Excess electrons in lithium–ethylamine solutions—density, electrical conductivity and EPR studies

(Note: The full text of this document is currently only available in the PDF Version )

O. Terakado, T. Kamiyama and Y. Nakamura


Abstract

The density, electrical conductivity and electron paramagnetic resonance (EPR) of the lithium–ethylamine system have been measured as a function of metal concentration and temperature. The obtained data have been discussed with emphasis on the comparison with those of alkali metal–ammonia or –methylamine solutions which have been well studied in view of the metal–nonmetal transition. Although lithium metal was dissolved into ethylamine up to 18–20 mol% metal, the observed conductivity was nonmetallic, dissimilar to the corresponding ammonia and methylamine systems. From the observed spectral linewidth of EPR it has been suggested that the hyperfine interaction with nitrogen nuclei is dominant in the electron spin–spin relaxation in the concentration range studied. The integrated intensity data of EPR have been analyzed in terms of the spin-pairing equilibrium of excess electrons in the solutions. It is concluded that excess electrons in Li–ethylamine solutions are more strongly localized than those in ammonia or methylamine solutions which exhibit electron delocalization with increasing metal concentration.


References

  1. W. Weyl, Ann. Phys., 1864, 121, 601 Search PubMed.
  2. J. C. Thompson, Electrons in Liquid Ammonia, Clarendon, London, 1976 Search PubMed.
  3. T. Toma, Y. Nakamura and M. Shimoji, Philos. Mag., 1976, 33, 181 Search PubMed.
  4. M. G. De Backer, E. B. Mkadmi, F. X. Sauvage, J. P. Lelieur, M. J. Wagner, R. Conception, J. L. Eglin, R. E. Guadagnini, J. Kim, L. E. H. McMills and J. L. Dye, J. Am. Chem. Soc., 1994, 116, 6570 CrossRef CAS.
  5. H. Matsui, E. Yamada, S. Shimokawa and Y. Nakamura, J. Phys. Chem., 1993, 97, 4284 CrossRef CAS.
  6. T. Nozaki and M. Shimoji, Trans. Faraday Soc, 1969, 65, 1489 RSC.
  7. M. Yamamoto, Y. Nakamura and M. Shimoji, Trans. Faraday Soc., 1971, 67, 2922 Search PubMed.
  8. E. Swift, Jr., J. Am. Chem. Soc., 1942, 64, 115 CrossRef.
  9. O. Terakado, T. Kamiyama and Y. Nakamura, J. Chem. Soc., Faraday Trans., 1998, 94, 867 RSC.
  10. P. Marshall and H. Hunt, J. Am. Chem. Soc., 1955, 77, 5016 CrossRef CAS.
  11. M. Hirasawa, Y. Nakamura and M. Shimoji, Ber. Bunsen-Ges. Phys. Chem., 1978, 82, 815 Search PubMed.
  12. R. E. Lo, Z. Anorg. Allg. Chem., 1966, 344, 230 CAS.
  13. J. L. Dye, R. F. Sankuer and G. E. Smith, J. Am. Chem. Soc., 1960, 82, 4797 CrossRef CAS.
  14. C. A. Kraus, J. Am. Chem. Soc., 1921, 43, 749, 2529; 1922, 44, 1941.
  15. K. F. Herzfeld, Phys. Rev., 1927, 29, 701 CrossRef CAS.
  16. N. F. Mott, Philos. Mag., 1961, 6, 287 Search PubMed.
  17. P. P. Edwards and M. J. Sienko, Phys. Rev. B., 1978, 17, 2525; J. Am. Chem. Soc., 1981, 103, 2967 Search PubMed; P. P. Edwards, T. V. Ramakrishnan and C. N. R. Rao, J. Phys. Chem., 1995, 99, 5228 Search PubMed.
  18. Handbook of Physics and Chemistry, CRC Press, Cleveland, OH, 78th edn., 1997 Search PubMed.
  19. D. E. O'Reilly, J. Chem. Phys., 1961, 35, 1856 CAS.
  20. P. P. Edwards, J. Phys. Chem., 1980, 84, 1215 CrossRef CAS.
  21. R. Catterall, M. C. R. Symons and J. W. Tipping, in Metal Ammonia Solutions, Butterworths, London, 1970, p. 317 Search PubMed.
  22. M. Niibe, Y. Nakamura and M. Shimoji, J. Phys. Chem., 1984, 88, 3555 CrossRef CAS.
  23. Y. Nakamura, M. Niibe and M. Shimoji, J. Phys. Chem., 1984, 88, 3755 CrossRef CAS.
  24. E. Becker, R. H. Lindquist and B. J. Alder, J. Chem. Phys., 1956, 25, 971 CAS.
  25. C. J. Page, D. C. Johnson, P. P. Edwards and D. M. Holton, Z. Phys. Chem. N.F., 1994, 184, 157.
  26. U. Schindewolf, in Physics and Chemistry of Electrons and Ions in Condensed Matter, Reidel, Dordrecht, 1984, p. 361 Search PubMed.
  27. C. A. Hutchison, Jr. and R. C. Pastor, J. Chem. Phys., 1953, 21, 1959 CAS.
  28. J. P. Lelieur and P. Rigny, J. Chem. Phys., 1973, 59, 1142 CAS.
  29. U. Even, R. D. Swenumson and J. C. Thompson, Can. J. Chem., 1977, 55, 2240 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.