Volume 192, 2016

Techno-economic investigation of a chemical looping combustion based power plant

Abstract

Among the well-known state-of-the-art technologies for CO2 capture, Chemical Looping Combustion (CLC) stands out for its potential to capture CO2 efficiently from a fuel power plant. CLC involves the combustion of carbonaceous fuel such as coal-derived syngas or natural gas via a redox chemical reaction with a solid oxygen carrier circulating between two fluidised beds. Avoided NOx emissions, high CO2 capture and thermal efficiency are the key concepts that make worth the investigation of this technology. One of the main issues about CLC might concern the impact of the solid metal oxides price and lifetime on the Levelised Cost Of the Electricity (LCOE). A natural gas fired power plant embedding a CLC unit is presented in this work. Detailed fluidised bed models are implemented in Aspen Plus software. Kinetics and hydrodynamics are taken into account to evaluate their effect on the total solid inventory required for full fuel conversion. The models are incorporated into a power plant and a detailed economic evaluation is undertaken by varying two relevant parameters: fuel price and lifetime of the solid particles. The effect of these parameters on the LCOE is investigated and a comparison between CLC and a post-combustion technology employing amines (e.g. monoethanolamine, MEA) is presented. It is shown that the CLC power plant under study leads to a lower LCOE compared to the current MEA post-combustion solution.

Associated articles

Article information

Article type
Paper
Submitted
29 फरवरी 2016
Accepted
25 अप्रैल 2016
First published
26 अप्रैल 2016

Faraday Discuss., 2016,192, 437-457

Techno-economic investigation of a chemical looping combustion based power plant

R. Porrazzo, G. White and R. Ocone, Faraday Discuss., 2016, 192, 437 DOI: 10.1039/C6FD00033A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements