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Artificial Neural Networks (NN) are already heavily involved in methods and applications for frequent tasks in
the field of computational chemistry such as representation of potential energy surfaces (PES) and
spectroscopic predictions. This perspective provides an overview of the foundations of neural network-
based full-dimensional potential energy surfaces, their architectures, underlying concepts, their
representation and applications to chemical systems. Methods for data generation and training
procedures for PES construction are discussed and means for error assessment and refinement through
transfer learning are presented. A selection of recent results illustrates the latest improvements regarding

accuracy of PES representations and system size limitations in dynamics simulations, but also NN
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1 Introduction

The in silico modeling of chemical and biological processes at
a molecular level is of central importance in today's research
and will be crucial for future challenges of mankind." The
modeling often requires a trade-off between accuracy and
computational cost: quantum chemical calculations (e.g. ab
initio molecular dynamics), at a high level of theory, can be very
accurate but also come at a high computational cost rendering
the approach impractical except for rather small molecules.
Empirical force fields, on the other hand, provide a computa-
tionally advantageous approach that scales well with system size
but the possibility to carry out quantitative studies is limited
due to the assumptions underlying their formulation. Thus,
computationally efficient and accurate modelling techniques
are required for quantitative molecular simulations.?

In this regard, Machine Learning (ML) techniques have
emerged as a powerful tool to satisfy such demands for force
field models which are limited, in principle, by the accuracy of
ab initio methods and allow an efficiency approaching that of
empirical force fields.> Motivated by the advances in computa-
tional chemistry techniques and the continuous growth of the
performance of computer hardware (Moore's law*), ML is
becoming a daily tool for modeling molecules and materials. By
definition, ML methods are data-driven algorithms based on
statistical learning theory with the aim of generating numerical
methods that generalize to new data, not used in the learning
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process.>® This capability renders ML methods highly appealing
for modelling molecular systems. It even reaches levels where
some authors believe that the use of ML techniques will
constitute the “fourth paradigm of science”,” bridging the gap
from atomic-scale molecular properties towards macroscopic
properties of materials®® and one of the drivers for a revolution
of the simulation techniques of matter." The enthusiasm is
reflected in the appearance of an extensive number of ML
models and their application in computational chemistry.

Some of the most important publications have focused on
the study of potential energy surfaces (PESs), which contain all
the information about the many-body interactions of a molec-
ular system including stable and metastable structures.” At the
same time, it is possible to extract a considerable amount of
information from PESs including the atomic forces driving the
dynamics of molecular systems, reactions and structural tran-
sitions, and atomic vibrations."> Additionally, it has been
proposed that the chemical information contained in a chem-
ical bond, therefore in the PES, can help in the exploration of
chemical space.” In a recent work," it was found that the
exploration of chemical space can be improved by adding
adequate information from the configurational space repre-
sented by the PES.

Over the past several decades several ML-based methods
have been used to represent continuous PESs.****7 While
a number of those are briefly mentioned below, the focus of the
present work is on NN-based approaches. Kernel-based
methods provide an efficient solution to highly non-linear
optimization problems' by finding a representation of the
problem which encodes the distribution of the data in

© 2023 The Author(s). Published by the Royal Society of Chemistry
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a complete, unique and efficient way." There is a large number
of possible representations of chemical space that can be used
in kernel methods. Examples include Coulomb Matrices,' Bag
of Bonds (BoB),* Histograms of Distance, Angles and Dihedrals
(HDAD),** Spectrum of London and Axilrod-Teller-Muto
(SLATM),** Faber-Christensen-Huang-von Lilienfeld (FCHL)*
and Smooth Overlap of Atomic Positions (SOAP).>* A compre-
hensive review of representations for kernel and non-kernel
methods can be found in ref. 25. It should be noted that vari-
ations of kernel methods, such as for Gaussian processes
which assume a Bayesian/probabilistic point of view for the
solution of the problem or the reproducing kernel Hilbert space
(RKHS) method**® which uses polynomials as support func-
tions have been extensively discussed in the literature. While
the remainder of the perspective is mainly dedicated to NN-
based approaches, many alternative interpolation and repre-
sentation methods for PES construction exist. These include,
e.g. modified Shepard interpolation,* (interpolative) moving
least-squares,** permutationally invariant polynomial (PIP)
PESs by least-squares fitting,** or least absolute shrinkage and
selection operator (LASSO) constrained least-squares.* Several
of these approaches have been recently described, reviewed and
compared.*?**3¢

NNs are inspired by the biological model of the intricate
networks formed by the brain and how information is passed.*”
The ideas underlying NNs date back to 1960 when “the per-
ceptron” was presented by Rosenblatt.*® However, computa-
tional and theoretical limitations inhibited the development of
NNs.>** It was not until 1970 with the development of the
automatic differentiation and the introduction of back-
propagation®! that NN models continued to develop. Still, large
scale applications were rare until the beginning of the 21st
century when considerably more powerful computer hardware
became available. In chemistry, the application of NN models
dates back to 1990s with first applications in analytical and
medicinal chemistry.*>** Regarding PES representation, the first
application of NNs can be tracked back to the same decade.****
Nowadays, NNs are the most common ones from the field of ML
models for the use in chemistry-related applications that are
focused on the generation and study of PESs. Some examples of
popular NN-based schemes for PES fitting include the High
Dimensional Neural Network (HDNN) method,***” Deep Tensor
Neural Network (DTNN),*® SchNet,* ANL*® or PhysNet,”* among
others.

The purpose of the present perspective is to provide a birds-
eye view and an outlook into the conception, generation and use
of NN based PESs for the exploration of chemical systems.
Additionally, we will present some of the current challenges in
the development and application of NN models for the study of
PESs. The remainder of the present work is structured as
follows. A brief introduction to the theoretical background of
PESs and NNs is provided in Section 2. Section 3 discusses
existing NN architectures with emphasis on structural infor-
mation and current developments in the field. Section 4
describes the construction of a PES from the initial sampling to
the validation and refinement of the generated models and
Section 5 discusses knowledge transfer that allows obtaining
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PESs at high levels of theory with less data. Selected applica-
tions for chemical systems showcasing the concepts introduced
and including NN models in established atomistic dynamics
models are described in Section 6. Applications of NN models
that skip dynamics simulation to predict physical observables
are shown in Section 7. Section 8 describes some of the current
challenges that we consider critical for the development and
enhancement of the current models and the field in general,
followed by a short conclusion.

2 Theoretical background

This section introduces the concept of PESs, the principles
underlying NN, their building blocks, such as dense layers and
activation functions. A more in-depth overview of descriptors
for chemical structures and representative examples of
frequently used neural network potentials (NNPs) is given in the
next section. In terms of nomenclature, italic symbols denote
scalars or functions and bold symbols are n — dimensional
tensors (n = 1) with the special case of a one-dimensional
spatial vector (e.g. position or distance) denoted as italic
symbol with vector arrow.

2.1 Potential energy surfaces

The energetics of a molecular system can be described by
solving the electronic Schrodinger Equation (SE). Unfortu-
nately, the SE can only be solved exactly for simple, single-
electron atomic systems. In order to obtain solutions for
many-electron systems, it is necessary to introduce approxi-
mations. The Born-Oppenheimer approximation (BOA),** also
called the most important approximation in quantum chem-
istry,>® assumes that the coupling between the nuclear and
electronic motion can be neglected because the mass of the
nuclei is several orders of magnitude larger than the mass of the
electrons. Under this assumption, it is possible to rewrite the
total wavefunction ¥, which is a solution of the SE, as the
product of a nuclear wavefunction x(R) with nuclear positions R
and the electronic wavefunction y(r;R) with electron coordi-
nates r for a fixed configuration of nuclear positions

¥(r.R) = Y(r:;R)-x(R). (1)

As a consequence, the electronic wavefunction can be ob-
tained by solving the electronic time-independent SE:

I:Ie‘//)\(r; R) = |:Te + I}ne + I}ee:| ll/)(l',R) = GZ(R)d//\(r;R) (2)

Here, H, is the electronic (spin-free) Hamiltonian describing
the kinetic energy of the electrons T, the Coulomb interaction
between the nuclear and electron charges Ve and the electron-
electron interaction V... The solution is the electronic wave-
function y; and electronic energy ¢, for the electronic state A.
The so-called adiabatic PES of an atomic system E;°(R) in
electronic state A constitutes an effective potential for the
nuclear dynamics. It is obtained by the sum of the Coulomb
repulsion V;,,, between the nuclei with nuclear charge Z; for the
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total number of atoms N, and the respective electronic energy at
the associated nuclear positions.>*

E}°(R) = Vin(R) + €(R) ®3)

Eqn (3) defines a PES as a (3N — 6) — dimensional function
that can be approximated as an analytical function which is,
however, a challenging task. Often, one can only report low-
dimensional cuts of such high-dimensional hypersurfaces and
one example is shown in Fig. 1. Alternatively, eqn (3) suggests
that there should be a mapping between the total electronic
energy of a molecular system and the combination of position
of the nuclei and the set of nuclear charges {Zi}ﬁ-il. This is the
starting point for a ML-based approach described in the
following.

PESs lie at the heart of computational chemistry.* From the
relationship between structure and potential energy E, it is
possible to derive many molecular properties by taking deriva-
tives with respect to a perturbation such as atomic positions R,
an external electric ¢ or magnetic field %’), which require
additional coupling terms in the Hamiltonian and an analytical
representation of the PES.>* Following this, a general response
property takes the form

n+m-+1 E

— i 4)

Property « ;
IR'GE 0%

where n, m, [ indicate the order of the derivative with respect to
the perturbation. Derivatives of eqn (4) provide, e.g., the forces
F = —0E/dR that constitute the foundation of MD simulations
and structure optimization schemes. The second derivatives
0’E/JR® gives access to the Hessian matrix from which the
harmonic frequencies of molecular vibrations can be obtained.
Other properties such as the dipole moment (& = —6E/6?) or
the molecular polarizability (@ = —0°E/d& ) are directly

Energy (kcal/mol)
o=

w ®

Fig.1 Atwo-dimensional PES for the dialanine molecule calculated at
the MP2 level with the 6-31G** basis set along dihedral angles @ and
W. A representation of the molecule (ball and stick) indicating the
dihedral angles (&, ¥) calculated is given as well. The bottom gives the
projection of the 2D PES.
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related to experimental observables such as the Infrared (IR) or
Raman spectra.*® Mixed derivatives also provide IR absorption
intensities (GZE/G@)(?R) or the optical rotation in circular
dichroism (9*E/9 €0%).

Given the versatility and usefulness of PESs, a wealth of
approaches to construct PESs have been designed over the years
and new ML schemes are proposed with high frequency. Espe-
cially NNs have been shown to be general function approx-
imators®”*® by the universal approximation theorem® and
hence seem particularly useful to learn intricate relationships
such as the PES or even external perturbations.

2.2 Artificial neural networks

Artificial NNs (NNs, henceforth) represent a family of computer
algorithms and form a subgroup of ML. Nowadays, NNs are
applied in diverse areas including, among others, health care,*
medical imaging,** self-driving cars,** high-energy physics,*
particle physics and cosmology,* genetics,” chemical
discovery,®® reaction planning.®”

Typically, a NN consists of an input layer, a predefined
number of hidden layers and an output layer (see Fig. 2A). Deep
NNs comprise a larger number of hidden layers while a NN with
only one or two hidden layers is a shallow NN. Each layer
contains a defined number of nodes (or neurons) that connect
to the nodes of the following layer and each connection is
associated with weights and biases.

The elementary units of NNs are so-called dense layers,
which linearly transform an input vector x to an output vector y
according to

y=Wx+b. (5)

Here, W = {w;}/7* and b = {b;}1., are the weights (a matrix) and
biases (a vector),® M is the dimension of the input and N the
number of nodes. The combination of a dense layer with
a nonlinear activation function (Fig. 2B) transforms the input x
to an output y that serves as “input” to the following (hidden)
layer.

h; =o(Wx + b)) (6)

Modelling non-linear relationships requires the combina-
tion of at least two dense layers with an activation function ¢
according to

Yy = Wi1o(Wx + b)) + by = Wiih; + by (7)

While such shallow architectures are in principle capable of
modelling any functional relationship, deeper variants thereof
are usually preferred due to improved performance and
parameter-efficiency.®*”> The functional form of the NN is
characterized by the number of layers L and number of nodes N
in a given layer. With increasing L and N the functional form
becomes more flexible, however, overfitting requires careful
attention since the obtained form has no underlying physical
meaning.” A fully connected deep NN is given by the following
relation

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig.2 Neural network and its building blocks. (A) Schematic of a NN model with an input layer (green), N hidden layers (blue) and an output layer
(red). (B) Illustration of a node inside the hidden layers. Bottom right (C): examples of common activation functions.

v =Wea(WE ! oo (W, (oWo,x+10) + b)) ) +bL)
+b}
(8)

which is usually followed by a linear transformation in the final
output layer to yield the prediction y;.;. If the NN is used to
construct a PES, a chemical descriptor x is mapped onto one or
multiple scalar values y = {V}, which are the energies of one or
several electronic states for an atomic configuration.

As mentioned above, the flexibility and power of a NN is
related to the number of layers and nodes but the ability to
obtain highly non-linear relationships between inputs and
outputs is a consequence of the use of appropriate activation
functions (Fig. 2C). Activation functions usually satisfy partic-
ular mathematical properties, including differentiability
(crucial for computing forces or vibrational frequencies)’ and
smoothness, that simplifies the optimization of the model and
increasing the quality of the prediction of energy and forces.”

Besides the architecture of a NN, the actual training (or
“learning”) step is important, too. Training comprises the
parameter fitting process of the weights and biases to match the
prediction y(x) to the reference results t for a set of Ny, data
points. The accuracy of the fit is measured by monitoring a loss
function % which has the general form:”

LS ) — " + o ©)

© 2023 The Author(s). Published by the Royal Society of Chemistry

The value of m in eqn (9) mostly takes the value m =1 or 2 (L,
or L, norm) and w can be a regularization term that helps to
improve the generalizability of the model and to prevent over-
fitting (i.e. the model is fitted perfectly against training data
losing generalizability). Different loss functions for fitting NNs
can be used as well.”® In general, the loss function is highly
nonlinear and is minimized iteratively by a gradient descent
algorithm which, preferably, can find the best solution despite
potentially many local minima.*® For PES fitting, convergence
behaviour and accuracy can be improved by including addi-
tional information such as atomic forces or dipole moments (or
other properties of the system) in the loss function.

3 Neural networks for potential
energy surfaces

The use of NNs to represent PESs of molecular systems started
in the 1990s. However, initially it was only possible to include
a few degrees of freedom.*>””"** Applicability and transferability
of NNs to larger systems and with different system composi-
tions were improved by the approach proposed by Behler and
Parrinello who decomposed the total energy of a system into
atomic contributions*®

(10)
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Here, N is the total number of atoms and E; is the energy of atom
i that can be predicted by one or multiple NNs (e.g. one for each
atomic element). The inputs are local, atom-centered descrip-
tors that encode the local chemical environment around atom i.
Rooted in eqn (10), the so-called high-dimensional NNP
(HDNNP),**** was introduced and followed by further
models.*7*%3¢518279 Tt js important to note that most of the
commonly used models are based on the decomposition of the
energy in atomic contributions, although models that represent
the energy as the sum of bond energies have also been
proposed.””” In the following, we will focus on NNs that
decompose the potential energy into atomic contributions.

3.1 Descriptors

All NNs are based on a local representation of the chemical
environment to correctly predict the reference data.>****** Such
representations require descriptors that, most importantly, are
(i) invariant with respect to transformations including trans-
lation, rotation and permutation of same elements, (ii) unique
by showing changes when transformation that modify the pre-
dicted property are applied and (iii) continuous and differentiable
with respect to the atomic coordinates to determine forces for
molecular simulations.'*>'** Based on the type of local repre-
sentation that incorporates all the conditions above, NNPs can
be classified into two major categories: those with predefined
and those with learnable descriptors.*

3.1.1 Predefined descriptors. Encoding the atomic envi-
ronment by descriptors that fulfill the previously described
characteristics has been a challenge since the early beginnings
of the development of NN models and it is still an area of active
development. Some of the requirements for a “good” descriptor
can be matched with simple transformations of the Cartesian
atom positions. For example, rotational and translational
invariance can be obtained by using internal coordinates.
However, permutational invariance is more difficult to incor-
porate. A solution to this problem is the use of PIPs** as input
for a NNP, which are still extensively used for small molecule
PESs.'®™° Other solutions are based on using symmetrized
input coordinates or symmetry incorporated in the NN.'**

A better solution to the problems described above was found
with predefined descriptors introduced by Behler and Parrinello
in 2007 with the development of the HDNNP,*0:47:50:81,84,90,92,93
These descriptors, termed atom-centered symmetry functions
(ACSF)*""'* or variations®™** thereof are the prevalent predefined
descriptors for NNPs in the literature.

Originally, the local chemical environment of atom 17 is
encoded by sets of radial- and angular-type symmetry functions
G4 and G for each element or element combination of
atomsj and k individually. A modified version of Gastegger and
coworkers, on the other hand, combines them linearly with
a weighting factor depending on the respective atoms' element
number Z; and Z;.'*?

11,104

Gldd 177 R,, s)_ fc (le)

Zg

/#:l

(11)
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In this version of weighted ACSF (WACSF) R;;, Ri, R, are pair
distances and the angle 6;; is defined between the vectors
Rj and Ry. The contributions to the symmetry function are
limited by the cutoff function f,(R) which monotonically
decrease from 1 to 0 at the cutoff separation R.. The parameter
A€ {—1,1} determines the maxima of the cosine term at f;; = 0°
or 180°. The resolution and size of the descriptor are deter-
mined by the choice and number of combinations of hyper-
parameters 1 and R; for the radial symmetry functions G*? as
well as ¢ and 7 for the angular symmetry functions
G#"%. The functions g(Z;) and h(Z;,Z;) are the element-dependent
weighting functions for which even simple expressions such as
&(Z) = Z;and h(Z;,Zi) = ZiZ yielded satisfactory results."*

Regarding the ACSF representation, each descriptor is
a vector for which the length depends on combinations of
the sizes of respective hyperparameters n, Ry and { with size
Npar but also the number of different chemical elements N
in the atomic system. These are Ny, N for radial-type and
Npar*Nel(Nej + 1)/2 for angular-type symmetry functions. The size
of the radial- and angular-type wACSF simply scales by the
respective combination of the hyperparameters. HDNNPs with
descriptor sizes of 32 wACSFs, 220 ACSFs and 35 ACSFs were
trained using the energies of the molecules in the QM9 data-
base with up to five elements. The mean absolute error of the
validation and test set is reported even lower for the model with
WACSFs (1.84 and 1.83 kcal mol™*, respectively) than the 220
ACSFs (2.49 and 2.39 kcal mol™') and 35 ACSFs (7.57 and
7.40 kecal mol 1).112

ACSFs commonly apply expensive trigonometric cutoff
functions but computationally much cheaper polynomial cutoff
functions can be designed for the same functionality."** Further
improvement in the performance is achieved by replacing the
exponential function and cosine in radial- and angular-type
symmetry function with dedicated polynomials with essen-
tially no loss in accuracy.”™ The speedup is shown by MD
simulations of 360 water molecules using a HDNNP that
performs about 1.8 times faster with polynomial symmetry and
cutoff functions than with the original ACSFs."**

Another type of fixed descriptors was introduced by E and
coworkers in their Deep Potential (DP) model.**'** These are
based on the construction of a local coordinate frame which
assures the required invariances. Once the positions of the
atoms are transformed by a translation and rotational matrix,
the local coordinates can be used to construct the descriptor
based on radial and/or angular information. However, this
descriptor cannot ensure smoothness because of the uncer-
tainty in the choice of the local frame that can lead to discon-
tinuities."® E and coworkers proposed the Deep Potential-
Smooth Edition (DP-SE) model*"” to solve the mentioned issue
by enforcing continuity of the descriptor by multiplying the

© 2023 The Author(s). Published by the Royal Society of Chemistry
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local coordinate system with a continuous and differentiable
function and modifying the embedding matrix to recover two-
body and three-body terms of the descriptor.*¢

In addition to the ACSF functions and the DP descriptor,
there are other descriptors that utilize the concept of neigh-
bourhood density functions."®'*® For this type of descriptors
the information about the local environment of atom 7 up to
a cutoff radius is represented by a density function p(R;)
depending on the nuclear charge Z; and position R; of neigh-
bouring atoms j.

pR) = > Z(IIR~Ryl) (13)

BR[| = Re

Here, 6 is the Dirac delta function. In order to use this function
in a NNP, it is necessary to expand p(R;) in a basis set of fixed
dimension. For Gaussian-type basis functions, the ACSF func-
tions are obtained."® Other interesting expansions include the
use of Zernike basis sets in which radial basis functions and
spherical harmonics polynomials are used.""’
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A major problem of using predefined descriptors is that it
requires a certain degree of knowledge to define the hyper-
parameters appropriately.*”-5%#1:8490:9293 Eyen though some of the
hyperparameters can be optimized during the training as
well,®°* a poor choice of hyperparameters can lead to limited
resolution of certain atomic displacements with quasi-constant
descriptors and degenerate values of the predicted energy for
different geometrical structures.”*>*** The disadvantages of
fixed descriptors motivated the emergence of NNPs which
directly learn a suitable representation of atomic positions and
element types.>”*

3.1.2 Learnable descriptors. The concept of learnable
122 In

descriptors originates from graph neural networks.
general, atoms are regarded as nodes (not to be confused with
nodes of NN layers), each associated with a feature vector, which
are connected to their neighbouring atoms within a cutoff
sphere by so-called edges. Information between the nodes is
passed along the edges over multiple iterations to encode the
necessary chemical interaction.

{ )

1 1

1 1

1 1

. (11 7 11) . (1 5 11)
! 1276 12 ' 4’6’ 12
1 1

1 1

L

Fig. 3 Message-passing principle visualized on a chain of three nodes with initial feature vectors ht=° representing the colour fraction red,
green, blue on the mixed colour of node i. The message operation M, corresponds to the addition of the feature vectors within in cutoff range
and the update operation U, corresponds to an addition of httt=ht+ m!and scaling that sum{h ™ = 1. Although it is outside the cutoff radius
R., after two iterations the feature vector of node 1 (h,'=2) contains a fraction (information) of the initial feature vector from node 3 (visualized by

the blue coloured path).

© 2023 The Author(s). Published by the Royal Society of Chemistry
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The feature vectors of each node with length N¢ are randomly
initialized as a function of the atoms' nuclear charge, that is
iteratively updated by a message vector encrypting structural
information and feature vectors of the atoms within a cutoff
sphere by passing through interaction layers which ensure the
required invariances. Fig. 3 visualizes the message passing
principle on a linear chain of nodes (atoms) with distance R,
where the feature vector 4, at each iteration step ¢ corresponds
to the ratio of the colours red, green and blue to the mixed
colour. In each interaction layer, the feature vectors of node i
and connected nodes within cutoff range R. are combined by
a message function M, (addition) to the message vector m;’. Note
that this message function does not encode distances R. The
message vector m;’ is combined with the feature vector 4, by an
update function U, (addition and scaling to linear sum of 1) to
form a refined feature vector #,/"" that contains information of
the surrounding nodes. Message and update functions usually
include the transformation of feature with update vectors by
a NN. For an iteration step ¢ > 1, this approach allows that
information from nodes that are outside of the cutoff range can
still be incorporated in a feature vector of a given node i indi-
rectly. This means that for the case illustrated in Fig. 3, the
feature vector h;"=2 of node 1 contains a fraction of blue colour
after two iterations (1/12) that is passed from node 3 via node 2.

Many of the more recently developed NNPs*®>1:85-8%94796 apply
such atom-wise feature vector approaches and are called
message-passing NNs (MPNNs).">*'>* Depending on the MPNN
model, the atomic feature vectors of either the final iteration or
each iteration are passed to a specific NN and transformed into
the desired quantity (e.g. energy).

Feature vectors with higher number of elements Ny and more
complex message and update functions including bond
distance and direction dependencies allow higher resolution of
the structural encoding. In common NNPs, the number of
elements in the feature vectors Ny range from about 64 to 128
per element. A larger number might increase the risk of over-
fitting.*® Similarly, a larger number of message passing itera-
tions improves the representation of the structural features but
the potential energy accuracy usually shows sufficient satura-
tion after three iteration (¢ = 3).%%5%79

3.2 Architectures

Given that the field of NNPs is very active, it is impossible to
describe all the available NN architectures. Hence this section is
not a comprehensive review of all possible architectures but
rather a more history-guided view of architectures and what
functionalities were included in subsequent development steps.

Initial models use NNs as a method for the fitting of PES only
(no forces)."* These models were limited to small molecules in
gas phase and were fitted to energies of ab initio calculations via
a many-body expansion'® or a high-dimensional model repre-
sentation.’” Therefore, these models take energies and posi-
tions to predict coefficients for a defined functional form. These
models already achieved spectroscopic accuracy for small
molecules.”
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The introduction of the HDNNP with the concept of
decomposing the molecular energy into atomic contributions
(eqn (10)) changes the paradigm of NNPs. A new challenge was
encoding the local environment information sufficiently well
for an accurate energy prediction that lead to the two main
approaches of predefined or learnable descriptors. The main
development of NN architectures with predefined descriptors
goes towards more sophisticated descriptors to encode atom-
centered properties which are then provided to standard fully-
connected feed-forward NNs.'?® NN architectures with learn-
able descriptors and the MPNN approach differ in their
message and update functions within an interactions layer.

The first MPNN proposed was the deep tensor neural
network (DTNN)* by Schiitt and coworkers that had been
further improved into the, to this day, popular SchNet model.*
An interaction layer in SchNet includes so called continuous-
filter convolutional layers that have already been used in
image or sound processing.*® A combination of the popular
predefined ACSF descriptors and learnable ones was proposed
by Isayev and coworkers and their atoms-in-molecule NN model
(AIMNet).*” Modified ACSF descriptors from the ANI architec-
ture were used for initialization of atomic structure feature
vectors, combined with atomic information feature vectors and
passed through the interaction layer.

Although these models already achieve good accuracy, long
range interactions between chemical compounds can only
contribute to the total energy if the information is included in
or passed to the descriptor by a sufficiently long cutoff range R,.
Systems with strong electrostatic interactions, especially with
highly polar or ionic chemical species, requires larger cutoffs
but at the cost of higher computational demand.>* One solution
is to add a Coulomb term to the atomic energy contributions
which includes electrostatic interactions between atomic
charges g predicted by the NN model.

e g
R YR PNy

j
i=1 ij

(14)

N —

The earliest NN model using eqn (14) was introduced by
Artrith and Behler in 2011 that trains a separate NN with
reference charges from a Hirshfeld population analysis.”
Another approach is applied by the TensorMol model that
predict atom charges by fitting the ab initio and physically
determinable molecular dipole moment to the predicted one
computed by the atom charges.”

Additional physically motivated interactions, such as disper-
sion interactions, were also included in the TensorMol model but
have been employed in PhysNet, too. PhysNet is based on the
MPNN architecture and was developed by Unke and Meuwly.** It
does not only add an energy contribution from the DFT-D3
dispersion correction scheme' but also modifies eqn (14) by
applying a damping function that smoothly damps Coulomb
interactions for small atom distances to avoid singularities

| &
E:Z Ef+§Z%l]j'X(Rij) + Eps.

i=1 Jj>i

(15)
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Ep; is the DFT-D3 dispersion correction and the damping
function x(R;) is defined as:

1
AR+ 1

A continuous behaviour is ensured by the cutoff function
B(Ry)-

Although adding a Coulomb term to NNPs improves the
description of long range interactions while the atomic charges
still depend on the local chemical environment.'® However,
chemical systems are inherently non-local. Therefore, the
approximation breaks down for systems with changes in the
total charge state (i.e. ionization, protonation or deprotona-
tion), electronic delocalization or spin density rearrange-
ments.** These effects are difficult to capture with NN
architectures which model changes in the atom charges by local
perturbations.

The most recent generation of NNPs addresses the problem
of non-local charge transfer by using different strategies. The
first work dedicated to the issue of charge equilibration was the
“charge equilibration via NN technique” (CENT) developed by
Ghasemi and coworkers.®> The CENT algorithm equilibrates the
charge density to minimize the electrostatic energy which
depends on environment-dependent atomic electronegativity
and hardness besides the charge-charge interaction. Inspired
by CENT, Behler and coworkers introduced their fourth gener-
ation HDNNP (4G-HDNNP) model where NNs are trained to
predict environment-dependent atomic electronegativities
(constant element-specific hardness) and the charge equilibra-
tion yields the reference atomic charges.”” In a second training
step, NNs provided with ACSFs and the atomic charge infor-
mation are trained to predict the short-range atomic energy
contributions which sum up with the electrostatics to the
correct reference energy and forces.

SpookyNet is a MPNN model and introduced by Unke and
coworkers that treats the problem of non-locality by creating an
embedding for charges and spin.** It is capable to predict
molecular systems with different spins and charged states as
provided in the reference data set within one single model. The
general idea of predicting PESs of chemical systems for
different electronic states and their coupling strength within
one model is an area of active research.”® One model in this
direction that can be mentioned is SchNarc** that combines the
SchNet model with the surface hopping including arbitrary
couplings (SHARC)*? code.

So far, we have been reporting the effort to improve the
models accuracy by introducing more physically motivated
interactions. However, current developments for MPNNs focus
on passing spatial directions between atoms to the NN that
allow the prediction of atom-centered tensorial properties such
as atomic polarizability.******** Providing solely distance infor-
mation inherently ensures translational and rotational invari-
ance for atom-centered scalar properties (predictions do not
change with respect to, e.g., rotation of the molecule). The
challenge with directional information is rotational

1

X(Ry) = ¢(2Ry) + (1 - ¢(2Ry)) R (16)
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equivariance which means that predicted atom-centered direc-
tional properties f(R) keep its amplitude but change in direc-
tion equivalent to a rotation .4 of the molecular coordinates R.

— -

Af(R) =/(AR) (17)

MPNNs that encode directional information (directional
message passing) and fulfill eqn (17) are called equivariant NNs
(ENNS).135'136

ENNSs have been proven to be data-efficient and capable of
providing better predictions of tensorial quantities (i.e. dipole,
quadrupole moments) than invariant models. ENN models with
different modifications were suggested to include directional
information and assure equivariance. Some of them are
PaiNN,** NeuqIP,*® and NewtonNet.**” Still one of the best per-
forming ENNs on the QM9 data set is DimeNet, where rotational
equivariance is achieved by representing the local chemical
environment of an atom by spherical 2D Fourier-Bessel basis
with radial basis functions to represent bond distances and
spherical basis functions to represent angles between bonds
towards neighbouring atoms.™*

Many NN potentials are often additionally designed for
application on periodic systems including solids and crystals,*
or were updated to support periodicity.*® Others are specifically
designed to train on reference data to predict formation energy,
lattice parameters of the unit cells and other material properties
directly from the structural fingerprint.”****° The application of
ML (including NNs) to materials has been discussed in detail in
recent reviews'*''** and is not further considered in the present
work.

The field of NNs in computational chemistry has been and
will continue to be steadily developed to improve the capability
and accuracy in predicting reference data. In consequence, the
selection of a model should be done based on the problem at
hand, the availability of the code, its user friendliness, and the
computational resources available. It might not be necessary to
use the most sophisticated model if the task does not require
that level of description. Most of the previously described
architectures are based on open source NN frameworks like
Tensorflow'* or PyTorch'® which open the possibility to
modifications and enhancements of the described models.

4 Construction of PESs

The collection of reference structures is an essential step in
constructing a molecular PES, especially since the underlying
functional form of the potential is not based on physical laws
and is inferred purely from reference data.'® Besides the
unfavourable scaling of the configurational space with system
size, the computational expense associated with a reference
point is usually high and depends on the level of quantum
chemical theory used. Thus, the number of expensive and non-
trivial ab initio calculations needs to be restricted to a minimum
and optimally covers the configurational space most important/
representative (this is an open question in itself) to the problem
at hand.*" Ultimately, the configurational space that is covered
by the reference data set defines the boundaries of application
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Fig. 4 The process of PES generation: the configurational space of a chemical system (here malonaldehyde) is sampled to obtain an initial set of
geometries. A quantum chemical ab initio calculation is carried out for each geometry to obtain reference data (including energies). After a NNP
is fitted to the initial reference data set the resulting PES is validated thoroughly to find holes. New ab initio calculations are run for scarcely
sampled regions and a new NNP is fitted. These steps are repeated until the PES has the required quality before the PES can be used to study the

chemical system.

of the NNP. Therefore, knowing the application(s) for which the
PES will be used is essential when generating the data.
Reference data sets can be generated using a multitude of
strategies which often requires the generation of an initial data
set and refining it iteratively. This iterative process is illustrated
in Fig. 4. Commonly employed strategies for structure
sampling, which are often combined, will be described in the
following. In addition to methods reviewed here, other possi-
bilities include virtual reality sampling,****° Boltzmann
machines®* or sampling based on the AMONS approach.?

4.1 Initial sampling

4.1.1 Ab Initio MD. Ab initio MD (AIMD) constitutes an
established means for generating reference data that samples
a part of the configuration space of a chemical system.'* The
temperature T (or the velocities that are drawn from a Maxwell-
Boltzmann distribution corresponding to 7) at which the
simulation is run determines which part of a PES is sampled,
how strongly the molecular geometries are distorted and
whether or not reaction barriers are crossed. If the chemical
system under investigation has multiple isomers, AIMD simu-
lations can be run for all of them (partly) avoiding the need of
running a long simulation that samples all isomers. Ideally, the
sampling temperature 7 is chosen to be higher than the
temperature at which the NNP is used. In other words, if the
reference data set that was used to train a NNP was generated at
T = 300 K the NNP should not be used to run simulations at 7>
300 K because (most likely) configurations outside of the
reference data set are visited leading to a breakdown of the NNP.
Thus, running AIMD at a sufficiently high sampling tempera-
ture is needed to guarantee that the production runs do not
enter the extrapolation regime, while the lower energy config-
urations are still sampled.®

The obvious disadvantage of running AIMD at the (final)
level of theory at which the reference data set is generated is the
high computational cost. This either limits the level of quantum
chemical rigor or it limits the extent to which the configura-
tional space can be sampled.*** Alternatively, configurations can
be generated using sampling by proxy.® This approach involves
running AIMD at a lower level of theory to sample the PES and
then perform single point ab initio -calculations for

36 | Digital Discovery, 2023, 2, 28-58

a representative set of geometries at a higher level. This ideally
requires that the topologies of the lower and the higher level of
theory are similar to guarantee that the “correct” configurations
are sampled. If the two PESs differ too much it is possible that
the regions explored on the lower level PES do not correspond to
relevant regions on the high level PES (which might happen if
a force field is used to guide the sampling).>*** As a conse-
quence, the NNP could reach an extrapolation regime and
exhibit a nonphysical behaviour.

Reactive chemical systems are usually associated with rare
events. When NNPs are used to study reactive systems it is, thus,
not sufficient to sample the reactant and product states since
the reaction path (which is rarely visited in a simulation) needs
to be part of the reference data set as well. TS regions can be
sampled using AIMD by employing a scheme similar to
umbrella sampling,'** in which geometries around the TS are
sampled by harmonically biasing the molecule towards the TS.

A simulation technique that is related to MD simulations
and can be used to generate configurations for the construction
or refinement of a reference data set is metadynamics.'*
Converse to ordinary MD, metadynamics uses history depen-
dent biasing potentials to artificially increase the potential of
visited regions on the PES and enhance the sampling of higher
energy regions.

4.1.2 Normal mode sampling. Normal mode sampling
(NMS) was proposed to enable accelerated yet chemically/
physically relevant sampling of a PES.*® As the name suggests,
NMS uses the normal modes of vibration of a molecule to
generate molecular geometries that cover configurational space
at which single point calculations can be carried out at a desired
level of theory. NMS is carried out as follows:* (i) the molecule
of interest is optimized at a desired level of theory (ii) normal
mode coordinates Q = {gq;} (i.e. eigenvectors of the mass-
weighted Hessian) and corresponding force constants K = {k;}
are determined (with i € [1,N; =3N — 5] ori € [1,N; = 3N — 6],
for linear and non-linear molecules, respectively) (iii) Ng

uniformly distributed random numbers ¢; with Zcie [0,1] are
i

generated (iv) displacements for each normal mode are deter-

. [3CiNakpT . .
mined as R; = + ZTAb with N, and k&, being the Avogadro
i

number and the Boltzmann constant, respectively. This

© 2023 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d2dd00102k

Open Access Article. Published on 21 2022. Downloaded on 04/08/2024 14:25:12.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Perspective

displacement is obtained by scaling an energy with

3 . . . .
Ci|Er = EC’NAka and setting it equal to a harmonic potential

1
[U = Eer}. (v) Determine the sign of the displacement R;

randomly using a Bernoulli distribution to sample the attractive
and repulsive parts of the potential (vi) the normalized normal
mode coordinates g; are scaled using R; giving a new set of
coordinates.

Unlike the consecutive snapshots of an AIMD, NMS yields
uncorrelated molecular configurations in a very efficient
manner. Nonetheless, the sampling is based on a harmonic
approximation of the potential well and usually only geometries
close to the respective equilibrium structures are obtained. For
larger displacements and large amplitude motions, the
harmonic approximation breaks down. Thus, NMS is often used
in conjunction with alternative sampling strategies or followed
by adaptive sampling.?

4.1.3 Diffusion Monte Carlo. Diffusion Monte Carlo (DMC)
can be used to determine the zero-point energy (ZPE) and
wavefunction of a molecule by appropriately, yet randomly,
sampling the configurational space.” The foundation of DMC
is the similarity of the imaginary time SE

2

hw = j—mvzll’(x, T) — [V(x) - Eo] ¥(x,t) (18)
with the diffusion equation with a sink term allowing random-
walk simulations to estimate the ZPE and wavefunction.™®
Given a molecule, a set of walkers is initialized (usually at some
energy minimum), propagated randomly at each time step r and
used to represent the nuclear wavefunction. In one dimension,
the displacement assigned to each of the walkers is given by**®

[hAT
Xepar = X¢ + —r
m

where x, corresponds to coordinates at time step t, At is the
time step of the random-walk simulation, m corresponds to an
atomic mass and r is a random number drawn from a Gaussian
distribution, A (0,1). Once the walkers are randomly displaced
following eqn (19), their potential energy E; is determined.
Based on E; with respect to a reference energy E,, a walker might
stay alive, give birth to a new walker or can be killed following
the probabilities below:

(19)

o (E—E)At

(E; > E,) (20)

(21)

Once the probabilities have been determined, the dead
walkers have been eliminated and new walkers are initialized, E,
is adjusted following

Pdeath =1-

~(E~E)At _ |

Prirn = € (E;<E)

(22)

The averaged potential energy of the alive walkers is given by
(V[1)), a governs the fluctuation in the number of walkers and is
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a parameter, and N(t) and N(0) are the number of alive walkers
at time step 7 and 0, respectively. The ZPE is then approximated
as the average of E, over all imaginary time.">*3¢

The geometries sampled using the DMC scheme are physically
meaningful (the ensemble of walkers represents the nuclear
ground state wavefunction) and efficiently obtained by only using
energies. In comparison to AIMD, the DMC scheme has the
advantage that it samples configurations up to the ZPE, which
becomes larger for bigger molecules. The (quantum) exploration
of a PES using DMC is typically done after a first PES has been
fitted and is used to refine the reference data set.* DMC has been
proposed as a tool to detect holes (regions on a PES that have
large negative energies with respect to the global minimum) in
ML based PESs.* These holes are caused by insufficient data in
specific regions in configuration space, for which a NNP without
any underlying physical knowledge leads to artifacts. As an
adaptation, DMC with artificially reduced masses has been
proposed to locate holes more efficiently due to the larger random
displacements (which are proportional to 1/+/m, see eqn (19)).

4.2 Validation and refinement of the data set

These holes were found to exhibit energies with large negative
values.'® After an initial PES is fitted, a thorough evaluation of the
PES to discover any holes is needed. For this reason, the family of
active learning schemes which comprise algorithms to systemat-
ically generate reference data sets have gained considerable
attention.” The necessity for more elaborate sampling schemes
is related to the impracticality of an exhaustive sampling of a PES
and the high computational cost of extensive ab initio calcula-
tions. Typically, a first PES is trained on reference data based on
representative configurations. This is followed by suitably
extending the data set in an iterative fashion in which similar
configurations are avoided and configurations from underrepre-
sented regions of the PES are found and included into the data
set."® This approach is usually termed adaptive sampling (or on-
the-fly ML).****** Therefore, a requirement for ML models to
autonomously select new reference data is the availability of an
uncertainty estimation. If a defined uncertainty threshold is
exceeded for a particular configuration electronic structure
calculations are performed and used to extend the reference data.

4.2.1 Uncertainty estimation. Given the breadth of NN
methods (or ML methods in general), various approaches for
uncertainty estimation exist. One of the most popular methods
is query-by-committee."”® This approach involves training/
fitting a number of individual NNPs (e.g. starting from
different parameter initialization or on different splits of the
reference data set) and using the ensemble for predictions. In
regions of the configuration space where sufficient data is
available the predictions of the different models agree well.
Conversely, the predictions for configurations for scarcely
sampled regions will diverge rapidly, and can be used to
autonomously select new configurations. A possible uncertainty
metric for NNPs is'*?

o=\ (57

i=1

(23)
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with N being the number of individual models, E; an individual
energy prediction and the average of all energy predictions,
E. Similar metrics can certainly also be adapted to other
properties including the forces acting on the atoms o:***

« 1 - a -2
opt = m;”Fi - (24)

The use of query-by-committee requires the training of
several independent models which incurs a high computational
cost to obtain the uncertainty. In addition to this, it has been
found that the uncertainty estimated by NNP ensembles are
often overconfident.'**> As a solution to this bottleneck, methods
that obtain the uncertainty in a single evaluation have been
proposed. Some us’® recently introduced a modification of the
PhysNet architecture that allows the calculation of the uncer-
tainty on the prediction through a method called deep eviden-
tial regression.'® Using this method, the energy distribution of
the system is represented with a Gaussian and its uncertainty as
a gamma distribution. With this approach, it is possible to
obtain the prediction and the uncertainty of the prediction in
one single calculation. Other possibilities for the prediction of
uncertainties include the use of Bayesian NNs, however, they
imply a larger computational cost than the previously described
methods.

4.2.2 Elaborate sampling techniques. With the availability
of an uncertainty measure and an initial PES, geometries from
underrepresented regions on the PESs can easily be identified:
the initial PES is used to guide the sampling of new structures
(by MD, DMC, metadynamics, ...) and if the uncertainty
measure (e.g. og) exceeds a threshold, ab initio calculations are
performed for the geometry and the data set is suitably
extended. These more systematic approaches of generating
reference data sets offer a number of advantages over random
methods. Since including similar configurations is avoided and
new data is only added for scarcely sampled regions, the
approaches are clearly more data efficient requiring less
expensive quantum chemical computations. Additionally, since
the NNP that is used to guide the sampling of new geometries is
topologically very similar to the ab initio PES it is assured that
configurations, that are similar to the configurations visited in
AIMDs, are sampled. The quality of the uncertainty estimate is
crucial for all adaptive sampling schemes. While an over-
confident estimate leads to an inaccurate PES (in the worst
case holes are overlooked) an under-confident estimate leads to
the inclusion of redundant configuration and unnecessary,
computationally expensive ab initio calculations. Zipoli and
coworkers report that adding new configurations based on
uncertainty estimation from an ensemble of NNPs does not
show significant differences from random sampling.'®*
Contrary to that, Pernot'** and Zheng et al.*® find that querying
the uncertainties from ensembles are well suited for outlier
detection and adaptive sampling. This clearly indicates the
necessity for future studies exploring more elaborate sampling
techniques.
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5 Knowledge transfer

Most ML algorithms (foremost deep learning) heavily rely on
abundant training data to extract the underlying patterns in
very complex data. This severe data dependence is one of the
major drawbacks to deep learning.'*® The collection of big data
sets is a cumbersome and expensive task impeding the gener-
ation of large, high-quality data sets. While this time-
consuming endeavor might be possible for some areas of
application (e.g. manually labeling images for an image recog-
nition task) insufficient training data/data scarcity is an inevi-
table problem in other domains (e.g. drug discovery).*****” Thus,
transfer learning (TL)'****® and related approaches including A-
ML,"**"7® dual-level Shepard interpolation,"”* multifidelity
learning”* or the multilevel grid combination technique'’® have
been proposed to circumvent the severe data dependence/
scarcity or expensive labeling efforts by knowledge transfer.
Thereby, exploiting the knowledge acquired by solving one task
(a source task) to solve a new, related task (a target task) forms
its common ground.*®®

Besides addressing the data scarcity dilemma, knowledge
transfer also helps reducing training times, computer resources
(which both are significant for large data sets/models'’*) and
their energy consumption. Recently, the CO, emission for
training common natural language processing (NLP) models
has been studied, which, depending on their size, can exceed
a car's lifetime CO, emission.'”®

Traditional ML problems usually proceed in a domain D and
try to solve a specific task 7. In the context of molecular PESs,
the domain D is a set of molecular configurations (defined by
{R,Z}) with their associated descriptors (see Section 3.1) and the
task involves the prediction of the corresponding energies
E;®°(R) (eqn (3)). Considering two domains (a source D and
a target domain Dy) and two learning tasks (75 and 7) from the
perspective of traditional ML, two separate machines are
trained to solve the two tasks (see Fig. 5). In contrast, TL
circumvents learning to solve both tasks from scratch by facil-
itating the learning of 7 with knowledge from 7 (see Fig. 5).
Here, the domains and/or tasks can differ for TL giving rise to
three distinct cases.'*”**® (i) The domains are the same, Ds = Dy,
while the tasks differ, 75 # 7. This situation can, e.g., be found
for TL between molecular properties (inductive learning) (ii) the
domains differ, Dy#D;, while the tasks remain the same
Ts = T:. This corresponds to transductive learning and can be
found for TL between different molecular data sets. (iii) Both,
the domains and the tasks differ, D; # D, and 7 3# 7. All three
subsettings have in common that they try to learn/improve the
target predictive function fi(-) of 7 in D using the knowledge
in Ds and 7 which is the definition of TL.*®

The training of NNPs typically requires thousands to tens of
thousands of ab initio calculations even for moderately sized
molecules, which often limits the quantum chemical calcula-
tions to the level of density functional theory (DFT). If highly
accurate molecular properties are needed, researchers usually
resort to the coupled cluster with perturbative triples (CCSD(T))
level of theory. This “gold standard” - CCSD(T) - scales as N’

© 2023 The Author(s). Published by the Royal Society of Chemistry
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[llustration of the difference between traditional ML and TL approaches. In traditional ML, two different models are trained for two

different tasks (74 and ), although the two tasks might be related (e.g. predicting the MP2 and the CCSD(T) energy of a given configuration). In
TL, however, the knowledge gained from solving a source task () in the source domain (%s) is used to solve a target task (7) (e.g. by fine-
tuning the weights and biases). In the context of PES generation, typically a (global) PES is developed at a low level of theory and then transfer
leaned with less data calculated at a considerable higher level of theory (e.g. CCSD(T)).

176 which makes

(with N being the number of basis functions),
calculating energies and forces for large data sets and larger
molecules impractical. Thus, TL*>"7**® and related A-learning
approaches’*'*"'%3 gained a lot of attention in recent years and
were shown to be data and cost effective alternatives to the
“brute force” approach in quantum chemistry: a low level PES
based on a large data set of cheap reference data (e.g. DFT) is
generated first, which then is used to obtain a high level PES
based on few, well chosen high level of theory (e.g. CCSD(T))

data points.

5.1 Deep transfer learning

Deep TL'¥ combines deep NN architectures with TL among
which fine-tuning is the most commonly used technique. Fine-
tuning, which is a parameter-based TL technique, assumes that
the weights and biases of a deep NN that was trained on
a source task 75 contain useful information to solve a (related)
target task 7. In the context of molecular PESs, a lower level
(LL) PES is obtained by training a deep NN on a large data set of
energies/gradients determined at a low level of theory. Then, the
parameters (weights and biases) of the LL PES are migrated to
the target model for which they serve as the initialization (a
good initial guess). The target model (i.e. the transfer learned
model) is then fine-tuned (retrained) on a small data set of high-
level of theory energies/gradients. The fine-tuning technique
that migrates the parameters of a LL PES to a high level (HL) PES
is shown in Fig. 5.

There are certain subtleties when applying TL in practice. TL
can be performed without any further restriction to the fine-
tuning for which all weights and biases are allowed to adapt to
the new HL data. Conversely, it is possible to fix the weights and
biases of particular layers. Usually, the first hidden layers are
fixed and only the last layer(s) are allowed to adjust (alternatively

© 2023 The Author(s). Published by the Royal Society of Chemistry

a new, final layer can be added keeping the LL model as is). Fixing
a portion of the NN parameters limits its flexibility but might help
in reducing overfitting for small data sets. Recently, TL in
combination with NNs was used for structure-based virtual
screenings of proteins.** The authors found that fine-tuning
a full NN worked best for kinases, proteases and nuclear
proteins, however, fine-tuning only the final layer yielded better
results for G-protein-coupled receptors (GPCRs). They speculate
that this is caused by the limited and less diverse data for GPCR
targets. Besides the need to avoid overfitting, it is imaginable that
for NNs that employ learnable descriptors of the atomic/
molecular configuration it might be beneficial to freeze the
parameters that are used to learn the descriptor for the fine-
tuning step. Instead of freezing a portion of the layers, fine-
tuning with differential learning rates’ (i.e. having different
learning rates for different parts of the NN) could allow minimal
changes to early layers (e.g. where the descriptors are learned) and
larger adjustments to the later layers. Although empirical rules
are followed in the community, accepted criteria for choosing TL
methods are essentially nonexistent.'®”

5.2 A-Machine learning

The A-machine learning approach was developed in the context
of kernel-based methods and is motivated by the fact that the
heaviest burden in quantum chemical calculations is the
determination of a tiny energy contribution to a (approximate)
total energy."”® The approximate energy often is able to describe
the general chemistry/physics of a given system, while the
determination of the “A” comes at a tremendous computational
cost due to adverse scaling with system size of correlated elec-
tronic structure methods. For a molecular property, the A-ML
prediction is modeled as a LL value plus a correction towards
a HL value following
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N
PHL(RHL) = AEII:(RLL) = P,LL(RLL) + Z Oé,'k(RLL, R,) (25)
i=1

i=

The high level property Py, (e.g. enthalpy Hyyp) at a relaxed
molecular geometry (Ryy;) is approximated as a related property
P'LL (Ri) (e.g. energy Epp) obtained at the LL plus a correction
term'”° that is obtained from ML (reference 170 employed Slater
type basis functions k and kernel ridge regression (KRR) to
obtain the regression coefficients «;). The A-ML approach as
defined in eqn (25) allows modeling changes in level of theory
(e.g. DFT — CCSD(T)), molecular property (e.g. energy —
enthalpy) and molecular geometry. Although the A-ML
approach is often used in conjunction with kernel-based
methods, a correction PES A (i.e. Vy, = Vi + A) can also be
learned using NNs.'®® The resulting HL PES Vyy, can either be
used directly (requiring the evaluation of two models) or can be
used as a proxy to generate a larger data set for a final training
containing many, though approximate, HL points."”®® As is
common for the ML field, different flavours of A-ML
exist.146,170,172,173,131,182,1867189

Recent work proposed “A-DFT” that uses Kohn-Sham (KS)
electron densities p*° to correct the DFT energy towards, e.g.,
a coupled cluster energy following

E = EPT[p"] + AEp™] (26)
using KRR.™¢ While the formalism of DFT and wavefunction
based approaches (such as CCSD(T)) differ radically (also note
that the CCSD(T) density is not routinely calculated and not
needed to obtain the CCSD(T) energy), the “learnability” of DFT
and CCSD(T) energies from KS densities was studied alongside
the A — DFT approach. The authors find starting from p*®
learning DFT and CCSD(T) energies directly is associated with
approximately the same effort. However, learning AE[p"®] was
more efficient and yielded lower out-of-sample errors at smaller
training set sizes.'*

6 Exemplary applications of NNPs in
molecular simulations

The high flexibility of NNs allows the representation of PESs for
a wide range of chemical systems and reactions as long as
a sufficiently large reference data set is available from ab initio
computations at a sufficient level of theory to correctly describe
the physics in the system. This section presents several typical
applications of NNPs in molecular simulations.

6.1 Gas phase spectroscopy

In a recent review, Manzhos and Carrington report advances of
NNPs and applications in classical and quantum dynamics of
small and reactive systems.'” They point out that for small
systems modern NNPs are still outperformed by permutation-
ally invariant polynomial (PIP****) methods in terms of PES
fitting error which, however, does not translate to significant
deviations in computed observables such as vibrational
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frequencies.”® As an example, the RMSE of a Gaussian process
regression (GPR) model potential (0.017 kcal mol™*, 5.98 cm ™)
is half of that of a NNP (0.034 kcal mol™*, 12.03 cm ') with
regard to 120 000 reference points for formaldehyde. However,
the RMSE of the first 50 (100) predicted vibrational frequency
levels with respect to their reference is 0.43 cm ™" (0.82 cm ™) for
the NN and 0.46 cm ™" (0.82 cm ™) for the GPR potential. When
the potential models are fitted to a subset of reference points
with high significance for the vibrational frequency prediction,
the RMSE of the first 50 (100) predicted vibrational frequency
levels differs substantially with 0.21 cm™" (0.30 cm ") for the
NN and only 0.04 cm ™" (0.06 cm ") for the GPR model.*?51%*

The application of NNPs to determine anharmonic vibra-
tional frequencies in combination with TL has been studied in
ref. 179. For that purpose, a NN of the PhysNet type is trained on
ab initio energies, forces and dipole moments and employed in
second order vibrational perturbation theory (VPT2) calcula-
tions that are directly compared to their experimental coun-
terpart. A total of eight molecules are studied from which the
results for formaldehyde are shown in Fig. 6A as it allows a good
comparison of a TL scheme with a model that is trained “from
scratch” due to its small size. A PhysNet model that is trained on
MP2 data (NNyp,) yields errors up to 40 cm ™" with respect to the
experimental values, while the CCSD(T)-F12 model (NN¢csp(r-
r12) has a maximum deviation of ~20 cm™". Both NNyp, and
NNccsperyr12 Were trained on roughly 3400 ab initio energies,
forces and dipole moments, for which the computation at the
CCSD(T)-F12 level of theory requires high computational effort.
In contrast, 6% of the CCSD(T)-F12 reference points are suffi-
cient to transfer learn a NNyp, model and achieve an accuracy
that is within ~7 em™" of NNcgspryei2 trained on the full
reference set from scratch.

6.2 Condensed phase simulations

Even though NNPs scale more favourably with the number of
atoms, the construction of a reference data set for molecular
compounds still requires several thousand ab initio calcula-
tions. As NNPs are mathematical representations of the input
data and are uninformed about the underlying physics gov-
erning intermolecular interactions, their extrapolation capa-
bilities are rather limited. This also concerns the transferability
of NNPs optimized on smaller molecular clusters towards larger
clusters or even periodic systems. This issue has been addressed
recently, for instance, by Késtner and coworkers on liquid water
and Marx and coworkers on protonated water clusters using
NNP8.194,195

Késtner and coworkers train a Gaussian moment NN (GM-
NN) model on DFT rev-PBE-D3 reference data of water cluster
configurations produced by ab initio MD simulation at 150, 300
and 800 K, and study its transferability to a periodic bulk water
system with 64 molecules from ab initio MD simulation at 400
K.***"¢ The GM-NN model trained on clusters containing 30 to
126 water molecules can reproduce the total energy of the
periodic bulk water system well, although with a slightly
broader error distribution as for the model trained on the
periodic system. The potential energy predicted by the cluster

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig.6 Schematic representation of the exemplary applications of NNPs. A: performance of a NNPs based on MP2/aVTZ and CCSD(T)-F12/aVTZ-
F12 with respect to experiment. NNPs trained from scratch are compared to the more-data efficient TL approach and the anharmonic
frequencies are obtained from VPT2 calculations.*”® B: double proton transfer in formic acid dimer from mixed ML/MM/MD simulations.**? The
time series next to the molecular structure shows the variation in the background solvent field depending on time across one proton transfer
event. C: 1D cut of the PES of the C—H bond in formaldehyde (upper right) calculated with the PhysNet evidential model (blue curve). Red bars
indicate the predicted variance by the model. The green distribution shows the logarithm of the probability distribution of the distances covered
by the training set. D: the two-dimensional projection of a NN-trained PES of CCSD(T) quality for proton transfer in malonaldehyde. The white
and black traces are the instanton and minimum energy paths, and the PES is used to calculate tunneling splittings.**®

model for the periodic systems are also arbitrarily shifted
mainly due to the differences in the non-periodic and periodic
computational system setup. MD simulation of a periodic water
box at 300 K with the model potentials trained on clusters
(cluster model) and periodic reference data (bulk model)
produce radial distribution function that agree well and X-ray
diffraction spectra are close to experimental ones. The
computed water molecule self-diffusion coefficients and equi-
librium density from simulations with the cluster model are
about 18% larger (2.15-10"° m* s™" and 1.02 g cm>) than with
the bulk model (1.82-10° m*s " and 0.86 g cm ™ ) but closer to
the respective experimental values (2.41-10°° m”> s~ ' and
1.00 ¢ cm™®). Detached from the evaluation of the rev-PBE-D3
method and MD setup to accurately reproduce experimental
water properties, the case study shows transferability of the
cluster model to reproduce bulk properties. However, the
authors mention that further studies are necessary to get
insights into the deviation in the computed properties of both
models as both water cluster and periodic water system are
based on the same physical-mathematical description. Only
water molecules closer to the cluster surface experience
different strain energy than bulk water due to the lack of
bonding partners.

© 2023 The Author(s). Published by the Royal Society of Chemistry

Great transferability is also shown by Marx and coworkers
using a HDNNP model trained on protonated water cluster
H'(H,0), (n = 1-4) with up to four water molecules to repre-
senting the PES of a protonated water hexamer H'(H,0)e.7>%
The reference data for the protonated water clusters n = 1-4
were produced by an automatic fitting procedure that performs
DFT based ab initio MD and path integral MD (PIMD) simula-
tion at 1.67, 100 and 300 K to sample relevant configurations.
Within a repeated fitting procedure, holes in the reference data
set are detected by estimating the uncertainty as described in
section 4.2.1 or configurations were included where the local
descriptors (ACSFs) of configurations in the MD simulation
leave the range of the reference data set.”” A final data set is
created from reference data of the configurations computed at
CCSD(T*)-F12a/aug-cc-pVTZ level of theory. Extrapolation of the
NN model trained on the smaller cluster n = 1-4 to configura-
tion of the protonated water hexamer yields a mean absolute
energy error about three times higher than for the original
training data set that is 0.026, 0.031, 0.038 kcal mol ™" (0.11,
0.13, 0.16 kJ mol™') per atom against 0.007, 0.010,
0.012 keal mol " (0.03. 0.04, 0.05 k] mol ") per atom from the
sampling procedure at 1.67, 100 and 300 K, respectively.'*
Again, an arbitrary shift is added to the predicted energies of the
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hexamer to minimize the error between the predicted and the
reference energies. The ability to extrapolate is illustrated by
comparing the potential energy sequence for 25 fs between an
ab initio MD and the MD simulation using the NNP. It is further
noticeable, that the extrapolation towards the hexamer poten-
tial failed in PIMD simulations for which unphysical configu-
rations are reached if the NNP is trained only on tetramer
configurations (n = 4). The authors conclude that the trans-
ferability towards larger cluster sizes improves if smaller clus-
ters are included within the training data set.

6.3 Reaction rates

The reaction of methane with molecular oxygen is one of the
most fundamental but highly complex combustion processes
involving more than one hundred different reaction steps as
shown by experiments."® Zhu and Zhang report MD results of
the combustion reaction including 100 methane and 200
oxygen molecules at 3000 K simulated for 1 ns.*® They used the
DeepMD model potential that was fitted to reproduce 578731
reference DFT energies at the MN15 level of theory."*>** In their
simulation they detected 505 molecular species and 798
different reactions where 130 reaction steps are also reported
from experiments.”® A selection of computed reaction rates
deviates from experiment by up to two orders of magnitude, but
combustion reactions usually involve the formation of radical
species, that might require a non-adiabatic molecular dynamics
approach which are highly non-trivial.

Marquetand and coworkers applied the SchNarc approach to
investigate the photodissociation reaction of tyrosine that
shows a dissociation channel of a hydrogen radical with
a chemically non-intuitive path which is called roaming.***
Roaming was originally explored experimentally and computa-
tionally in formaldehyde by Bowman and coworkers in 2004 but
real-time experimental observation were not achieved until
2020.>°>? The NNP is learned to reproduce 29 energy values
and force values for electronic singlet and triplet states and 812
spin-orbit couplings. They simulated over 1000 trajectories of at
least one picosecond which, in comparison, would take over
eight years for ab initio MD simulation on a high-performance
computer. About 17% of the trajectories show the roaming of
the hydrogen atom in photoexcited tyrosine that lead to a higher
ratio of subsequent further fragmentation than in non-roaming
trajectories. This application marks a major step forward
towards atomistic simulations of photoexcitation reactions in
larger molecules like proteins that lead to further insight in,
e.g., photosynthesis, harmful photodegradation or drug
designing for phototherapy.

6.4 Hybrid ML/MM simulations of solvated systems

The use of NNPs as force fields promotes the performance of
MD simulations in comparison to the ab initio MD counterpart.
But even if the computational cost of NNPs scales by a similar
factor of ~O(N""%) as empirical force fields do, due to their more
compact and explicit functional form empirical force fields are
considerably more efficient in general. Thus, a significant
speed-up in MD simulations can be achieved by decomposing
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the force field into a contribution from a NNP (ML part) for, e.g.,
a solute of interests or a reactive center in a protein, an
empirical force field (MM part) for solvent molecules or protein
backbone structures, and a coupling (or embedding) between
the ML and MM parts. This approach is well known and applied
in QM/MM MD simulations.>**

One straightforward approach was pursued to investigate the
double proton transfer reaction in cyclic formic acid dimers and
the electrostatic impact of a water solvent on the reaction rate as
shown in Fig. 6B."> Here, a PhysNet model was trained with
a reference data set including formic acid dimers and mono-
mers in the gas phase at MP2/aug-cc-pVTZ level of theory. The
model accurately reproduces the energies, forces and molecular
dipole by assigning atom centered charges.”* The interaction
potential between formic acid and the TIP3P water solvent
consists of Lennard-Jones terms with parameters from the
CGenFF** force field and electrostatic interactions between the
atom charges from the TIP3P>* water atoms and the configu-
rational dependent PhysNet charges of the formic acid atoms.
The advantage is the lower computational cost to produce
trajectories with lengths of multiple nanoseconds to statistically
sample the raw double proton transfer events with a rate of just
1 ns~ ! at 350 K. Furthermore, the NNP fit inherently includes
the coupling of the reactive potential path of the proton transfer
with other structural dependencies such as the C-O bond order
of the acceptor and donor oxygen and the dimer dissociation
reaction into formic acid monomers. On the other hand, such
an approach does not include the mutual polarization of the
formic acid charges and the water solvent which, in the present
case, is however expected to be small. This is akin to
a mechanical embedding known from QM/MM schemes.?*”

Applications of electrostatic embedding in ML/MM simula-
tion are reported by Riniker and coworkers as well as Gastegger
and coworkers.”**** Here, the ML-MM interaction potential
includes the polarization of the ML system by the electric field
originating from the MM compounds. Riniker and coworkers
modified the HDNNP by providing two sets of local descriptors
for just ML solute atoms and surrounding MM solvent atoms,
separately. The model is trained to reproduce either the ML
atom potential and the electrostatic component of the ML-MM
atom interaction itself (pure ML/MM) or in accordance of the A-
learning approach an energy correction of both components to
improve from computational cheap tight-binding DFT result
towards more accurate reference data ((QM)ML/MM)."**2% This
approach demands larger reference data sets from QM calcu-
lations to sample solute configurations with different solvent
distribution where the solvent is represented as their respective
MM point charges. However, the A-learning (QM)ML/MM
approach applied to tight-binding DFT computations have
been shown to achieve higher accuracy even with fewer refer-
ence samples than the pure ML/MM model.

The accuracy is illustrated by running NPT simulations of S-
adenosylmethionate and retinoic acid in explicit water solvent
at 298 K and 1 bar using the pure ML/MM and the (QM)ML/MM
model for 5000 and 2000 integration steps of 0.5 fs, respectively,
and comparing it to reference QM/MM results.>® The mean
absolute error for the (QM)ML/MM model is up to one

© 2023 The Author(s). Published by the Royal Society of Chemistry
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magnitude lower with 1.4 kcal mol ' (5.8 k] mol ') and
12.6 kcal mol ™" (52.8 k] mol™") than the pure ML/MM model
with 4.3 kcal mol™" (18.1 kJ] mol™") and 17.9 kcal mol™*
(74.9 k] mol ). One integration step with the (QM)ML/MM
model takes less than a second on 1 CPU while the reference
QM/MM model at DFT BP86/def2-TZVP level is about 3
magnitudes slower with about 60 to 80 minutes on 4 CPUs. A
potential disadvantage of the (QM)ML/MM model is that certain
solute configurations at the tight-binding DFT level may fail to
converge or converge only slowly, e.g., during a reaction.

Gastegger and coworkers presented the FieldSchNet model,
a modification of the SchNet model that includes energy
contributions from interactions between predicted atomic
charges and dipoles, but also with an external field such as the
electric field originating from a set of point charges.*»** The
advantage of such elaborated models is the sensitivity of the
potential energy to changes in atomic positions, electric and
magnetic fields that enable the computation of response
properties such as forces, molecular dipole moments, polariz-
abilities, and atomic shielding tensors that are crucial for the
direct prediction of, e.g., IR, Raman and NMR spectra. As the
atomic charges and dipoles of the ML treated system respond to
the external field caused by MM atoms point charges, this
model is considered to be electrostatic embedding. Conse-
quently, it has the same requirement for additional sampling of
ML system configurations in different arrangements of MM
atomic point charges as the model of Riniker and coworkers
described above.>*®

For ethanol in vacuum, PIMD simulations with FieldSchNet
yield excellent agreement in terms of frequency shifts and
widths between predicted IR/Raman spectra and experimentally
measured ones. For liquid ethanol, IR spectra were predicted
from MD trajectories with an explicit ML/MM solvent model of
one ML treated ethanol molecule in a MM treated ethanol
solvent. The explicit ML/MM approach shows great agreement
with experimental IR spectra in the low frequency region and
a blue shift for the C-H and O-H stretch vibrations bands in the
high frequency range due to missing anharmonicity effects by
the MD approach. MD simulations with an implicit PCM
solvent model do not yield an IR spectra with significant
differences from gas phase spectra as it fails to capture
hydrogen bridging between ethanol molecules.?** However, the
applied ML/MM model still predicts the intermolecular ML-
MM potential between ML ethanol and the MM solvent by the
CGenFF** force field with fixed atomic charges. The imple-
mentation of the electrostatic interaction between predicted
atomic charges and dipoles by FieldSchNet and the MM point
charges is a highly non-trivial task and would further increase
the computational costs. It limits the application range to
systems where the ML-MM interaction potential is sufficiently
well described by the MM force field that may not work for
dynamics with complex configurational changes or chemical
reactions.

Electrostatic embedding in the QM/MM approach (and the
ML/MM approach)*® includes the QM-MM electrostatic inter-
action and the polarization of the QM system by the electric
field of the MM atoms but not vice versa. The highly expensive

© 2023 The Author(s). Published by the Royal Society of Chemistry
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task to approximate the polarization of the MM system by the
electric field of the QM system is part of polarizable embedding
schemes.”* An analogue for the hybrid ML/MM model is
developed Westermayr, Oostenbrink and coworkers with their
buffer region NN approach (BuRNN).”*> Here, a buffer region
around the ML atoms is defined by a cutoff sphere to select MM
atoms within the sphere. The ML and selected MM atoms are
the input to a modified SchNet model to predict the potential
energy between the ML atoms, the ML-MM interaction energy
and a polarization correction energy to the classical MM
potential of the MM atoms within the buffer sphere to match
reference potential data. The modified SchNet model also
predicts atomic point charges for the ML atoms and MM atoms
within the buffer region, which are used to compute the elec-
trostatic interaction to the remaining MM atoms in the system
outside the buffer region. The potential energy of the atoms in
the inner region are predicted by a modified SchNet model. As
for electrostatic embedding, potential energy and charge
distribution of the ML system are impacted by the MM atoms
within a buffer region and, additionally, interaction energy and
atomic charges of the respective MM atoms are impacted by the
ML system. A major disadvantage is the high computation cost
for the reference data set, that requires two quantum electronic
calculation for configuration samples of (1) the ML system and
MM atoms in the buffer region and (2) the MM atoms in the
buffer region alone to predict the polarization correction term.

The BuRNN approach was applied to a hexa-aqua iron(m)
complex simulated by a ML treated Fe** ion in a water solvent
described by the SPC model. A buffer region was defined by
a cutoff radius of 5 A around the Fe**. MD simulation of 10 ns
shows smooth diffusion of water molecules entering and
leaving the buffer region and reveal power spectra that match
the low frequency bands around 180, 310 and 500 cm ™'
observed in experiments very well. Radial and improper and
distributions between Fe*" and the oxygens of the coordinated
water match with distributions from QM/MM simulation with
electrostatic embedding and are within experimental
estimations.

All the presented applications show an active field of devel-
opments in hybrid ML/MM approaches towards accurate MD
simulation of solutes or reactive species in the presence of
a solvent. A major gain in computational efficiency and much
longer simulation times at comparable accuracy are achieved by
replacing QM methods with a NNP. However, the effort to
generate a reference data set that sufficiently samples the rele-
vant configurational space of the ML system in combination
with different solvent configuration depends significantly on
the embedding scheme. The simplest mechanical embedding
scheme only requires a converged NNP that predicts the total
energy, forces and the charges of the ML system in the gas phase
but it neglects polarization of the MM atoms.***> In comparison,
NNPs based on electrostatic embedding require additional
sampling with MM atom configurations included as point
charges. MD simulation using ML/MM approaches with elec-
trostatic embedding show great agreement with MD simulation
of respective QM/MM simulation at the same level of theory as
the reference data set.”*® The increase in the quality to describe
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the impact of the MM solvent on the properties of the ML
system is also demonstrated by accurate computational repro-
duction of experimental IR and Raman spectra.”” The most
complex polarization embedding scheme allows the most
complete description of the ML system with the MM environ-
ment, but requires more costly reference computations.**> Even
a QM/MM model using polarization embedding is significantly
more challenging in terms of computational effort and imple-
mentation than the electrostatic embedding schemes.*"*

7 Applications based on but beyond
PESs

Up to this point PESs were used in explicit simulations to
determine experimental observables from dynamics or Monte
Carlo simulations. However, quantum nuclear dynamics or
a statistically significant number of (quasi) classical MD simu-
lations and their analysis is often a computationally demanding
endeavor in itself. It would be desirable to determine, predict or
estimate observables from only a limited amount of such
explicit simulations and devise rapidly-to-evaluate models that
predict with confidence outcomes for arbitrary input. To set the
stage, the full characterization of all state-to-state cross sections
for reactive triatomic systems A + BC — AB + C is considered.
This problem involves ~10® transitions. Using QCT simula-
tions, convergence of each of the cross sections requires ~10°
independent trajectories to be run. Hence, for one collision
energy ~10'® QCT simulations would be required for a full
characterization of a reactive triatomic system. This is neither
desirable nor meaningful to do. Hence, despite the availability
of a full-dimensional NN-based or otherwise represented PES it
would be advantageous to reduce the computational burden of
explicitly sampling the PES in this case and the task is to extract
as much information as possible from only a limited number of
simulations.

The two problems considered further below concern the
prediction of final states or final state distributions for atom +
diatom reactions and predicting thermal rates for bimolecular
reactions. Both problems can, in principle, be solved accurately
for carefully chosen systems which provides the necessary
benchmark to extend the range of applicability of the
approaches described below to larger systems.

7.1 Final state distributions for atom + diatom reactions

Exhaustive enumeration and characterization of final state
distributions from bimolecular reactions is particularly relevant
in combustion and atmospheric re-entry (hypersonics). The
particular interest is rooted in need to devise more coarse-
grained models for the macroscopic (in space and time)
modeling of the chemistry and physics of reactive flows but
based on accurate microscopic information.****'* For atom +
diatom reactions (A + BC — AB + C) this involves complete
enumeration of all state-to-state reaction probabilities. As
mentioned above, this problem can - in principle - be addressed
by brute-force sampling. But this is neither practical nor
desirable.

44 | Digital Discovery, 2023, 2, 28-58

View Article Online

Perspective

For this reason, ML-based models were devised that allow to
either predict final states or final state distributions from discrete
initial states. From quasiclassical trajectory (QCT) simulations for
the N(*S) + NO(*TI) — O(’P) + N,(X- =) reaction the state-to-state
cross sections av,,-_,,,/j’(Et) as a function of the translational energy
E, were explicitly determined for 1232 initial ro-vibrational states
(v/) which amounted to ~10® QCT trajectories in total. This
compares with an estimated 10" QCT trajectories required for
brute-force sampling of the problem. This information was used
as input to train a NN together with features such as the internal
energy, the vibrational and rotation energy of the diatoms, or the
turning points of the diatoms.?** The resulting state-to-state (STS)
model is capable of predicting the cross section for a final state
given an initial collision energy, the vibrational state v of the
diatom and its rotational quantum number j. More recently, the
approach was extended to predict entire final state distributions
from discrete initial conditions, which led to the state-to-
distribution (STD) model.>*® Finally, it is also possible to devise
distribution-to-distribution (DTD) models.>"”

The prediction quality of STS, DTD, and STD models is
universally high and reaches a correlation coefficient R> ~ 0.98
or better between predicted and QCT-calculated reference da