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Evaluating the ability of end-point methods to
predict the binding affinity tendency of protein
kinase inhibitorsT

Martiniano Bello @ *2 and Cindy Bandala®

Because of the high economic cost of exploring the experimental impact of mutations occurring in kinase
proteins, computational approaches have been employed as alternative methods for evaluating the
structural and energetic aspects of kinase mutations. Among the main computational methods used to
explore the affinity linked to kinase mutations are docking procedures and molecular dynamics (MD)
simulations combined with end-point methods or alchemical methods. Although it is known that end-
point methods are not able to reproduce experimental binding free energy (AG) values, it is also true that
they are able to discriminate between a better or a worse ligand through the estimation of AG. In this
contribution, we selected ten wild-type and mutant cocrystallized EGFR—-inhibitor complexes containing
experimental binding affinities to evaluate whether MMGBSA or MMPBSA approaches can predict the
differences in affinity between the wild type and mutants forming a complex with a similar inhibitor. Our
results show that a long MD simulation (the last 50 ns of a 100 ns-long MD simulation) using the
MMGBSA method without considering the entropic components reproduced the experimental affinity
tendency with a Pearson correlation coefficient of 0.779 and an R? value of 0.606. On the other hand,
the correlation between theoretical and experimental AAG values indicates that the MMGBSA and
MMPBSA methods are helpful for obtaining a good correlation using a short rather than a long

rsc.li/rsc-advances simulation period.

1. Introduction

Protein kinase (PK) enzymes are part of a huge superfamily and
play an important role in diverse cellular activation events.* PK
enzymes catalyze the addition of a phosphate group to target
residues (threonine, serine, tyrosine, and histidine) present in
the catalytic site of enzymes, also known as the ATP binding
site, and this represents a crucial process for the regulation of
enzymatic activity. The three-dimensional structure of PK
enzymes is canonically formed by two domains, also known as
lobes, linked to each other through a flexible hinge region. The
interface between these two domains forms a hydrophobic cleft
that structures the ATP binding site (Fig. 1). The smaller N-
terminal domain is structured by B-sheets (B1-f5) and one
helix, known as oC, while the second C-terminal domain is
enriched by several a-helices (aD-aI).>* PK enzymes share some
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regions involved in the catalytic process, that is, the activation
loop, the DFG muotif, the hinge, and the P-loop (Fig. 1). The
catalytic activity of the enzymes is also connected with active or
inactive states. In the active state, the activation loop is in the
DFG-in state, whereas in the inactive state it is in the DFG-out
conformation. In the inactive state, the Asp residue present in
the DFG motif, which participates in the transfer of the phos-
phate group from ATP to the substrate, blocks the catalytic
binding site avoiding substrate access, whereas in the active
state, a conformational change in the activation loop allows
access to the ATP binding site.>® Although normally the tran-
sition from the inactive to the active state is the result of
phosphorylation at the activation loop, it can also be promoted
by the binding of PK inhibitors.”

Phosphorylation of the enzyme contributes to modifying the
physicochemical environment of the enzyme's active site,
allowing PKs to develop their basic functions. However, some
circumstances, such as changes in the expression level of PKs or
mutations at the ATP binding site of PKs, affect diverse cellular
events by modifying the catalytic activity of the enzyme or
producing a constitutively active PK. Some mutations that affect
the catalytic activity of the ATP binding site are mutations at the
gatekeeper, the activation loop position, and the glycine-rich
loop. L858R at the activation loop, G719S proximal to the
glycine-rich loop in the epidermal growth factor receptor

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Design of the PK catalytic domain. The structural topology of
a PK exemplified by CDK2 (PDB entry 1QMZ). The figure illustrates the
N- and C-domains of CDK2, which forms a complex with ATP and the
substrate at the catalytic binding domain. The activation loop is in blue,
the P-loop in red, the aC-helix in green, the hinge region in magenta,
the Mg ion in orange, the ATP in pink, and the substrate in cyan.

(EGFR), and T790M at the gatekeeper position are three exam-
ples of mutations that destabilize the inactive conformation.*
T790M in EGFR is an example of a gatekeeper mutation with
bulkier side chain substitutions that block access to the cata-
lytic binding site. This mutation impacts the hydrogen bonds
between Thr and the ligand and also promotes the constitutive
active state of EGFR,"** without impacting ATP binding."**
Recent advances in theoretical methods and the increase in
experimental information about the impact of PK mutations on
the inhibitor affinity of several PKs have allowed the develop-
ment and evaluation of different methodologies for predicting
the impact of mutations on inhibitor affinity. Although ideally it
would be better to explore the impact of PK mutations through
experimental methods, this turns out to be difficult because of
time and economic aspects, so theoretical methods represent
a good alternative for developing new PK inhibitors. Among the
main theoretical approaches used to predict the difference in
the binding affinity energy of wild-type versus mutated systems
in protein-ligand systems are statistic-based machine-learning
methods® and structure-based methods.””* Of these two
methods, structure-based methods are based on physical
models. Although they are not as efficient and accurate as
statistic-based machine-learning methods,**** structure-based
methods have more advantages in the model implementation
of different types of systems and in the interpretation of the
results.®*? Structure-based methods can be divided into
alchemical and end-point methods. Alchemical methods, such
as free energy perturbation (FEP) and thermodynamics inte-
gration (TI), are robust and precise methods for predicting
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binding free energies.>* However, these methods are computa-
tionally demanding and require long simulation times to
converge, which makes them unsuitable for large-scale drug
design projects. End-point methods, such as the molecular
mechanics generalized-Born surface area (MMGBSA) and
molecular mechanics Poisson-Boltzmann surface area
(MMPBSA) methods,”” are the most employed methods for
predicting the binding free energy (AG) and consider only the
initial and final states of the evaluated system. MMGBSA and
MMPBSA are computationally faster than alchemical methods
and, because of that, have been successfully used in different
types of systems and situations, such as getting insight into the
drug resistance mechanisms of some pharmacological
medicines.”**" Comparing the MMGBSA and the FEP method
on a massive number of mutations in protein-protein systems
revealed better Pearson correlation coefficients against the
experimental data for the FEP (r = 0.50-0.61) than for the
MMGBSA (r = 0.14-0.18) method.** On the other hand, Ikemura
et al. determined the difference in binding free energy between
PK inhibitors and EGFR containing rare mutations and
compared the results against the experimental values using the
MMGBSA and MMPBSA approaches, finding good Pearson
correlation values (r = 0.57).° More recently, Yu et al. predicted
the binding free energy values for different kinds of protein-
ligand systems containing mutations, using the MMGBSA and
MMPBSA approaches but incorporating different computa-
tional strategies, such as different lengths of molecular
dynamics (MD) simulations, different values of dielectric
constants, and the incorporation of entropic effects in the final
binding free energy.*® Based on this latter study, in which PK
enzymes were not included, Yu et al. identified that 100 ns-long
MD simulations benefit the prediction accuracy between theo-
retical and experimental AAG values of both methods with
relatively good correlation values (r = 0.44). Furthermore, it was
observed that the correlation is improved when the system
contains multiple mutations. In this study, we predicted the
binding free energy for a set of 10 wild-type and mutated EGFR-
inhibitor complexes containing experimental affinity values,
using the first 25 ns or the last 50 ns from 100 ns-long MD
simulations combined with the MMGBSA and MMPBSA
approaches with two dielectric constants and the incorporation
of entropic effects in the binding free energy.

2. Methods

Table S1f shows our data set, containing single or double
mutations within ten EGFR-inhibitor systems. For the prepa-
ration of the systems, all the crystal structures with missing
regions were repaired using a Swiss model server.** The EGFR-
inhibitor complexes were constructed with antechamber and
tleap modules present in the Amber22 package.”*** The inhib-
itors were parametrized with the general Amber force field
(GAFF)** and AM1-BCC atomic charges,* whereas the proteins
were built using the Amber ff14SB force field.*” The systems
were immersed in a truncated octahedral water box with a 12 A
TIP3P water model®*® and neutralized by adding counterions to
equilibrate the total charge.

RSC Adv, 2023, 13, 25118-25128 | 25119
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2.1 Molecular dynamics (MD) simulations

With prior MD simulations, the systems were minimized and
equilibrated, as follows. The minimization process consisted of
5000 cycles of steepest descent and 4000 cycles of conjugate
gradient minimization. The temperature of the systems was
increased for 200 ps from 0 to 310 K under an NVT ensemble
using a Berendsen thermostat,* during which heavy atoms in
the protein were constrained with an elastic constant of
3 keal mol™ A2, Then, the density was equilibrated for 200 ps
under an NTP ensemble using a Langevin thermostat*>*' and
a Berendsen barostat,* and a constant pressure was applied for
600 ps to accomplish equilibration at 310 K, maintaining the
same constraints on the heavy atoms as used in the heating
process. MD simulations were run under an NTP ensemble
using a Langevin thermostat’>*' and a Berendsen barostat®
without any restrictions. The van der Waals and short-range
electrostatic interactions were set to 10 A, while the particle
mesh Ewald (PME) algorithm** was used to treat the long-range
electrostatic interactions.* The time step of the simulations was
set to 2 fs, and the SHAKE algorithm** was used to constrain the
bond length between the hydrogen atoms and the linked heavy
atoms. All the MD simulations were run in triplicate with the
pmemd.cuda module in Amber22.>*** A single joined trajectory
was created by concatenating triplicate simulations and

£

2ITO
(1 mutation)

2ITT
(1 mutation)

(2 mutations)

View Article Online

Paper

employed to estimate the root-mean-square deviation (RMSD)
and the radius of gyration (RG) and to conduct the clustering
analysis and binding free energy calculations.

2.2 Binding free energy studies with MMGBSA and MMPBSA

The binding free energy was determined for each system during
the first 25 and the last 50 ns from the triplicate 100 ns-long MD
trajectories, using the MMGBSA and MMPBSA methods and the
single-method MD simulation protocol with the MMPBSA.py
module* present in the Amber22 simulation software. With
these methods, the binding free energy can be decomposed into
its energetic contributions, as follows:**

AGb* a= Gcomplex _ Greceptor _ Gligand
ind =
and

AGbind = AEMM + AGsolvation — TAS

where AEyn, contains the total gas-phase molecular mechanical
energies of the molecular system, including five different terms:
the bond (AEyona), the angle (AE,nge), the dihedral (AEginedral),
the van der Waals (AEyqw), and the electrostatic (AE..) energies.
AGsowvation 1S the free energy penalty upon the molecular recog-
nition process, and it is composed of polar (AGpgs) and
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Fig. 2 Structural details of the investigated systems. The set of mutated EGFR—inhibitor cocrystallized complexes.
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Fig. 3 Effect of MD simulation time on the binding free energy using the MMGBSA and MMPBSA methods. The AG values determined using the
MMGBSA approach, considering the first 25 ns (A) and the last 50 ns (B) of a 100 ns-long MD simulation. The AG values determined using the
MMPBSA approach, considering the first 25 ns (C) and the last 50 ns (D) of a 100 ns-long MD simulation.

nonpolar (AGs,) contributions. AGpggg can be determined
using the generalized-Born (GB) or the Poisson-Boltzmann (PB)
model, whereas the nonpolar contribution to the solvation
energy is determined using the solvent-accessible surface area
(SASA) with the LCPO algorithm.* In this contribution, AGpg/gp
was evaluated employing the GB model developed by Onufriev
et al.”’ (2004) and the PB model implemented by Tan et al.*®* We
explored two different interior dielectric constants (¢, = 2 and
4) to compare the differences, since this constant has been re-
ported to significantly impact the electrostatic contributions
(AE¢e and AGpg,gg) of the binding free energy.*>*® —TAS is the
result of the temperature (at 310 K) and the solute entropy
arising from structural changes in the degrees of freedom of the
water molecules. This was evaluated with 250 snapshots from
the first 25 ns and the last 50 ns of the 100 ns-long MD simu-
lations using the MMPBSA.py module.** The binding free
energy difference between the mutated and the wild-type
systems was stated (AAG = AGyr — AGwr)-

2.3 Molecular docking

Docking studies were performed using two different algo-
rithms: MOE 2014.09,*" and SwissDock.** The ligand geometries

© 2023 The Author(s). Published by the Royal Society of Chemistry

were minimized with Avogadro® with a UFF force field, using
the steepest descent method followed by conjugate gradient
algorithms. Docking calculations with MOE 2014.09 were
carried out using the triangle matcher function to create the
initial binding poses. The best 30 poses from the London dG
score were then rescored using GBVI/WSA dG. For docking
studies with SwissDock, the default parameters were used. For
all the cases, the search space was set at the known binding
pocket, and the receptor-ligand system with the lowest binding
score was chosen as the representative complex.

3. Results and discussion

We selected a set of 10 cocrystallized wild-type and mutated
EGFR-inhibitor complexes containing experimental affinity
values (Table S17). Fig. 2 illustrates six of these mutated EGFR-
inhibitor cocrystallized complexes. Of the evaluated systems,
four contain a single mutation, and two have two mutations
almost all evaluated systems showed that the mutations are
located close to the cocrystallized ligand, suggesting essential
interactions between the ligand and the ligand binding site.
These systems were submitted to MD simulations combined

RSC Adv, 2023, 13, 25118-25128 | 25121
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Fig. 4 Effect of MD simulation time on the relative binding free energy using the MMGBSA and MMPBSA methods. The calculated AAG values
between the mutated and the wild-type systems determined using the MMGBSA approach, considering the first 25 ns (A) and the last 50 ns (B) of
a 100 ns-long MD simulation. The calculated AAG values determined using the MMPBSA approach, considering the first 25 ns (C) and the last 50

ns (D) of a 100 ns-long MD simulation.

with various protocols of end-point binding free energy
methods with the purpose of evaluating the ability of this
methodology to predict the impact of mutations on the binding
affinity. We also evaluate the binding affinity of these complexes
using two different docking algorithms, the results of which are
compared with the MD simulation results.

3.1 Stabilization of the wild-type and mutated EGFR-
inhibitor complexes

The RMSD and RG plots of the EGFR-inhibitor complexes
illustrate that all the complexes reached equilibrated values
between 20 and 50 ns, with average RMSD values between 2.05
and 5.52 A, whereas that average RG values fluctuated between
19.9 and 20.8 A (Table S21). Based on this analysis, a clustering
analysis was performed using both the equilibrated simulation
time (the last 50 ns) and the time before reaching the equilib-
rium (the first 25 ns) to obtain the most populated complexes
and evaluate the RMSD value of the ligand binding pose ob-
tained during simulations concerning the cocrystallized ligand
conformation. This analysis showed that the ligand poses
exhibited RMSD values lower than 2.0 for the MD simulation

25122 | RSC Adv, 2023, 13, 25118-25128

studies before and after reaching equilibrium (Table S3t). The
results indicated similar ligand displacement with respect to
the cocrystallized ligand conformer before and after reaching
equilibrium, except for the 2j6m system, which improves its
RMSD value during the last 50 ns.

3.2 Impact of the MD simulation time on the binding free
energy

The minimized wild-type and mutated cocrystallized PK-ligand
complexes were submitted to MD simulations combined with
MMGBSA and MMPBSA using a dielectric constant (g;, = 2) that
has been reported to be the most suitable one for studying
protein-ligand systems.*>****** In addition, we found similar
results with a higher dielectric contact (¢;,, = 4; data not shown),
as previously reported,® so in this research, we showed only
results for ¢, = 2.

Tables S4-S7 and S12+ show all the binding free energy (AG)
values using MMGBSA (AGg,) or MMPBSA (AGpy,) during the
first 25 ns or the last 50 ns of the 100 ns-long MD simulations.
The Pearson correlation coefficients between the calculated and
the experimental AG values showed a better correlation for the

© 2023 The Author(s). Published by the Royal Society of Chemistry
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simulation.

last 50 ns (r = 0.779) (Fig. 3B) than for the first 25 ns (r = 0.420)
(Fig. 3A). The AGyy, values obtained with the MMPBSA approach
showed a lack of correlation for the first 25 ns (r = 0.012)
(Fig. 3C), which improved for the last 50 ns (r = 0.325) (Fig. 3D).
Although a comparison between the predicted and experi-
mental AG values (Tables S1 and S127) clearly showed that the
MMGBSA or MMPBSA methods were not able to reproduce the
experimental AG values, our results indicated that the MMGBSA
method reproduced the affinity tendency for the group of wild-
type and mutant EGFR-inhibitor complexes with a coefficient
value similar to that previously reported for different protein-
ligand systems®**® and between some PK inhibitors and EGFR
containing rare mutations.’* Based on this result, we also
determined the correlation between the mutated and the wild-
type systems (AAG = AGyr — AGwry). Fig. 4A and B for
MMGBSA show that with an increase in the MD simulation
time, the Pearson correlation coefficient decreases from —0.949
of the conformers during the first 25 ns to —0.306 during the
last 50 ns of the 100 ns-long MD simulations. A similar trend is
shown for the results using the MMPBSA approach. In this case,
the Pearson correlation coefficient also reduces from —0.757 of

© 2023 The Author(s). Published by the Royal Society of Chemistry

the conformers during the first 25 ns to —0.042 during the last
50 ns of the 100 ns-long MD simulations (Fig. 4C and D). A
comparison of the correlations of calculated AG (Fig. 3) or AAG
(Fig. 4) using the two methods reveals that the better method for
reproducing the experimental AG tendency for EGFR-inhibitor
systems is the MMGBSA method using more extended MD
simulations. On the other hand, the predicted versus experi-
mental AAG correlation indicates that the MMGBSA and
MMPBSA methods help obtain good correlations when short
rather than long simulation periods are used.

3.3 Impact of the conformational entropy on the binding
affinity

We also evaluated the impact of the conformational entropy,
although it has been stated that introducing the entropy
contribution in the prediction of the binding free energy is not
able to improve the correlation between the predicted and the
experimental binding free energy.> Tables S8-S11 and S127 also
present all the AG values using the MMGBSA or MMPBSA
method, considering the entropic component. The correlation
between the calculated and experimental AG values with

RSC Adv, 2023, 13, 25118-25128 | 25123
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MMGBSA during the first 25 ns (Fig. 5A) and the last 50 ns
(Fig. 5B) of the 100 ns-long MD simulations revealed a better
correlation for the last 50 ns (r = 0.574) than for the first 25 ns (r
= 0.266). The correlation obtained using the MMPBSA approach
was worse than that obtained using the MMGBSA approach, in
which a higher correlation was observed during the last 50 ns (r
= 0.331) than during the first 25 ns (r = 0.103). The AAG values
were also calculated from our AG values for estimating the
correlation between the predicted and experimental AAG values
(Fig. 6).

In panels A and B of Fig. 6, a decrease in the Pearson
correlation coefficient from —0.692 during the first 25 ns to
—0.323 during the last 50 ns is observed for the MMPBSA
approach. Similarly, for the MMPBSA approach, it was observed
that the Pearson correlation coefficient reduces from —0.732
during the first 25 ns to 0.117 during the last 50 ns of the 100 ns-
long MD simulations.

A comparison of the correlations of AG (Fig. 5) or AAG
(Fig. 6) using the two methods reveals that the best method for
reproducing the experimental AG tendency in EGFR-inhibitor
systems is also the MMGBSA method using long MD simulation

25124 | RSC Adv, 2023, 13, 25118-25128

periods, as observed for the AG values without considering the
entropic component (Fig. 3). However, it was also observed that
incorporating entropy into the prediction seriously weakens the
prediction accuracy, as previously reported.**** On the other
hand, the predicted versus experimental AAG analysis indicated
that short MD simulations generate a better correlation value
for both methods than long MD simulations when the entropic
component is incorporated in AG prediction. This result points
out that mutations near the binding site do not require to
experience significant conformational changes through long
MD simulations to reach good theoretical versus experimental
AAG tendency, contrasting with long-distance mutations of
other protein systems that require long MD simulations to get
good theoretical versus experimental AAG tendencies.*

3.4 Evaluating the ability of docking programs to predict the
affinity

Previous research evaluated the ability of six different docking
programs—four web-based knowledge-based scoring functions
(DSX-ONLINE, KDEEP, Pose&Rank, and PRODIGY-LIG) and two

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 8 Calculated versus experimental AAG between the mutated and
obtained using MOE (A), and SwissDock (B).

general scoring functions (HADDOCK2.2 and PDBePISA)—to
determine AGgocking for several wild-type and their respective
mutant kinases. Correlation studies between calculated and
experimental AAG values (ICsy, Kd, Ki) showed they could
predict whether a mutation improves or worsens the binding
affinity. Interestingly, the best Pearson correlation was observed
for the web-based protein-ligand scoring function DSX-ONLINE
with the Ki data set.”” Because we observed that the best
correlation between theoretical and experimental AG values was
obtained for the last 50 ns-long MD simulations (r = 0.779)
without considering the entropic contributions, suggesting that
the conformational changes did not greatly impact the theo-
retical AG values, we performed docking simulations using two
different general scoring functions to obtain the predicted AG
values (Table S13t) and evaluate their correlation with experi-
mental AG values. RMSD analysis between the ligand binding
pose generated by docking procedures and the cocrystallized
ligand reveals RMSD values lower than 2.5 A, however, these
values are in general higher than that of MD simulations (Table

© 2023 The Author(s). Published by the Royal Society of Chemistry
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the wild-type systems obtained using docking methods. Correlation

S31). A comparison of RMSD values of docking with MD simu-
lations indicates that the ligand experiment shows lower
displacement with respect to the cocrystallized ligand
conformer than docking procedures, suggesting that docking
procedures may unfavorably impact the protein-ligand inter-
actions with respect to MD simulations. Fig. 7 showed a poor
Pearson correlation coefficient of 0.354 for MOE (Fig. 7A), and
0.152 for SwissDock (Fig. 7B), respectively. The value reached by
these two docking programs indicates that they are worse than
MMGBSA and MMPBSA methods for reproducing the experi-
mental AG tendency. The AAG values were also calculated from
our docking AG values for estimating the correlation between
the calculated and experimental AAG values (Fig. 8). In Fig. 8,
a Pearson correlation coefficient of 0.405 is observed for MOE
(Fig. 8B) and of —0.229 for SwissDock (Fig. 8C). A comparison
between the two docking algorithms indicates that despite the
low capacity of both algorithms for generating good correlation
values, MOE shows a better performance than SwissDock.
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4. Conclusion

In this research, we explore the performance of the MMGBSA
and MMPBSA methods under different conditions to evaluate
their ability to reproduce the experimental binding tendency
and the difference between wild-type and mutant EGFR-inhib-
itor systems. In addition, we compare these two methodologies
with two docking algorithms. Our results indicate that the
MMGBSA protocol without the entropic component and with
a long MD simulation time of at least 100 ns is useful for
obtaining good reproducibility of the experimental AG
tendency, indicating that some conformational changes are
needed to reproduce the AG tendency. On the other hand, the
AAG values between wild-type and mutant systems showed
a good reproducibility tendency for both the MMGBSA and the
MMPBSA protocol without the entropic component and with
short MD simulations of about 25 ns. The results indicate that
mutations close to the binding site do not require conforma-
tional rearrangement to reach a good experimental AAG
tendency. On the other hand, the two docking programs
explored failed to reproduce experimental AG and AAG
tendencies, corroborating the necessity of MMGBSA or
MMPBSA methods to reproduce experimental tendencies.
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