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Chiral separation has become a crucial topic for effectively utilizing superfluous racemates synthesized by
chemical means and satisfying the growing requirements for producing enantiopure chiral compounds.
However, the remarkably close physical and chemical properties of enantiomers present significant
obstacles, making it necessary to develop novel enantioseparation methods. This review
comprehensively summaries the latest developments in the main enantioseparation methods, including
preparative-scale chromatography, enantioselective liquid-liquid extraction, crystallization-based
methods for chiral separation, deracemization process coupling racemization and crystallization, porous
material method and membrane resolution method, focusing on significant cases involving
crystallization, deracemization and membranes. Notably, potential trends and future directions are
suggested based on the state-of-art “coupling” strategy, which may greatly reinvigorate the existing

individual methods and facilitate the emergence of cross-cutting ideas among researchers from different

Received 29th March 2023
Accepted 26th September 2023

DOI: 10.1039/d3s5c01630g

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

Open Access Article. Published on 27 2023. Downloaded on 19/08/2024 09:25:31.

(cc)

rsc.li/chemical-science enantioseparation domains.

1. Introduction

Chirality means that an object cannot coincide with its mirror
image. Generally, enantiomers, possessing at least one chiral
center, chiral axis, or chiral plane, are stereoisomers that cannot
be superimposed with their mirror image. Generally, they are
designated as b (dextro) or 1. (levo), R (rectus) or S (sinister), (+) or
(=), and P (plus) or M (minus)." As one of the basic attributes of
nature and the universe, chirality is widely used in various
fields, such as biology, medicine, life science, and materials
science.”® Based on a comprehensive estimate, the global
market value of chiral compounds is expected to exceed 96.8
billion U.S. dollars by 2024.”

Chiral drugs, which account for more than 72% of the chiral
market and provide more precise care for humans, are the
leader in the chiral compound market and this trend continues
to increase.”® In 2015, among the 33 new molecular entity drugs
and 13 biologics license applications approved by the U.S. Food
and Drug Administration (FDA), 94.4% were chiral drugs with
a clearly defined absolute configuration.*® Moreover, chiral
pesticides, which are essential for increasing food production,
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are also expected to soar by about 14% in the next two years.”**
Therefore, the development of chiral resolution techniques in
industry and academia is significant.

As the cornerstone of new developments, prevailing resolu-
tion methods and their performance are summarized in Table
1. The application of preparative-scale chromatography (PsC)
appears to be less widespread compared to analytical methods
due to the use of a large amount of solvent and limited chiral
stationary phases (CSP) under high-pressure conditions.**
However, three expedient operational modes of PsC have been
presented to enhance the productivity and reduce the solvent
consumption (Section 2).”'***™%5 By comparison, enantiose-
lective liquid-liquid extraction (ELLE) can offer a low solvent
consumption process and overcome the utilization of CSPs at
the expense of enantioselectivity.***** However, commonly
used chiral selectors (CSs) suffer from high volatility, flamma-
bility and biotoxicity, and are generally specialized for resolving
amino acids.''**" Therefore, amino acid- and cyclodextrin-
based chiral ionic liquids (CILs) and deep eutectic systems
(DES) are emerging alternatives for more eco-friendly and
generic ELLE processes.*”*® Moreover, the above-mentioned
dilemma can be ingeniously tackled by combining ELLE with
other enantioseparation methods, such as crystallization,
deracemization, and membrane processes, leveraging their
complementary advantages (Section 3).°*"**

Currently, a broad variety of substrates can be successfully
resolved via classical chemical resolution (CCR, Section 4.4.2)
with high yield, high enantiomeric excess (ee), and acceptable
cost. Nevertheless, CCR cannot be regarded as an eco-friendly
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process and fails to exhibit enantiospecific recognition toward
enantiomers,* reducing its popularity in recent publications.
Fortuitously, in the past decade, cocrystal-based resolution
(CBR, Section 4.4.3) and Dutch resolution (DR, Section 4.4.4)
have shown great potential to address the aforementioned
issues in CCR by replacing strong acid-base interactions with
non-covalent interactions (hydrogen bonding, halogen
bonding, m-7 interactions, van der Waals interaction, etc.),
which makes the resolution and liberation of enantiomers
greener and milder and extends the substrate scope of CCR.*>*¢
Hence, designing enantioselective cocrystals based on the
Cambridge Structural Database (CSD), supramolecular syn-
thons, molecular complementarity, thermodynamics and steric
hindrance is important.®”-> Alternatively, preferential crystalli-
zation (PC, Section 4.2) can resolve racemic conglomerates with
merits such as continuous operation, high productivity and ee
value, as well as low cost."* However, the limited proportion of
conglomerates (<10%) and control of the crystallization kinetics
are still challenges to be addressed. Recently, population
balance models (PBMs),* multi-vessel setups,®** and tailor-
made chiral additives®*® have been proposed to estimate the
best stop time of the process and mitigate the contamination of
undesirable enantiomers in the product. Besides, converting
racemates into conglomerates through cocrystal formation also
serves as an effective tool to expand the applicability of PC
(Section 4.1, Section 4.4.3).>” As a highly beneficial process,
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preferential enrichment (PE, Section 4.3) can counterintuitively
enantioenrich the target enantiomer in the liquid phase, rather
than crystals. However, although some prerequisites have been
proposed, its poorly understood mechanism and relatively
limited range of eligible racemates restrict its application.®”

In recent years, various chiral porous materials (PMs, Section
6), including MOFs, COFs, HOFs, MOCs and POCs,'***7* have
emerged as novel CSPs and resolving agents, which is attributed
to their excellent host-guest interactions, such as hydrogen
bonding, halogen bonding, m-m interactions, hydrophobic
interactions, van der Waals forces, and steric hindrance.””*
However, these highly functionable framework structures may
not be ideal in terms of price and efficiency. Furthermore, many
PMs are loaded on a membrane matrix to create chiral solid
membranes through methods such as phase conversion, in situ
growth, coating, and non-covalent interactions, due to the
advantages of low solvent and energy consumption, high
process continuity, and uniformly distributed chiral recogni-
tion sites.”'*%® Specifically, a large variety of membranes related
to graphene oxide, macrocycles, amino acids, MOFs, COFs, and
even target enantiomers has been developed for remarkable
resolution outcomes (Section 7).”>”° Additionally, their mecha-
nism can be analyzed using density functional theory (DFT),
molecular docking and molecular dynamics (MD) simula-
tions.*>® Nevertheless, their large-scale industrial application is
hindered by the cumbersome regeneration and trade-off
between permselectivity and permeability of membranes.

Compared to other methods, deracemization can achieve
100% yield by adding a racemizing agent to totally transform
a racemate to the desired enantiomer. Theoretically, it can be
coupled with various enantioseparation methods such as PsC,**
ELLE,* and kinetic resolution (KR).** However, crystallization
possesses the highest compatibility with deracemization
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Table 1 Present techniques for chiral resolution
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Recent

Yield, ee, Strategies that can be Green publication

Method productivity Cost coupled chemistry Application volume Ref.

PsC <50% Costly ELLE; deracemization Low Narrow Medium 11-15
High
Medium

ELLE <50% Medium CBR; KR; membrane; Medium Narrow Numerous 11 and
Low deracemization 16-21
High

PC <50% Cheap External field; membrane; High Broad Medium 14 and 22
High deracemization; cocrystal
High

KR <50% Costly Membrane; Medium Medium Numerous 23 and 24
High deracemization
Medium

CCR <50% Medium External field; PC; Low Broad Less 25 and 26
High deracemization; ELLE
High

CBR <50% Medium PE; PC; deracemization High Medium Numerous 27 and 28
High
High

DR <50% Medium — Medium Narrow Less 29-32
Medium
High

PMs <50% Costly PsC; membrane High Broad Numerous 33 and 34
Medium
Low

Membrane <50% Cheap ELLE; PC; KR; PsC Medium Medium Numerous 35 and 36
medium
Medium

Deracemization =50% Cheap As noted above High Medium Numerous 37-41
High
High

(Section 5). This is because the size-dependent solubility
difference between two enantiomers can be naturally and easily
induced by simple physical processes during crystallization,
such as boiling,** agitation,® temperature cycling,*® homoge-
nization®*” and grinding,* thereby leading to a concentration
difference between enantiomers for initializing racemization.
Among them, temperature cycling-induced deracemization
(TCID) and attrition-enhanced deracemization (VR) are the
most widely used autocatalysis-crystallization techniques,
which can be coupled with CCR-, CBR- and (reverse) PC-related
processes®”*+# to expand the substrate scope from racemic
conglomerates (Con) to racemic compounds (Rac) and racemic
solid solutions (Ss).**#>

To date, although several reviews have been published with
regard to enantioseparation, few have systematically summa-
rized all these strategies. Therefore, this review highlights the
research progress on crystallization-based resolution and
deracemization (Sections 4 and 5) and the membrane resolu-
tion method (Section 7). Importantly, the necessity of
“coupling” strategies (Table 1) will be discussed, which may
impart new vitality and overcome the limitations for individual
resolution processes.

© 2023 The Author(s). Published by the Royal Society of Chemistry

2. Chromatography

Chromatographic techniques, which rely on high-efficient
chiral stationary phases (CSPs) or chiral selectors (CSs), have
been widely employed to resolve almost all chiral compounds.*
However, PsC techniques have more stringent requirements
with respect to the loadability and stereoselectivity of CSP/CS
compared to analytical techniques. Currently, the available
preparative-scale CSPs are dominated by macrocycles due to the
limited design principles and compatibility.®»** Some potential
CSPs are introduced in Sections 6 and 7, while this section
focuses on the operating mode.

One significant preparative-scale high-performance liquid
chromatography (HPLC) is simulated moving bed (SMB) chro-
matography. A typical SMB involves two separation zones (II
and III) and two regeneration zones (I and IV) in a continuous
process (Fig. 1a). After feeding the racemates, the strongly and
weakly retained enantiomers are carried in opposite directions
by the column and the mobile phase, respectively, and can be
eluted and enriched in the extract phase and raffinate phase
with the regeneration of the liquid (zone I) and solid phase
(zone IV). The number of columns connected in series and the
intervals of the column bed are adjustable and designable to

Chem. Sci., 2023, 14, 1955-12003 | 11957
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Fig. 1 (a) Schematic representation of simulated moving bed chro-
matography. The orange dashed arrows represent the switching
direction of the inlets and outlets in the VARICOL mode. (b) Schematic
representation of high-speed countercurrent chromatography. The
solid orange and blue arrows represent the rotation and revolution
directions, respectively. F; and F, are centrifugal forces caused by
revolution (O; axis) and rotation (O, axis), respectively. Red and blue
circular are decanted and mixed “stationary phase + mobile phase”,
respectively.

obtain a reasonable peak shape and scaling ability. Addition-
ally, a VARICOL process was proposed, in which the inlets and
outlets are asynchronously switched along the direction of the
fluid phase (Fig. 1a).** This variant can adjust the number of
columns in each zone, leading to a more rational distribution of
CSPs and enhanced enantioselectivity. In this mode, successful
resolutions of chiral drugs such as mitotane, guaifenesin and
aminoglutethimide with chiral purities of 97%, 99% and over
99%, respectively, have been reported.”**® ModiCon and
PowerFeed are two additional variants for SMB, where the feed
concentration and flow rate are manipulated to achieve better
concentration distribution within the column, thereby gener-
ating more targeted extract and raffinate concentrations.””**
Recently, a ModiCon and VariCol coupling process proved to
double the maximum yield for guaifenesin enantioseparation
because of the volume-enhanced I and II zones.” Breveglieri
et al. further integrated racemization kinetics with SMB tech-
nology, achieving a simultaneous reduction in the mass transfer
resistance and 100% yield.**>'*°

Supercritical fluid chromatography (SFC) has the character-
istics of both high-performance liquid chromatography (HPLC)
and gas chromatography (GC) and often uses low-viscosity,
high-diffusion supercritical CO, or N,O as the mobile phase,
which is beneficial to reduce the solvent consumption by 60-
70% and operating cost by 70-80%.*>'** Additionally, the lower
pressure drop in SFC has resulted in the development of new
processes such as multi-column series, stacked injections and
SFC-SMB coupling with adjustable parameters including the
number of columns in series,'** the sequence of columns,******
chromatographic conditions and elution order.’® As a PsC, SFC
can industrially resolve at least 95% of racemates and has
emerged as a strong competitor to LC due to its excellent solvent
compatibility, enantioselectivity and low residence time.**'*
Recently, Firooz et al. addressed the issue of SFC lacking polar
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CSPs by utilizing two newly modified cyclofructan columns,
which exhibited remarkable selectivity for multiple polar and
basic compounds.’®® Akchich and colleagues reported 13
successful serial coupling processes by adopting 6
polysaccharide-based CSP columns. Enantiomers of dihy-
dropyridine derivatives achieved baseline separation within
7 min with separation factors of 2.97, 1.83, and 3.54 on the
tandem column system (OJ-H/AD-H).'”” Michaels et al. pio-
neered a high-throughput SFC technique by integrating
analytical and preparative-scale SFC. They characterized the
separation effects of 50 racemates on 15 chromatographic
columns, and 60-70% of the racemate exhibited preparation
and screening performance on commercially available CSPs
(Chiralpak IG, Whelk-O1, Chiralpak IA and Chiralpak IB).'*
DaSilva et al. further discussed the cost and convenience
benefits of high-speed SFC modes. Surprisingly, the Chiralpak
ID column with 20 pm particles (about $4000) could achieve
comparable outcomes to that with 5 pm particles (about
$15000)." By comparison, HPLC failed to realize this cost-
saving potential. However, the recovery and operability of SFC
are not as industrially favorable as LC because of the fluctuated
solubility of compounds, making it a top priority for this “green
technique” to ensure supercritical stablity.*>**°

Compared to SMB and SFC, high-speed countercurrent
chromatography (HSCCC) is a unique liquid-liquid partition
chromatography without the participation of solid CSPs but
chiral selectors (CSs). The propulsion force HSCCC is the
partition coefficient difference of substances in multi-phase
solvents. The stationary phase and mobile phase are alterna-
tively decanted and mixed in spiral tubes when the orientations
of centrifugal forces caused by high-speed rotation and revo-
lution are the same and opposite, respectively (Fig. 1b). This
imparts HSCCC with large single-stage load capacity, low cost,
convenient scalability, fast separation speed and ease of
coupling with online separation technology.**** At present, -
proline, proteins and B-cyclodextrin (CD) and its derivatives
have become dominant chiral selectors in HSCCC.'"*'** For
example, Han et al. successfully separated racemic mandelic
acid and its four derivatives in an average of 4-7 h by employing
Cu,(1)-B-CD as the chiral selector.**® Hydroxypropyl-B-cyclodex-
trin (HP-B-CD) was further applied to separate ketoconazole,
ibuprofen and naringenin within 12.5 h, 7.3 h and 6.5 h,
respectively."”'** Also, N-n-dodecyl-L-hydroxyproline success-
fully resolved enantiomers such as phenylalanine, valine and
isoleucine racemates on an HSCCC device within 2 h."° Addi-
tionally, other variants such as high-performance centrifugal
partition chromatography (HPCPC) and spiral tube CCC have
attracted significant attention.’**** Consequently, it is neces-
sary to develop highly selective CSs, novel solvent systems and
high-efficiency variants for the industrialization of CCC.****>%12¢

However, despite their effectively increased separation
performance and reduced solvent usage compared to HPLC,
these modes still have some crucial aspects to consider, for
instance, the stable control of supercritical fluids and the
rational configuration of the column bed. In addition,
preparative-scale CSPs are primarily subjected to poly-
saccharide and its derivatives. Therefore, it is indispensable to

© 2023 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3sc01630g

Open Access Article. Published on 27 2023. Downloaded on 19/08/2024 09:25:31.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Review

develop novel modes that can remain stable under high-
pressure PsC conditions.

3. Enantioselective liquid-liquid
extraction

ELLE is a technique that utilizes the enantioselective recogni-
tion between chiral selectors (CSs) and enantiomers in at least
one liquid phase. According to the mutual solubility of the
involved liquid phases, it can be classified into three cases,
including biphasic recognition chiral extraction (BRCE, con-
sisting of aqueous layer and organic layer),"*” aqueous two-
phase biphasic extraction (ATPE, immiscible water-rich phase
formed by two water-soluble solutes exceeding a certain
concentration),’ and synergistic extraction (involving two or
more extractants in the traditional LLE process).'*® However, the
commonly used ELLE CSs, including tartaric acid and its
derivatives,'*****> cyclodextrin,'***** BINOL-based hosts,* 31
SPINOL-based hosts,"*® VANOL-based hosts,” and metal
complexes,?®'%*%3 typically encounter challenges of high
pollution, low selectivity, and need for additional solvents.
Thus, to address these limitations, “tailor-made” chiral ionic
liquids (CILs)"** or deep eutectic systems (DESs),*>*® composed
of eutectic mixtures of H-bond donors and acceptors with
remarkable structural diversity, non-volatility and thermal
stability, have been innovatively designed as both CSs and
phase formers. For example, Wang et al. described a greener
and more efficient ELLE process by selecting hydroxypropyl--
cyclodextrin (HP-B-CD) and (+)-diisopropyl r-tartrate as chiral
selectors for hydrophilic and hydrophobic DESs, respectively.***
Consequently, this ELLE system exhibited a maximum enan-
tioselectivity of 31.6% for threonine enantiomers. Similarly, Ma
et al. successfully resolved tryptophan enantiomers with a chiral

View Article Online
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purity of 38.46% by optimizing the formulation of DESs."®
Consequently, CILs and DESs are potential candidates for
designing more eco-friendly and cost-effective ELLE processes.

More importantly, it seems that coupling ELLE with other
resolution methods is a promising strategy for enhancing the
enantioseparation performance. For example, Zeng et al. inno-
vatively combined hollow fiber membrane extraction with “in
situ crystallization coupled back-extraction” to recover chiral
drugs from pharmaceutical wastewater (Fig. 2a).”* Specifically,
(RS)-amlodipine (AD) was extracted into the organic phase (0,)
through oil-in-water emulsions in a hollow-fiber membrane,
followed by further extraction into a heavier DMSO phase (O,) in
the back extraction-crystallization device. Accordingly, the
chiral resolving agent p-tartaric acid (p-Tar) could capture a high
concentration of (S)-AD and precipitate (S)-AD-1/2p-Tar-DMSO
(S-p salt) crystals with 90.7% =+ 1.4% ee and 48.8% =+ 2.4% yield.
Also, the same group achieved the simultaneous preparation of
both enantiomers by inserting an (R)-AD-1/2t-Tar-DMSO (R-L
salt) crystallizer after the S-p salt crystallizer (Fig. 2b), thereby
producing (R)- and (S)-enantiomers with optical purities of
94.3% and 92.2%, respectively.”® It is evident that these two
coupling processes provide a high concentration of racemate
for the occurrence of classical chemical resolution (CCR). In
2022,
circulating extraction strategy (Fig. 2c), where the system ach-
ieved solid-liquid equilibrium to produce S-p and R salt
crystals in their respective crystallizers (step 2). Taking dis-
solved (R)-AD as an example, it could be extracted from the p-
Tar-enriched O, phase to P204, where the liquid circulation
took place (step 3), and then the r-Tar-enriched O, phase to
precipitate as the stable R-v salt (step 4). Consequently, crystals
with ee values higher than 98% could be consecutively har-
vested after 15 cycles, and the overall yields reached nearly

they further presented a pairwise crystallization-
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Fig.2 Mechanisms and schematic diagrams of (a) extraction-crystallization-membrane coupling method,** (b) multiple-phase extraction and in
situ coupling of crystallization,*? and (c) pairwise crystallization-circulating extraction coupling method for mother liquor in situ reuse.**”
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Fig.3 Cu?* sequestration and EECR in continuous flow. (a) Carbonyl compounds studied for EECR in this work. (b) Enantioselective extraction
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100%."” Hence, the integration of extraction, crystallization,
membrane, and liquid-phase exchange processes shows
promise for chiral resolution.

In addition, although racemic amino acids (AAs) are the
most suitable system for the ELLE technique, achieving
complete deracemization toward the target enantiomer is still
complex due to the prerequisite of -NH, group derivatization
before racemization. In 2021, Huang et al. presented a derivati-
zation-free strategy via enantioselective extraction coupled with
racemization (EECR) (Fig. 3).*® Specifically, the potential ketone
CS ((R)-EECR-1-5) could enantiospecifically extract p-AA mole-
cules from a basic aqueous solution into the organic phase to
form a complex. Consequently, the excess L-AA remaining in the
alkaline aqueous phase underwent continuous racemization
catalyzed by the Cu®'/pyridoxal-5-phosphate catalyst, further
promoting the enrichment of p-AA molecules in the organic
phase (Fig. 3b). Ultimately, the complex at the interface between
the organic phase and acidic aqueous solution underwent
hydrolysis and released the high-value-added p-AA products in
the aqueous phase due to the ingenious design of the circula-
tion and communicating vessels (Fig. 3d). Notably, among five
CS candidates (Fig. 3a), (R)-EECR-1-4 inevitably incorporated
Cu”* into the complex because of the limited steric hindrance of
their R-substituents, which may carry the racemizing agent into
hydrolysis part, and consequently convert the desired p-AAs
back to their antipodes (Fig. 3c, left). In contrast, (R)-EECR-5
possessing the largest substituents (tertiary butyl) hindered the
formation of the hydrogen bond-assisted resonant and pre-
vented the coextraction of Cu®>* ions from the alkaline aqueous
solution to the organic layer (Fig. 3c, right), thereby hindering
the racemization of the target enantiomer. After 40 h of
continuous resolution, p-AAs with ee values of over 98% could
be obtained from optically pure r- or pL-AAs.

The development of CILs and DESs has resulted in higher
enantioselectivity and greener processes. However, the resolu-
tion performances achieved by the ELLE-coupled strategy are
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often several times greater than that achieved by ELLE alone.
Consequently, ELLE is seldom employed independently in
practical applications. Instead, it can serve as a vital enhancer
for other enantioseparation methods.

4. Crystallization-based methods for
chiral separation

As the most industrially favored technique, crystallization-
based methods have witnessed steadfast progress since Pas-
teur hand-sorted enantiomers of sodium ammonium tartrate in
1848 (ref. 148) and utilized a resolving agent to separate enan-
tiomers by forming diastereomeric salts in 1853."*° Specifically,
the 1848 study underlies the foundation of spontaneous reso-
lution free of external chiral sources, thereby contributing to
methods such as PC, reverse PC, and PE, which rely on the
control of crystallization kinetics. Alternatively, the 1853 study
prompted the development of chemical resolution, such as KR,
CCR, CBR, and DR, in which a chiral resolving agent is indis-
pensable to discriminate enantiomers by forming diastereo-
mers, reaction products, or complexes with distinct physical
and chemical properties. However, the single crystallization
strategy has notable limitations. For example, the substrate
scopes of PC and PE are limited by the types of crystal packing of
chiral molecules. CCR/CBR/DR is only suitable for batch oper-
ation and the desired yield is continuously lower than 50%.
Recently, the crystallization-based enantioseparation perfor-
mance has proved to be enhanced by integrating methods in the
two above-mentioned branches such as PC-CBR, PC-cocrystal
system, PE-cocrystal system, PC-CCR, (reverse) PC-external
field, and PC variants. Moreover, crystallization showcases
strong coupling capability with deracemization, membrane and
ELLE, including KR-deracemization, CCR-deracemization, CBR-
deracemization, CCR-ELLE, PC-deracemization, KR-membrane,
and PC-membrane processes. Considering new developments
related to (reverse) PC, PE, KR, CCR, CBR, and DR, there is
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potential for broader applications, particularly on an industrial the specific characteristics of each system. Hence, there are
scale. However, realizing this necessitates the development of both opportunities and challenges ahead given the excellent
continuous multidisciplinary crystallization designs based on separation performance and complexity of the process.

© 2023 The Author(s). Published by the Royal Society of Chemistry Chem. Sci,, 2023, 14, 11955-12003 | 11961


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3sc01630g

Open Access Article. Published on 27 2023. Downloaded on 19/08/2024 09:25:31.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

View Article Online

Chemical Science Review
Table 2 Identification, proportion and separation difficulty of three types of racemates!®>-*8
Racemate
Solid
Identification Racemic compound (Rac) Conglomerate (Con) solution (Ss)

Hand-sorting Non-hemihedrism

SCXRD Different from E
FT-IR, Raman

and PXRD

Melting point and
solubility

Solid-state CD spectra
Nonlinear optical
technique (SHG)

The position of the signal is different from E

Rac > Rac + a little E, Rac < Rac + a little E

The majority of Racs:

no SHG effect. (98% of Racs crystallize in the
centrosymmetric space groups

such as P2,/c, C2/c, Pbca, and P1)

>90%

Medium

Occurrence/frequency
Relative difficulty

4.1 Racemic compound vs. conglomerate vs. solid solution

As mentioned earlier, it is crucial to gain in-depth knowledge on
the type of packing of racemates given that it serves as the basis
for designing crystallization-based resolution processes. Left-
and right-handed molecules possess identical functional
groups and enantiomer connectivity. However, the crystalline
arrangement of enantiomers (E: E" or E7) relies on the relative
strength of the interactions between chiral molecules and the
steric hindrance in the crystal structure.'* When the intermo-
lecular interactions between the antipodes exceed that of the
single-handed molecules, chiral molecules constitute racemic
compound (Rac) crystals, where E" and E™ coexist in the crystal
lattice (Fig. 4b and f, respectively). When the intermolecular
interactions between heterochiral molecules are weaker than
that of homochiral ones, E" and E™ crystallize in their respective
lattices and the crystals are physically mixed as a racemic
conglomerate (Con) (Fig. 4a and e, respectively). When the
intermolecular interactions between mirror images are similar,
E' and E~ are irregularly arranged in the crystal lattice and
miscible with their counter-enantiomers, similar to a solid
solution (Ss) (Fig. 4d and h, respectively). The reliable identifi-
cation of racemates can be achieved by multifaceted methods
including spectroscopy, thermodynamics, thermal analysis
(Table 2). It can be seen that most Con crystals possess lower
thermodynamic stability and share the same signal positions
with a single enantiomer. This characteristic facilitates the ease
of resolving Con. By comparison, most racemates are Rac and
Ss, which display higher stability and even lack a distinguish-
able pattern. Consequently, it is necessary to transform
a greater proportion of Rac/Ss into Con.

One approach to achieve this goal is to investigate suitable
crystallization conditions (temperatures, solvent, additives,
external fields, etc.) to enhance the thermodynamic stability of
Con or inhibit the nucleation of Rac. For example, Lee et al.
monitored the effects of higher temperature and the presence of

1962 | Chem. Sci,, 2023, 14, 11955-12003

The response signal is strictly zero for single crystal

Hemihedrism Non-
hemihedrism

Consistent with E Different
from E

The position of the signal is consistent with E  Irregular

Con < E and Con < Con + a little E, Con > E Irregular

and Con > Con + a little E

Consistent with E (singles crystal) Irregular

The majority of Cons: large SHG effect. Irregular

(95% of Cons crystallize in

non-centrosymmetric space groups such as

P2,2,24, P24, C2, and P1)

5-10% <1%

Easy Hard

succinic acid additives on the conversion of aspartic acid from
Con to Rac. The results showed that higher temperature low-
ered the relative stability of Con, whereas the addition of suc-
cinic acid inhibited the formation of Rac.'> Additionally,
baclofenium hydrogenomaleate (BaHMa) presents a partial Ss
at room temperature with a high eutectic composition (98.5-
100% ee), which allows facile resolution via auto-seeded PC.
However, PC failed to resolve BaHMa in the case where the
temperature was higher than 145 °C because of the formation of
the complete Ss phase.'” Marine Hoquante and coworkers
identified a novel Rac for BINOL-OBn whose melting point
exceeded that of Con by 20 °C.*** Consequently, the initial Con
crystals in a —10 °C diethyl ether suspension were eventually
transformed into Rac crystals despite the addition of Con
seeds.'®*% In addition, Bialonska et al. compared the crystal
structures of seven brucinium salts and found that anionic
dimers, which hinder enantio-separation by constructing bru-
cinium diastereomeric double salts, could be eliminated by
increasing the polarity of the solvent.*® Another study reported
a solution-free method for the preparation of Con, in which
mechanochemistry processes with non-polar and polar solvents
led to the formation of the Con- and Rac-salt of tartaric acid-
-isoniazid, respectively.”®” Additionally, chiral molecules anti-
parallel to the spins of electrons in the metal substrate can
exhibit enantioselective adhesion, agglomeration and crystalli-
zation. Inspired by this, Tassinari and coworkers placed
magnets beneath the substrate at the bottom of a crystallizer
containing either a racemic or enantiopure solution of amino
acids (DL-Asp, DL-Glu-HCl, or DL-Thr). Consequently, the
magnets facing the N and S directions could enantiomor-
phously crystallize all the amino acids on the substrate, while
only DL-Asp could be resolved by both magnets.*> Moreover,
Zhou et al. found that the addition of ultrasound could enable
pr-glutamic acid (pi-Glu) to crystallize as Con rather than the
thermodynamically stable Rac. This means that the acoustic

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 Representative outcomes of the crystallization of a racemic mixture (RS or E*E™) with chiral (C*), racemic (C*C™), and achiral (C)
coformers, resulting in (a) and (b) diastereomers, (c) kryptoracemates, (d) double racemic compounds, (e) conglomerates, (fi) racemic cocrystals/
salts, (fii) double racemic cocrystal/salts, and (g) enantiospecific cocrystals. E*: R-enantiomer, E™: S-enantiomer, AC: achiral coformer, CCF:
chiral cocrystal coformer, RCF: racemic cocrystal coformer, R-s/c: R-salt/cocrystal, S-s/c: S-salt/cocrystal, RS-s/c: RS-salt/cocrystal, P-s/c: P-
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cavitation effect can kinetically induce homochiral nucleation help influence the crystallization kinetics of Con, Rac and Ss

when the thermodynamic stability of Con and Rac is similar.”®® and reduce the undesirable disappearance of Cons, in partic-
Hence, carefully selecting the crystallization conditions may ular for chiral molecules exhibiting high molecular flexibility or
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lacking significant strength differences in their intermolecular
interactions.**®

Alternatively, crystal engineering provides various non-
covalent interactions for chiral molecules to modify their
molecular flexibility and crystal packing arrangements, and
thus becomes a more potent strategy.** It can be seen in Fig. 5
that introducing a chiral agent C* to the racemic E'E~ molec-
ular units can lead to the formation of Rac-like (a), Con-like (b),
or enantiospecific cocrystal systems (g). However, only the
formation of diastereomeric pairs or enantiospecific cocrystal
benefits enantioseparation due to the disappearance of the Rac
phase (Fig. 4c and g). The addition of the racemic reagent C'C~
to E'E” may generate a double-Rac cocrystal (d), which is
equally challenging to resolve as Racs, or a rare but easily
resolvable kryptoracemate Con (c).'**'** Specially, an achiral
guest C with chiral induction potential may result in novel Cons
(e) and single- or double-Rac cocrystals (fi and fii). Conse-
quently, it has become a hot topic to convert Rac/Ss into (e), (b),
(g) and (c), which can be easily resolved by direct crystallization.
For instance, RS-carvedilol remains Ss after forming salts with
strong acids (hydrochloride or hydrobromide), while forming
a Rac salt with a weaker acid (oxalic acid),'*> where one oxalate
anion can stably bond with one R- and one S-molecule in the
crystal lattice. Similarly, oxalic acid can transform fluoxetine

a b
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into Con-salt crystals, where the oxalate molecules exclusively
serve as linkers between the homochiral fluoxetine cations,
thereby revealing miniature fluoxetine isomers by forming
homochiral 1D chains through N'-H---O~ interactions.'®
However, this method does not always apply, as described in
Fig. 4g. In 2023, two diastereomeric salts formed between L-
DMTA and RS-4-cyano-1-aminoindane (4C1A) constituted a new
Ss system, where the disordered R-isomer was found in the
asymmetric unit of the S-4C1A:.-DMTA crystals at an occupancy
of 13%. This means that R-4C1A:.-DMTA is less stable and is
easy to dissolve. To avoid a strenuous cascade of the crystalli-
zation process, the Ss obtained from single-stage crystallization
(28% ees) underwent an enantioselective dissolution process to
remove the soluble R-4C1A:L.-DMTA salt, and crystals with final
ees of 96% could be obtained.* Compared to selective crys-
tallization, this enrichment pathway, according to the lever rule,
seems particularly efficient in Ss systems, where the tie line
traversing the racemic composition has a steep slope.

Besides, the chemical derivatization strategy, which intro-
duces new substituents or functional groups into pristine Rac/
Ss, can also lead to novel Cons. In 2022, Lin et al. described
the necessity of strong heterogeneous intermolecular interac-
tions in a subtle but efficacious way.'* They elaborated on the
topological structures of acetylalanine-based N-amidothiourea

a

Eob

L D rac@D-AcAH

Racemic compound
(X=F H)

P-helix
Xonntaneous resolution

Conglomerate
(X=1I,Br,Cl)

%pontaneous resolution

Halogen-bonded
M-helix
C-I---S

halogen bonds

(@) Chemical structures of AcAX. (b) Heterochiral 2D layers constructed by only N—H---O=C hydrogen bonds and weak van der Waals

interactions, which further forms 3D racemic compounds (X = F and H). (c) Homochiral 2D layers constructed by both N—H---O=C hydrogen
bonds and C-X:--S halogen bonds, which further form 3D conglomerates (X = |, Br, and Cl).®* Reproduced with permission from ref. 169.
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derivatives (AcAX) possessing unique substituents (X = I, Br, Cl,
F, and H) (Fig. 6a). Consequently, AcAl, AcABr and AcACl
underwent spontaneous resolution as Cons, while AcAF and
AcAH existed as Racs. It can be seen from the crystal structures
(Fig. 6¢) that the 1D homochiral helices of the AcAX (X = I, Br,
and Cl) molecules along the a axis are extended by N-H:--O=C
to form 2D layers along and aoc plane, followed by further
stacking along and b axis via C-X---S halogen bonds. The
dominant orientations of these two interactions remained
perpendicular to each other and improved the stability of Con
crystals. By comparison, the lack of halogen bonds in the crystal
structures of AcAF and AcAH undermines the self-assembly
preference of homochiral 2D layers, which gave way to the
packing between counter chirality layers by mere van der Waals
interactions (Fig. 6b). Consequently, strong heterogeneous
interactions that tend to form connections between homochiral
molecules (such as halogen bonds) should be specifically
created for target enantiomers to “disseminate” their respective
chiral signals.

To date, although there are multiple cases related to Cons,
the efficient screening and prediction of these systems require
significant time and have a lack of guiding principles, and
scarce research has established connections between the CSD
and the design of Cons."”® Consequently, it is important to
develop fitting and predictive models considering various
aspects such as functional groups, molecular flexibility, melting
point, solubility, and intermolecular interactions using MD and
DFT calculations. Moreover, crystal structure prediction
(CSP),"”* which considers symmetry, intermolecular interac-
tions and energy minimization, may explore potential “poly-
morphs” of a racemate, ie., Con, Rac and Ss, due to the
identical functional groups and connectivity of two
enantiomers.

4.2 Preferential crystallization (PC)

Spontaneous resolution is a term describing the resolution of
a racemate that crystallizes as a conglomerate."”> However, this
theory can only generate a physical mixture of enantiomers
unless their crystals exhibit significant differences in size,
morphology, color, etc. The essential tool for the industrializa-
tion of spontaneous resolution is preferential crystallization
(PC), where the target products can be mass-produced by
regulating the crystallization kinetics by seeding the desired
enantiomer in both batch and continuous operating mode.”**7*
Recently, many innovative coupled setups and chiral additives
with molecular similarity to enantiomers have been utilized to
inhibit the nucleation of the unwanted enantiomer, enhance
the productivity or satisfy special requirements, which pertains
to the latest developments in PC.*"*>'73

4.2.1 Phase diagrams of preferential -crystallization.
Conglomerate-forming systems can be effectively resolved
through PC regardless of the initial enantiomeric excess (eey).
In the case where the ee, of the feed lies in a two-phase region
(Fig. 7a, H'ES), the addition of S-seeds enables the direct crys-
tallization of optically pure S-crystals. Consequently, the ther-
modynamically equilibrated solid and liquid compositions are

© 2023 The Author(s). Published by the Royal Society of Chemistry
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located at point S and the EH' curve (point F), respectively, in
a batch operation. By comparison, the mother liquor compo-
sition remains in the two-phase region in a continuous process
(point D) due to the non-equilibrium nature of the operation.
Alternatively, when ee, falls within a three-phase region at
point M (or Q), the addition of S-seeds in the metastable zone
can promote the secondary nucleation and provide a larger
crystal surface for S-enantiomer; thus, S-solute will preferably
precipitate for the growth of homochiral crystals with the
mother liquid composition moving from point M (or Q) to M'.
Meanwhile, to avoid the spontaneous nucleation of R-crystals,
during which the composition of the mother liquor migrates to
eutectic point E, the slurry needs to be filtered before reaching
point M'. After replenishing the racemate, ee, can be reset at the
R-enriched N point (or zero ee, Q), allowing the alternating
harvest of the two enantiomers in a single vessel batch PC.
Notably, two-pot PC setups with liquid coupling can achieve
higher productivity and scale-up ability under a specific circu-
lation rate. After seeding, the liquid composition within two
connected containers will gradually approach the steady state
from point O and O’ to point Q for a continuous process, while
that for a batch process will constantly remain at point Q.

Considering that Con accounts for a maximum of 19% of the
racemates, expanding the application of PC to Rac is of great
significance (Fig. 7b)."”® In general, PC is feasible for Racs with
higher solubility than their pure enantiomer and an ee, higher
than the ee value at the eutectic point (ee.,)."””"”® In the case
where ee, < ee.,, the maximum ee of the product is simply ee.,.
For the slurry composition initially located in the AE;Br region
(point M starting from point A), €€gjirate = €€eu > €€0, €Cresidue <
eey < eee,, while that in the fan-shaped FE;r area (point P
starting from point A) is 0 = ee€fijrate = €C€eu, €Cresidue = O-
Alternatively, when ee, > ee., (starting from point C), the
smallest amount of solvent and the highest yield of S-crystals
can be achieved at point Q. In addition, point H located at the
boundary of the two-phase zone E,W,S (T;) will be affiliated
with the three-phase zone E;BS as the temperature decreases
(T»). This accounts for the precipitation of Rac when the
temperature drops below the threshold, and thus both the
initial composition and temperature range should be carefully
selected. Fortunately, the addition of chiral additives (Section
4.2.3) can provide a window to delay the appearance of Rac
although the operation needs to start at an ee, somewhat higher
than eeg,.

Additionally, the crystallization process of diastereomeric
cocrystals/salts closely resembles that of enantiomers (Fig. 7c).
When the initial composition lies at point A (R-diastereomer : S-
diastereomer = 50:50), the maximum yield of pure R-diaste-
reomer can be obtained through the direct crystallization in the
two-phase region (point O, Tj), with the S-diastereomer-
enriched mother liquor located at point E. Ingeniously, Simon
and coworkers transferred half of the mother liquor into
another crystallizer and coupled it with the original crystallizer
via crystal-free liquid-phase exchange. The simultaneous prep-
aration of two diastereomers in the metastable zone ME'NE (T3)
could be achieved in this coupled batch setup, which is attrib-
uted to the addition of S-seeds to the new crystallizer and
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continued growth of R-crystals in the original vessel. Similarly,
compositions of the liquid phase in two tanks would approach
points R and Q, respectively, and finally end up located at point
E'. This coupled setup not only maintained the purity of the R-
and S-diastereomer (ca. 99%), the productivity of the R-diaste-
reomer, and the yield of the S-diastereomer (ca. 20.5%), but also
doubled the productivity of S-crystals and achieved 49% yield
for R-crystals, all with just an additional one-third of the oper-
ating time."”® Hence, this strategy is particularly promising for
cases where the desired enantiomer forms a more soluble salt
or a large crystal size is desired.

It can be observed that regardless of the symmetry of the
phase diagram, a crystal-free liquid coupling strategy for “PC”
within the three-phase region may significantly lower the overall
supersaturation and promote the growth of homochiral crys-
tals, thereby reducing the contamination by impurities, while
enhancing the productivity and yield. Other variants with
liquid-phase exchange are introduced in Section 4.2.2.

4.2.2 Variants of preferential crystallization. In traditional
PC, a too-short induction period and a slightly delayed

1966 | Chem. Sci, 2023, 14, 11955-12003

experimental endpoint may trigger the nucleation of the
counter-enantiomer, resulting in reduced productivity. Hence,
there is a growing demand for variants to address this issue. For
example, a first-generation device is coupled with continuous/
batch preferential crystallization (CPC).*»** This combination
decouples the non-enantioselective crystallization of two
enantiomers into two separate tanks through a crystal-free
liquid circulation (Fig. 8a and 7a (O, O' — Q)), which can
reduce the instant supersaturation level and the nucleation/
growth rate of the undesired enantiomer despite the uncer-
tainty of the endpoint.®******> Based on CPC, Thomas Vetter and
coworkers installed heated mills before and after the two crys-
tallizers to in situ generate seeds by dissolving fine crystals.
Further scaling up the process offers higher efficiency and lower
solvent usage compared to one-pot operation despite the
complex and sensitive consideration of the scaling factor.'®
Moreover, the PC setup with an additional feed tank can also
conveniently control the ee value of the product by in situ
polarimeter monitoring (Fig. 8b). Specifically, the system will
alter the feeding source from the racemate to S-enantiomer

© 2023 The Author(s). Published by the Royal Society of Chemistry
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once the undesired R-crystals appear, that is, when the optical
rotation value ([«]) of the steady-state solution varies; otherwise,
the inlet tube will be switched back to zero eef..q.** This
controlled system enables high reproducibility and operation at
high supersaturation levels without the need to consider the
nucleation and growth kinetics because the R-enriched mother
liquor can continuously leave the crystallizer. Interestingly,
although the stability of this continuous operation is at the
expense of consuming a portion of the existing S-enantiomer, or

a

Racemate
R-seeds

S-seeds
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in other words, the precipitation of R-chiral impurity crystals is
“hidden” due to the addition of an equal amount of S-seeds,
replacing control of the crystallization kinetics with intuitive
operational conditions is an important consideration.

In addition, a more cost-effective process, coupled prefer-
ential crystallization-dissolution (CPC-D), was developed for
substrates without accessible enantiopure seeds and sufficient
solubility data (Fig. 8c). Its most significant feature is that the
dissolution tank contains suspended solid crystals throughout
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Fig. 8 Two-pot variants of preferential crystallization. (a) Coupled continuous/batch preferential crystallization (CPC) process. (b) CPC process
with temporarily controlled feed composition. Ala]: change in optical rotation value of the liquid phase. (c) Coupled preferential crystallization-
dissolution (CPC-D) process. (d) Representation of the composition evolution of the saturation tank and crystallizer in the ideal CPC-D process at
the time of seeding (left) and after seeding (right). Both blue and green bent arrows indicate crystal-free liquid exchange. The supersaturation (AT

= Tsat — Tery) is incapable of triggering primary nucleation.
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the whole process. Specifically, upon the addition of R-seeds,
the R-enantiomer in the liquid phase will be unsaturated in the
dissolution tank because of the growth of R-crystals in the
crystallizer. Therefore, the R-enantiomer in the suspension will
be preferentially dissolved to maintain its saturation state in the
liquid phase at Tg,, retaining S-crystals in the dissolution tank.
When all the R-crystals in Con are completely dissolved and
unable to replenish the required supersaturation in the crys-
tallizer, the operation reaches the endpoint. Notably, the
selective dissolution rate of R-molecules should be higher than
that of their crystallization and the liquid circulation rate
should be sufficient. This is further illustrated in Fig. 8d, where
the overall state in the crystallizer changes from the equili-
brated liquid-phase composition, Xcy, o, t0 Xcry,1, while the total
composition in the dissolution tank remains in excess at Xsat,0
(Fig. 8d, left). Subsequently, the continuously replenished
racemic solution in the crystallizer causes the overall operating
point to gradually shift to the R-vertex along the material
balance line. Correspondingly, the R-enantiomer that is
continuously dissolved from the Con crystals enables the liquid
operating point in the dissolver to gradually move from xg,¢ o to
Xsat,n, accompanied by the composition of the solid phase from
0% (point ) to 100% eeg (S-vertex) (Fig. 8d, right). Notably, the
quality of the obtained R-crystals will be higher than that of
their antipode due to the condition of Ty > Tery (Fig. 8c).
Inspired by this method, Hein et al. utilized slightly enantio-
meric excess to selectively control the competitive crystal growth
of omeprazole enantiomers. By operating two vessels in series

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

View Article Online

Review

and using a temperature gradient as the driving force, S-ome-
prazole with a chiral purity of higher than 98% was harvested.*
Also, Eicke et al. compared the productivity and purity between
CPC-D and CPC processes.'® Under the same initial conditions,
they both exhibited close values for productivity and 100% ee in
the first 15 min. However, CPC exhibited a sharp rise in
supersaturation consumption rate afterward, affording the two
enantiomers of threonine in their respective tanks with
a productivity of 13 g L " h™". By comparison, CPC-D displayed
better productivity of 22 ¢ L ~* h™" in the crystallizer although
the enantiopurity in the dissolution tank was slightly lower than
99% ee."®* Additionally, a scaled-up CPC-D setup, which con-
sisted of two double-walled 450 mL tanks, achieved the reso-
lution of (RS)-guaifenesin with good yield and ee values of y, =
22.5%, eegx = 95% and ys = 47.5%, ees = 80% in the crystalli-
zation tank and dissolution tank, respectively.'*>'** Hence, CPC-
D can serve as a countermeasure when only one seed is acces-
sible, although it may lead to somewhat lower productivity in
the crystallization tank than that in single-vessel batch PC.
4.2.3 Reverse preferential crystallization. The “reverse PC
strategy” is a new method that has emerged recently based on
the “rule of reversal” (“rule”).’® It refers to the phenomenon
where the addition of “tailor-made” chiral additives leads to the
preferential crystallization of the enantiomer of opposite
chirality to the seeds. This r