Issue 5, 2024

Digestion of lipid micelles leads to increased membrane permeability

Abstract

Lipid-based drug carriers are an attractive option to solubilise poorly water soluble therapeutics. Previously, we reported that the digestion of a short tail PC lipid (2C6PC) by the PLA2 enzyme has a significant effect on the structure and stability of the micelles it forms. Here, we studied the interactions of micelles of varying composition representing various degrees of digestion with a model ordered (70 mol% DPPC & 30 mol% cholesterol) and disordered (100% DOPC) lipid membrane. Micelles of all compositions disassociated when interacting with the two different membranes. As the percentage of digestion products (C6FA and C6LYSO) in the micelle increased, the disassociation occurred more rapidly. The C6FA inserts preferentially into both membranes. We find that all micelle components increase the area per lipid, increase the disorder and decrease the thickness of the membranes, and the 2C6PC lipid molecules have the most significant impact. Additionally, there is an increase in permeation of water into the membrane that accompanies the insertion of C6FA into the DOPC membranes. We show that the natural digestion of lipid micelles result in molecular species that can enhance the permeability of lipid membranes that in turn result in an enhanced delivery of drugs.

Graphical abstract: Digestion of lipid micelles leads to increased membrane permeability

Supplementary files

Article information

Article type
Paper
Submitted
09 अक्तूबर 2023
Accepted
31 दिसम्बर 2023
First published
02 जनवरी 2024
This article is Open Access
Creative Commons BY license

Nanoscale, 2024,16, 2642-2653

Digestion of lipid micelles leads to increased membrane permeability

J. Xie, D. L. Pink, M. Jayne Lawrence and C. D. Lorenz, Nanoscale, 2024, 16, 2642 DOI: 10.1039/D3NR05083A

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements