Lite Version|Standard version

To gain access to this content please
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

In order to understand the photoprotection process in eumelanin, it is imperative to understand the photoprocesses in its monomers. Eumelanin is a polymeric structure made of di-hydroxyindole (DHI) as the basic motif. There have been studies on the ground and low-lying excited state potential energy surfaces (PESs) and a few of the important modes have been identified in the eumelanin monomer. However, to properly depict the fate of a molecule after an initial photoexcitation, it is important to look at the dynamical picture and in this work, we have studied the excited state dynamics of a eumelanin monomer. We observe that there are planar OH elongation modes that can be important for the de-excitation mechanism. There are also non-planar modes that distort the phenyl ring of the DHI molecule. In the excited state dynamics, it is the non-planar modes that are more relevant to the non-radiative deactivation process of the monomer. We further notice that due to the non-planarity in the molecules along the deactivation path, the excited states involved in the processes are mixed ππ* and πσ* in nature. Furthermore, it is noticed that this deactivation process occurs well below a ps timescale.

Graphical abstract: Non-radiative decay of an eumelanin monomer: to be or not to be planar

Page: ^ Top