Rj — H curve in de Gennes regime
should be independent of w, based on eqn (21). One possible
reason for the deviation between theory and simulation is that
the scaling law Ry ~ L 5L11,/ Swls breaks down when w is small.
We recall that when w is small enough to make excluded volume
interactions unimportant, DNA behaves like an ideal chain
with Ry p,u ~ L"L)". The transition from ideal chain behaviour
(R ~ L') to real chain behaviour (R ~ L**) has been observed in
the simulations by Wang et al* Assuming the ideal chain
behaviour, eqn (21) becomes

1/4
(Ry) 1ay1/87— (R puk )
R S LA L /8L 3/8 8 ' 23
(R puikc ) v r X H (23)

Then, the prefactor of the best power law fit corresponds to
L"$w" L3 This may be the reason why the prefactor of the
best power law fit increases with w. Since the transition from
a real chain to an ideal chain is gradual when w decreases, the
prefactor changes slowly.

3.2 Odijk regime

After investigating the DNA extension in the de Gennes regime
(moderate confinement), we proceed to the Odijk regime (strong
confinement). The theory for DNA in strong slit confinement is
lacking. Before presenting the simulation results in this regime,
we introduce our theoretical approach to analyse the DNA
extension in strong slit confinement.

For the analysis of R in strong confinement, it is convenient to
imagine a virtual in-plane chain corresponding to the DNA
projection on a slit wall. This virtual in-plane chain looks like the
chains shown in the last two images of Fig. 1. In this way, the
quasi-2D problem of DNA in strong slit confinement becomes
a rescaled 2D problem of a chain in a plane. This virtual chain
has its own contour length L, an apparent persistence length L,,
and a chain width w. In order to derive R) from L, L, and w, we
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need to know the expressions of Ly and L, . The expression of L
is given by eqn (11). Note that eqn (11) is derived when H < L,,.
The range of applicability of the equation is not a prior clear. As
a result, we plot L/L as a function of H/L, for the simulations
using different w in Fig. 4. The simulation results roughly agree
with eqn (11) when H € [0,2L,], irrespective of w. It suggests that
the deflection model, which is assumed by eqn (11), can be
applied to describe the projected contour length until H ~ 2L,,.

Regarding L,;, we extract its relationship with H from
simulations. In simulations, the persistence length can be calcu-
lated from the correlation of bond orientation through the
definition of the persistence length u(0)-u(s) = exp(—s/L,), where
s is the separation in arc length along the contour, and u(s) is the
local tangent vector to the chain at position s. For the case of the
virtual in-plane chain, the equation becomes u)(0)-u(s)) =
exp(—s)/L,,). This approach to calculate the persistence length
only works for a wormlike chain without excluded volume
interactions, since excluded volume interactions will break down
the exponential decay of orientational correlation. Thus we
perform simulations without excluded volume interaction to
extract L, .

Fig. 5(a) shows the correlation of #(0)-u(s) as a function of
s for different slit heights. The straight lines in Fig. 5(a)
demonstrate the exponential decay of orientational correlation
still holds for the virtual in-plane chain. Fig. 5(b) shows L, /L,
as a function of H/L,. When H = 0, corresponding to DNA in
a plane,*’ we obtain the theoretically expected result L, /L, = 2.
When H/L, = o, corresponding to DNA in bulk, we obtain the
value of L, /L, around 0.71. The value of L, /L, — 0.71
monotonically decays from 1.29 to 0, when H increases from
0 to large values. We then empirically fit the data to the equation
L, /L, —0.71 = 1.29*a""+. Here, a is a fitting parameter, which
is determined to be 0.48 + 0.02.

After obtaining expressions for Ljand L, |, we derive the
relationship between R and H by considering a 2D self-avoiding
walk, as shown in eqn (16). Then, we can compare the simulation
results in the Odijk regime with the theoretical predictions.
Similar to the de Gennes regime, the R — H curve in the Odijk
regime is also determined by L and w in the simulations. It has

0.9r

<L“>/L

—Eqn. (11)

0.8r

10 10° 10
HIL

Fig. 4 Projected contour length as a function of the relative slit height.
The symbols with different colors correspond to the simulations using
different chain widths. The solid line is calculated from eqn (11).
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Fig. 5 (a) In-plane orientation correlation as a function of the in-plane
separation of contour length for the simulations without excluded
volume interaction and using different slit heights. The symbols are
simulation results, and the solid lines are the best exponential fits to the
simulation data using a single fitting parameter L,, . The contour lengths
are 4 pm and bond lengths are 5 nm in the simulations. (b) The in-plane
persistence length L, | as a function of the relative slit height.

been shown by the theory and our simulation that R is scaled as
L***from strong confinement to moderate confinement. When we
normalize R by R| e, the L dependence of Ry will be elimi-
nated. So we only need to investigate the effect of changing w.
Fig. 6(a) and 6(b) shows the normalized R — H curve for the
simulation using different chain width. Fig. 6(a) normalizes H by
L,, because L and L, are determined by H/L,. The theoretical
predictions (solid lines in Fig. 6(a)) agree with the simulation
results in the non-self-crossing regime H € [0,w] (filled squares)
and deviate in the self-crossing regime H € [w,2L,] (open inverse
triangles). The simulation results using larger w deviate from the
theoretical prediction at larger H. In Fig. 6(b), we normalize H
by w. Using this normalization, the three curves corresponding to
different w collapse onto a master curve from the strong to
moderate confinement regime, except for some deviation at the
crossover. Comparing Fig. 6(a) and 6(b), we can see R)/R|| piane 13
more related to the ratio H/w than H/L,.

Combining the results in Fig. 4, 5 and 6, we can understand
what is changed and what is unchanged from non-self-crossing to
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Fig. 6 (a)Relative in-plane radius of gyration as a function of the rela-
tive slit height. The symbols with different colours correspond to the
simulations using different chain widths, listed as #5, #6 and #7 in
Table 1. The filled squares, inverse triangles, triangles correspond to the
data points in non-self-crossing, self-crossing and weak confinement
regimes, respectively. The filled circles correspond to the data points in
both the de Gennes and extended de Gennes regime. The solid lines
correspond to theoretical prediction from eqn (16). The dashed lines
correspond to the best power-law fits to the data points in both the de
Gennes and extended de Gennes regimes. The values in parentheses, e.g.
(£0.005), refer to the uncertainties of the exponents from the fits. The
uncertainties for the prefactors are 0.84 + 0.05, 0.79 £+ 0.01 and 0.72 £
0.02, respectively. (b) same data with (a) but H is normalized by w.

self-crossing regime. The expressions of L; and L, keep
unchanged in these two regimes, which suggests the elastic
entropy (first term in eqn (17)) follow the same rule in these two
regimes. The change of R behaviour is purely caused by the
excluded volume interaction (second term in eqn (17)). As H
increases, the excluded area between two DNA segments in
a plane decreases. However, in the self-crossing regime, decrease
in the excluded area is enhanced, relative to the non-self-crossing
regime, due to the onset of segment overlap. As a result, R from
the simulation is smaller than the prediction from eqn (16) in the
self-crossing regime.

Fig. 6(a) also includes the best power-law fits to the data points
in de Gennes regime and extended de Gennes regime, indicated
by the dashed lines. The combination of the dashed line and the
solid line almost covers the Rj — H curves from de Gennes

regime to Odijk regime, except the slight deviation in the cross-
over. A significant part of the R — H curve in self-crossing
regime almost follows the same scaling law as the de Gennes
regime. As discussed in Sec. 2.2, it is because the excluded volume
interaction in self-crossing regime becomes similar to the
extended de Gennes regime when H approaches 2L,. If we
consider there is a transition from de Gennes regime to Odijk
regime, the transition point is roughly determined by the cross
point of the dashed line and the solid line. This transition point
strongly depends on the chain width. Usually, the chain width is
less than the persistence length, so the transition occurs at a slit
height less than persistence length.

3.3 Comparison with previous simulation and experimental
results

Monte Carlo simulation of DNA extension in slitlike confine-
ment has been performed by Cifra et al?” However, the DNA
contour length in their simulation is only ten times the persis-
tence length, and so DNA does not enter the de Gennes regime.
Nevertheless, they observed a gradual transition from moderate
confinement to strong confinement. In addition, Brownian
dynamics simulations have been performed for the DNA chain in
slitlike confinement.?*?¢ However, only moderate confinement
was investigated in these simulations, because the DNA model in
these studies is coarse-grained on a length scale larger than the
DNA persistence length. These simulations also give the same
scaling law with blob theory in the de Gennes regime.

Next, we compare our simulation results with two previous
experimental results.?**¢ They represent two typical but contro-
versial observations of R — H curve. Table 1 includes the
parameters for the DNA molecules used in ref. 26 and ref. 25.
The DNA molecules used in the experiments are intercalated
with YOYO-1 dye. The dye intercalation will change the contour
length, the persistence length and the effective chain width.5?
The staining ratios of YOYO-1 to DNA base pair are 1 : 4 and
1:6 in ref. 26 and ref. 25, respectively, corresponding to the
contour lengths of 22 and 20 um.*® The effect of YOYO-1
intercalation on DNA persistence length is controversial. Several
studies found L, becomes shorter after YOYO-1 intercala-
tion,*>*> while Murade et al. found L, is rather independent of
staining ratio.>® Considering the ionic strengths in both experi-
ments are around 60 mM, the persistence length of unstained
DNA is about 54 nm, based on the calculation in ref. 53.
However, Bonthuis et al. ** used L, of 66 nm based on ref. 54.
Table 1 shows the value of L, copied from the original publica-
tion. The effective width of unstained DNA is 6.6 nm, consid-
ering the ionic strengths in two studies are around 60 mM.** The
positively charged YOYO-1 will reduce the electrostatic repul-
sion between DNA molecules and affects the effective chain
width. Since the quantitative effect is unclear, we put 6.6 nm in
Table 2 as an estimation.

After describing L, L, and w in the experiments, we move to
the slit height H. Recall that the slit height in our simulation
corresponds to an effective slit height that is accessible for the
centreline of the DNA chain. For the comparison with experi-
ments, the slit height in simulations should add the thickness d of
the repulsion layer between DNA and the negatively charged slit
walls in the experiments. The thickness d is mainly determined by
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Table 2 Summary of scaling regimes for DNA in slits.”

Scaling laws

Regime H range Lin Ryvs. H Ryvs. L Lyvs. H
Odijk I (non-self-crossing) H<w HmLIl,/3 eqn (16) L eqn (11)
Odijk II (self-crossing) w<H<2L, L, L¥ eqn (11)
extended de Gennes 2L, < H < L}jw LyHlw H™ Ias
de Gennes Lﬁ/w < H < Ry pund2 Lyw? H" L

¢ 1st column is the regime name. Odijk regime is divided to two sub-regimes according to whether the DNA projection on a slit wall can cross itself or
not. 2nd column is the slit height range corresponding to a certain regime. R 5, is the in-plane radius of gyration in bulk. 3rd column is the minimum
contour length to enter a certain regime. The last three columns are the scaling laws relating the quantities, the in-plane radius of gyration R, the
projected contour length L, the 3D contour length L and the slit height H.

the Debye length Ap, which is about 1.24 nm when the ionic
strength is 60 mM. Since d is quite small and its precise value is
unknown, we ignore it.

Besides the differences in the experimental conditions, the
methods to determine DNA extension are also different in
different experiments. One direct method is to measure DNA
extension in the fluorescence microscopy image, which is used by
Bonthuis et al.*> Because DNA in the image is convolved with the
point spread function of the microscopy, DNA extension is
overestimated and then Ry/Rj . is underestimated. Another
way is to measure DNA diffusivity and then infer DNA exten-
sion from diffusivity, which is used by Tang et al.*® The difference
in measurement method is probably the major reason why Ry sk
in the experiment by Bonthuis et al is larger than that by Tang
et al., as shown in Table 1. In addition, R)/R| s in the experi-
ment by Bonthuis et al. is for the most part smaller than in the
experiment by Tang et al., as shown in Fig. 7. We recall that Tang
et al. measured DNA extension using two methods (microscopy
imaging and diffusivity measurement). In the current study, we
only use the data from the diffusivity measurement since Tang
et al. argued that this is the more accurate data set.

Based on the parameters of two experimental studies in Table 1,
we can determine the H ranges corresponding to different regimes.
The experimental conditions in both studies skip the de Gennes
regime, but we recall that R) scales with H in the same way in the
extended de Gennes and the de Gennes regimes.

Limited by the computational power, we are incapable to
perform the simulation using the same values of L,, L and w with
experiments. Instead, we attempt to fix the contour length as
22 pm and observe the trend of the R — H curve when changing
the chain width in simulations, as shown in Fig. 7(a). Since the
scaling exponent of the de Gennes regime is always about 1/4 in
our simulations and two experimental studies, the differences are
in the terms of the H range and the prefactor of the middle linear
range of the Ry — H curve. Regarding the H range of the power
law, the middle linear region also becomes broader as w
decreases. This is because the transition from de Gennes regime
to Odijk regime is delayed for smaller w. Regarding the prefactor
of the power law, the middle region of the Ry — H curve shifts
down as w decreases, which is in agreement with Fig. 3. The best
power law fits to the experimental data by Tang et a/ and
Bonthuis et al. are y = (1.07 & 0.06)x°27#093% and y = (0.81 +
0.02)x0-230£0:015 " regpectively. It has been shown in the Sec. 3.1 that
the prefactor is reduced from 1.20 to 1.11 when w is reduced from
40 nm to 10 nm. Based on the trends in the H range and the

prefactor, it can be expected that if we further reduce the chain
width in the simulation to a certain value, the curve will signifi-
cantly match the experimental data by Tang et al.?®

The effective chain width of DNA in the experiment by
Tang et al. can be estimated from the value of Ry p . If we fit
our simulation results of Rj s, when w = 10, 20, 40 nm, we
obtain an equation Ry = 392 x w*'°. From this equation,
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32 (a) 1
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Fig. 7 (a) Relative in-plane radius of gyration as a function of the
inverse relative slit height. Three lines with open symbols correspond to
the simulations #8, #9 and #10 in Table 1. Red squares are the data of
Tang et al.?® Blue triangles are the data of Bonthuis ez a/.* (b) Relative in-
plane radius of gyration as a function of the slit height.
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Ry pui = 520 nm corresponds to w = 4.4 nm. Recall that we use
L, = 50 nm in the simulations. If actual L, in experiments is
different from 50 nm, say 66 nm, we need to rescale every length
parameter in our simulations by a factor of 66/50. (Note that
multiplying L,, w, L and H by a common factor will change
R pue and R by the same factor, and thus the normalized
Ry — H curve remains unchanged.) This factor can change
the estimated chain width. This chain width inferred from
Ry pure = 520 nm is less than the value of 6.6 nm estimated from
the theory for DNA without YOYO-1 intercalation under the
ionic strength of 60 mM. The difference may be caused by
YOYO-I intercalation.

In addition to the difference in w, the deviation between the
simulation results and experimental data by Tang et al. might be
also caused by experimental error in R ., because Rj px is
used to normalize / and changing Ry s, will shift the normal-
ized Rj — H curve. Thus, we make another plot in Fig. 7(b)
without normalization of H. We still normalize R by R s,
because the possible experimental error in R would also affect
R pui. The normalization may eliminate this type of error. In
Fig. 7(b), the experimental data by Tang et al. is still below the
simulation results. It suggests the deviation between our simu-
lations and the experiment may be not caused by the possible
experimental error in Ry .

Both our simulation results and the experimental results from
Tang et al. show large differences with the experimental result
from Bonthuis ef al.>® The abrupt transition in their result might
correspond to the onset of non-self-crossing regime in our
simulation, as shown in Fig. 6(a). However, the plateau of R in
our simulation starts from the slit height 4 ~ w instead of 2L,
Recently Ren et al. 3¢ reported that the abrupt transition point
depends on the ionic strength and shifts towards the larger slit
heights when reducing the ionic strength. Ren et al. attribute the
trend to the fact that lower ionic strength enhances the electro-
static repulsion between DNA and slit wall and hence reduces the
effective slit height. Our simulation indicates that the transition
point, ie. the onset of self-crossing regime, depends on the
effective chain width and hence depends on the ionic strength. It
is also a possible reason for their observation. We do not plot
their data in Fig. 7(a) and 7(b) since they recently retracted the
article.*®

4. Conclusions

Using both scaling theory and Monte Carlo simulations, we
systematically investigate the static property of DNA in slitlike
confinement. The scaling laws for different regimes are summa-
rized in Table 2. In moderate confinement, blob theory works
well, analogous to what was previously shown for a tube. In the
strong confinement (Odijk regime), deflection theory is appli-
cable, but it only gives the projected contour length instead of the
in-plane DNA extension when H < 2L,. The in-plane DNA
extension is derived by assuming a 2D self-avoiding walk when
H <w. This assumption breaks down when H > w, because DNA
can cross itself. The chain crossing conformation in a slit
(excluded volume) is analogous to the hairpin conformation in
a tube (bending energy cost). As a result, the chain width is
a crucial parameter to determine the static property of DNA in
strong confinement. Since the chain width of DNA can be

controlled by ionic strength, changing ionic strength is an
effective way to manipulate DNA in a nanoslit, especially, in
strong confinement.

Our simulation results show that in the log-log plot of
R versus H, the de Gennes regime, extended de Gennes regime
and part of the self-crossing regime follow a power law with an
exponent of about 1/4, although the physics in these regimes are
different. The deviation from this power law occurs at a certain
slit height that depends on the chain width.

We do admit that the simulation system differs from the
experiment in some aspects. First, the electrostatic interaction
between DNA segments is softer than a hard sphere interaction.
As a result, even when H < w, the DNA chain still has a finite
probability to cross itself. Second, we ignore electrostatic inter-
actions with the channel walls. However, these limitations are
not expected to fundamentally change the result. In the current
study, we focus on the static properties of DNA in slits. Future
work can build off these results to consider chain dynamics,
though the subtle points of hydrodynamic coupling/screening
will need to be properly treated, which are lacking in our
simulations.
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