Issue 42, 2025

Expanded segments of three-dimensional carbonaceous nets with chirality: synthesis and structures

Abstract

As a strongly isotropic net that fills three-dimensional space, a chiral net known as (10,3)-a was recently rediscovered as a diamond twin (pollux) composed of sp2-hybridized carbon atoms. Although the trigonal planar structure of phenine has allowed for the synthesis of the primal cage molecule phenine polluxene, the expansion of polluxene provides further synthetic challenges as has been the case with polymantanes, including congressane. This work exploited three-component covalent assembly as a cage-forming reaction and succeeded in constructing a two-story structure of phenine dipolluxene with the homohelical sextuple helix of (10,3)-a net. Unexpectedly, the dipolluxene structure tolerated dimeric entanglements, resulting in an interpenetrated (10,3)-a net with a homohelical duodecuple helix.

Graphical abstract: Expanded segments of three-dimensional carbonaceous nets with chirality: synthesis and structures

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Edge Article
Submitted
11 Sep 2025
Accepted
07 Oct 2025
First published
08 Oct 2025
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2025,16, 19594-19600

Expanded segments of three-dimensional carbonaceous nets with chirality: synthesis and structures

T. M. Fukunaga, K. Takaba, S. Yoshida, S. Maki-Yonekura, K. Yonekura and H. Isobe, Chem. Sci., 2025, 16, 19594 DOI: 10.1039/D5SC06999H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements