Quantum mechanical and quasiclassical trajectory study of state-to-state differential cross sections for the F+D2→DF+D reaction in the center-of-mass and laboratory frames

(Note: The full text of this document is currently only available in the PDF Version )

B. Martínez-Haya, F. J. Aoiz, L. Bañares, P. Honvault and J. M. Launay


Abstract

Quantum mechanical (QM) and quasiclassical (QCT) state-resolved integral and differential cross sections for the DF(v′,j′) products of the F+D2(v=0, j=0, 1, 2) reaction have been calculated on the abinitio potential energy surface of Stark and Werner at five collision energies in the range 34.5–240 meV with the twofold purpose of comparing extensively the QM and QCT dynamics of this reaction and of rationalizing the results of high resolution crossed molecular beam experiments performed by Toennies and co-workers (Göttingen) and by Lee and co-workers (Berkeley). The comparison with experiment is carried out not only in the center-of-mass but also in the laboratory frame, involving the simulation of experimental laboratory angular distributions and time-of-flight spectra. An overall agreement is found between theory and experiment for the rovibrationally state-resolved integral and differential cross sections. In particular, both theoretical calculations confirm the experimental observation of a significant increase of product rotational excitation for all DF vibrational states on going from backward to sideways and forward scattering regions, with the only exception of the forward scattered DF products in v′=4, which are rotationally cooler than those scattered at intermediate scattering angles. However, significant discrepancies remain between the theoretical results and those of the crossed beam experiments, suggesting that the full understanding of the dynamics of this prototypic reaction is still a challenge.


References

  1. D. E. Manolopoulos, J. Chem. Soc., Faraday Trans., 1997, 93, 673 RSC and references therein.
  2. F. J. Aoiz, L. Bañares and V. J. Herrero, in Advances in Classical Trajectory Methods, Vol III : Comparison of Classical and Quantum Dynamics, ed. W. L. Hase, JAI Press, CN, 1998 Search PubMed.
  3. F. J. Aoiz, L. Bañares and V. J. Herrero, J. Chem. Soc., Faraday Trans., 1998, 94, 2483 RSC.
  4. K. Stark and H.-J. Werner, J. Chem. Phys., 1996, 104, 6515 CrossRef CAS.
  5. J. F. Castillo, D. E. Manolopoulos, K. Stark and H.-J. Werner, J. Chem. Phys., 1996, 104, 6531 CrossRef CAS.
  6. P. Honvault and J. M. Launay, Chem. Phys. Lett., 1998, 287, 270 CrossRef CAS.
  7. D. M. Neumark, A. M. Wodtke, G. N. Robinson, C. C. Hayden and Y. T. Lee, J. Chem. Phys., 1985, 82, 3045 CrossRef CAS.
  8. D. M. Neumark, A. M. Wodtke, G. N. Robinson, C. C. Hayden, R. Shobatake, R. K. Sparks, T. P. Schafer and Y. T. Lee, J. Chem. Phys., 1985, 82, 3067 CrossRef CAS.
  9. M. Faubel, L. Y. Rusin, F. Sondermann, S. Schlemmer, U. Tappe and J. P. Toennies, J. Chem. Phys., 1994, 101, 2106 CrossRef CAS.
  10. M. Faubel, B. Martínez-Haya, L. Y. Rusin, U. Tappe and J. P. Toennies, Chem. Phys. Lett., 1995, 232, 197 CrossRef CAS.
  11. M. Faubel, B. Martínez-Haya, L. Y. Rusin, U. Tappe and J. P. Toennies, Z. Phys. Chem., 1995, 188, 197 CAS.
  12. M. Faubel, B. Martínez-Haya, L. Y. Rusin, U. Tappe, J. P. Toennies, F. J. Aoiz and L. Bañares, Chem. Phys., 1996, 207, 227 CrossRef CAS.
  13. M. Faubel, B. Martínez-Haya, L. Y. Rusin, U. Tappe and J. P. Toennies, J. Phys. Chem. A, 1997, 101, 6415 CrossRef CAS.
  14. F. J. Aoiz, L. Bañares, V. J. Herrero, V. Sáez Rábanos, K. Stark and H.-J. Werner, Chem. Phys. Lett., 1994, 223, 215 CrossRef CAS.
  15. F. J. Aoiz, L. Bañares, V. J. Herrero, V. Sáez Rábanos, K. Stark and H.-J. Werner, J. Phys. Chem., 1994, 98, 10665 CrossRef CAS.
  16. F. J. Aoiz, L. Bañares, V. J. Herrero, V. Sáez Rábanos, K. Stark and H.-J. Werner, J. Chem. Phys., 1995, 102, 9248 CrossRef CAS.
  17. F. J. Aoiz, L. Bañares, M. Faubel, B. Martínez-Haya, L. Y. Rusin, U. Tappe and J. P. Toennies, Chem. Phys., 1996, 207, 245 CrossRef CAS.
  18. M. Baer, M. Faubel, B. Martínez-Haya, L. Y. Rusin, U. Tappe, J. P. Toennies, K. Stark and H.-J. Werner, J. Chem. Phys., 1996, 104, 2743 CrossRef CAS.
  19. F. J. Aoiz, L. Bañares, B. Martínez-Haya, D. E. Manolopoulos, J. F. Castillo, K. Stark and H.-J. Werner, J. Phys. Chem. A, 1997, 101, 6403 CrossRef CAS.
  20. M. Baer, M. Faubel, B. Martínez-Haya, L. Y. Rusin, U. Tappe and J. P. Toennies, J. Chem. Phys., 1998, 108, 9694 CrossRef CAS.
  21. J. F. Castillo, B. Hartke, H.-J. Werner, F. J. Aoiz, L. Bañares and B. Martínez-Haya, J. Chem. Phys., 1998, 109, 7224 CrossRef CAS.
  22. J. F. Castillo and D. E. Manolopoulos, Faraday Discuss., 1998, 110, 119 RSC.
  23. M. Faubel, B. Martínez-Haya, L. Y. Rusin, U. Tappe, J. P. Toennies, F. L. Aoiz and L. Bañares, J. Phys. Chem. A, 1998, 102, 8695 CrossRef CAS.
  24. W. B. Chapman, B. W. Blackmon and D. J. Nesbitt, J. Chem. Phys., 1997, 107, 8193 CrossRef CAS.
  25. W. B. Chapman, B. W. Blackmon, S. Nizkorodov and D. J. Nesbitt, J. Chem. Phys., 1998, 109, 9306 CrossRef CAS.
  26. G. Dharmasena, T. R. Phillips, K. N. Shokhirev, G. A. Parker and M. Keil, J. Chem. Phys., 1997, 106, 9950 CrossRef CAS.
  27. G. Dharmasena, K. Copeland, J. H. Young, R. A. Lasell, T. R. Phillips, G. A. Parker and M. Keil, J. Phys. Chem. A, 1997, 101, 6429 CrossRef CAS.
  28. M. Baer, M. Faubel, B. Martínez-Haya, L. Y. Rusin, U. Tappe and J. P. Toennies, J. Chem. Phys., 1999, 110, 10231 CrossRef CAS.
  29. J. M. Launay and M. Le Dourneuf, Chem. Phys. Lett., 1989, 163, 178 CrossRef CAS.
  30. J. M. Launay and M. Le. Dourneuf, Chem. Phys. Lett., 1990, 169, 473 CrossRef CAS.
  31. B. Lepetit and J. M. Launay, J. Chem. Phys., 1991, 95, 5159 CrossRef CAS.
  32. D. E. Manolopoulos, J. Chem. Phys., 1986, 85, 6425 CrossRef CAS.
  33. F. J. Aoiz, V. J. Herrero and V. Sáez Rábanos, J. Chem. Phys., 1992, 94, 7991 CrossRef CAS.
  34. B. Martínez-Haya, PhD Thesis, Universidad Complutense Madrid, June 1996.
  35. Note that a more refined estimation of the rotational temperatures of the D2 beam in the experiments of Faubel et al. led to a correction of the Trot values reported in refs. 10 and 12. See ref. 13 for more details.
  36. J. E. Pollard, D. J. Trevor, Y. T. Lee and D. A. Shirley, J. Chem. Phys., 1982, 77, 4818 CrossRef CAS.
  37. Note that in the ordinate scale axis of Fig. 4 of ref. 23 a 10–2 factor was included by error.
  38. L. Schneider, K. Seekamp-Rahn, J. Borkowski, E. Wrede, K. H. Welge, F. J. Aoiz, L. Bañares, M. J. D'Mello, V. J. Herrero, V. Sáez Rábanos and R. E. Wyatt, Science, 1995, 269, 207 CrossRef CAS.
  39. L. Schneider, K. Seekamp-Rahn, E. Wrede and K. H. Welge, J. Chem. Phys., 1997, 107, 6175 CrossRef CAS.
  40. E. Rosenman, S. Hochman-Kowal, A. Persky and M. Baer, Chem. Phys. Lett., 1996, 257, 421 CrossRef CAS.
  41. P. Honvault and J. M. Launay, Chem. Phys. Lett., 1999, 303, 657 CrossRef CAS.
  42. F. J. Aoiz, L. Bañares, V. J. Herrero and V. Sáez Rábanos, Chem. Phys. Lett., 1994, 218, 422 CrossRef CAS.
  43. S. L. Mielke, G. C. Lynch, D. G. Truhlar and D. W. Schwenke, Chem. Phys. Lett., 1993, 213, 11 CrossRef CAS; 217, 173E.
  44. M. H. Alexander, H.-J. Werner and D. E. Manolopoulos, J. Chem. Phys., 1998, 109, 5710 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.