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Palindromic sequence-induced specific and genetic functions
widely exist in biological systems. Nevertheless, the study of syn-
thetic palindromic sequence-defined polymers has received scarce
attention due to the challenge of efficient synthesis. Herein, we
Michael couplings
(CTMMC) as an efficient chemistry to access palindromic
sequences. Taking bromomaleimide as the synthon, the CTMMC

demonstrated cascade thiol-maleimide

enabled the construction of an array of palindromic sequences at
an accelerated growth rate via an iterative exponential growth
strategy. Moreover, owing to the synergetic cleavages of two C-S
bonds located in dithiosuccinimide linkages, the palindromic
sequences were easily readable (i.e., decipherable) by tandem mass
spectrometry. The CTMMC chemistry endowed structural versati-
lity and diversity to the palindromic sequences, thereby uncovering
many potential applications, such as anti-counterfeiting labeling
and item identification like artificial “DNA”".

Palindromic sequences represent a unique and important
class of sequence structures, which can be deciphered in
either the forward or backward direction.! In biological poly-
mers, palindromic sequences have been extensively explored.
For example, the double-stranded palindromic sequence
repeats are often associated with the restriction endonuclease
recognition site in the DNA of some bacteria. This discovery
creates the fundamental of the Clustered Regularly
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Interspaced ~ Short  Palindromic  Repeats  (CRISPR)
technology.”® Palindromic sequences are also frequently
observed in proteins as single strands, e.g. the palindromic
region AGAAAAGA (PrP113-120) in a prion, which dictate
various properties, such as increase of the binding effect, pro-
motion of aggregation, etc. (Fig. 1).”'* Despite the fact that it
is possible to create unique or improved properties/perform-
ances, man-made palindromic sequences are rarely explored
due to the challenge in their synthesis.

With regard to the efficient synthesis of sequence-defined
discrete polymers, the reasonable combination of an opti-
mized synthetic strategy and efficient chemistry is crucial."*™*
During the past years, significant progress on the synthetic
strategy of sequence-defined polymers has been made, includ-
ing solid-phase iterative synthesis,'®"® template approach,*
multicomponent reactions,>?* single unit monomer inser-
tion**** or even complex biomimetic molecular machines* >’
and iterative exponential growth (IEG) strategy.’®**° The IEG
strategy (also termed the iterative convergent/divergent strat-
egy) enabled fast chain growth in a “molecular doubling”
manner. However, for the construction of defined sequences,
IEG requires an efficient and orthogonal side chain installa-
tion during main chain growth."> On the other hand, several
robust and efficient reactions have been employed in these
strategies, e.g. copper catalyzed azide-alkyne cycloaddition
(CuAAC), sulfur-fluoride exchange reaction and thiol-ene
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Fig. 1 lllustration of the palindromic sequences of E. coli K12 and
SHaPrP 113-120, respectively.
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addition.?® To date, a typical strategy for constructing palindro-
mic sequence-defined polymers has been bidirectional growth.
By repeating the process of deprotection-coupling®° or
orthogonal coupling®®™** from a double functionalized core,
two uniform sequence units could symmetrically add to both
sides of the precursor in one bidirectional growth cycle; thus
the palindromic sequence could be realized. Besides, in 2015,
Johnson et al. demonstrated the elegant production of a palin-
dromic sequence by the combination of IEG with side-chain
functionalization via CuAAC-induced chain growth.*’ The
esterification or nucleophilic substitution-based side-chain
functionalization enabled fast sequence construction via an
IEG strategy. To meet sophisticated and demanding appli-
cation scenarios, especially to mimic the functions of biologi-
cal polymers, polymer chemists always pursue more efficient,
metal-free, biocompatible and eco-friendly chemistry to access
discrete and exquisite polymers. It has been well documented
that thiol-maleimide Michael coupling (TMMC) is a “click”
reaction which is widely used for bio-conjugation, crosslink
and surface modification for biomedical materials,**>* owing
to its mild, efficient and physiology-compatible features. In
our group, TMMC together with the IEG strategy has well
demonstrated its robustness and versatility in constructing dis-
crete polymers (Scheme 1a).>>’ For constructing symmetrical
palindromic sequences, the IEG strategy could be a better
option due to its exponential growth manner. Nevertheless,
how to conveniently install varied side chains during fast main
chain growth still remains a challenge.

It was noted that thiol and bromomaleimide could undergo
cascade thiol-maleimide Michael couplings (CTMMC) in an
efficient way.’® °° Therefore, it was envisioned that bromoma-
leimide could successively couple with two thiols effectively,
enabling both chain growth and side chain installation.
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Scheme 1 (a) Previous work: discrete polymers by TMMC. (b) This
work: palindromic sequences built by CTMMC.
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Herein, by applying the IEG strategy, we demonstrated the
CTMMC-enabled fast access to palindromic sequences.
Through the CTMMC-integrated IEG strategy, the 1°* TMMC
allowed the main chain growth and the 2" TMMC installed
the pre-determined thiol-containing side chains. Variable side
chains could be deliberately installed during chain growth,
thus creating sequences on demand (Scheme 1b). This work
opens a new way to create palindromic sequences for mimick-
ing biological polymers and enriches the toolbox for the ulti-
mate target of polymer synthesis, ie., the development of
novel polymeric materials with superior performance.

With inherent electron deficiency, bromomaleimide
(3-BrMI) can readily react with thiol via TMMC.*® The reaction
produced a bromide-substituted succinimide moiety, which
was highly unstable and converted to maleimide by the
removal of hydrogen bromide. The freshly generated male-
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Fig. 2 (a) The schematic illustration of CTMMC. (b) In situ *H NMR
monitoring of CTMMC (300 MHz, CDCls). (c) The kinetic plot of CTMMC
in 1.0 h (inset) and 25 h.
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imide was active toward the 2" TMMC with a thiol-containing
molecule, giving the dithiosuccinimide (DTS) moiety.®® This
cascade thiol-maleimide Michael couplings (CTMMC) realized
the efficient installation of side chains (2" TMMC) during
main chain growth (1% TMMC). Considering the high
efficiency of the cascade reaction,*™®” CTMMC was proposed
as an ideal chemistry for the construction of palindromic
sequences via the iterative exponential growth (IEG) strategy.
To verify the cascade behaviour, monomer 1 possessed a
furan-protected bromomaleimide group and an acetyl-pro-
tected thiol group was designed (Scheme S1t). The orthogonal
and quantitative deprotections produced the thiol-capped
1-SH and maleimide-capped 1-MA, respectively (Scheme S2
and Fig. S8, S9t), the degree of deprotection was monitored by
"H NMR. The CTMMC between 1-MA (1.0 equiv.) and 1-SH (2.2
equiv.) catalysed by triethylamine was explored in deutero-
chloroform and monitored by NMR spectrometry (Fig. 2a).
Surprisingly, the 1% TMMC was completed within only 8 min
and produced intermediate 2 exclusively, determined by the
disappearance of the resonance at § 6.87 (ppm) related to
3-BrMI (marked in green, Fig. 2b). The intermediate 2-SBr was
not observed due to its high activity.®® The 2" TMMC pro-
ceeded smoothly and afforded 3 with ~70% yield after 25 h, as
determined by NMR (Fig. 2b). The reaction kinetic plots of
both 1°° and 2" TMMC clearly demonstrated the cascade
manner (Fig. 2c¢). The structures of 2 and 3 were fully con-
firmed by 'H NMR (Fig. $10 and S11+).

Starting from monomer 1, an array of palindromic
sequences was built via the CTMMC-integrated IEG approach.
For example, as described in Fig. 2a, intermediate 2 was gener-
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Fig. 3 (a) Synthetic illustration of the palindromic sequence constructed
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ated from the TMMC (iii) between 1-SH (1.2 equiv.) and 1-MA
(1.0 equiv.) (Fig. 3a). After about 30 minutes of the 1°* TMMC,
benzyl mercaptan (B, 2.0 equiv. to ensure the conversion of the
intermediate) was added in situ and reacted with 2 to form B
via the 2" TMMC (iv). With B as the precursor, repeating i to
iv and using hexyl mercaptan (A) as the thiol agent during the
2" TMMLC (iv), the palindromic sequence of BAB was created.
In the next cycle, the sequence of BABCBAB was produced by
incorporating p-isopropyl thiophenol (C) as the thiol agent
during the 2"¢ TMMC. By tailored installation of different thiol
agents during the 2" TMMC, other palindromic sequences of
AAAAAAA, ABABABA and ABADABA were successfully created
in an IEG manner, which were validated by NMR, SEC and
MALDI-TOF mass spectrometry (Fig. S12-S25 and S40-S537).
Taking BABCBAB as an example, the SEC traces including its
discrete precursors, ie., 2, B, BOB, BAB, BABOBAB and
BABCBAB, are presented in Fig. 4a. Unimodal, symmetrical
and narrow distributed SEC traces as well as an apparent mole-
cular weight shift could be observed. The MALDI-TOF mass
spectra of the discrete oligomers BOB, BAB, BABOBAB and
BABCBAB are shown in Fig. 4b. A single MS peak signal agree-
ing well with the calculated value of the molecular mass ([M —
Furan + Na]') was evidenced. The proton NMR spectrum of
BABCBARB is shown in Fig. 4c. Apparently, all the characteristic
resonance could be perfectly assigned to the theoretical one.
Specifically, the resonance of the protons of protected species
at both terminals, i.e., furan and acetyl groups, could be easily
identified at § 6.64 (a), 5.26 (b) and 2.32 (g) ppm, implying the
high fidelity of terminal protections. Furthermore, the com-
plete disappearance of the proton resonance at § 6.02 ppm
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(b) Illustration of the target palindromic sequences by installing different

thiols before the 2"¢ TMMC in each IEG cycle. The symbol @ indicates the furan-protected bromomaleimide end group, and the symbol « indicates

the acetyl-protected thiol end group.
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Fig. 4 (a) SEC traces of discrete precursors with palindromic sequences. THF was used as an eluent. (b) MALDI-TOF mass spectra of BOB, BAB,
BABOBAB and BABCBAB. (c) The *H NMR spectrum of BABCBAB recorded in CDCls (Bruker, 300 MHz, TMS).

belonging to the maleimide moiety resulting from the 1%
TMMC indicated the success of the 2" TMMC. The resonance
between & 3.70-3.65 (d), 3.44 (e) and 3.36-3.30 (f) ppm verified
the formation of DTS through CTMMC. The results of the
MALDI-TOF mass spectrometry and isolated yields are pre-
sented in Table 1 for a clear illustration. All the results con-
firmed the structural uniformity of these palindromic
sequences, which were built in reasonable yields. It should be
noted that CTMMC was not limited to the construction of
palindromic sequences. We proved that more complex
sequences were prepared by iterative and cross growth
(Scheme S147).

To mimic the biological palindromic sequence, the syn-
thetic palindromic sequence should be readable or decipher-
able for fulfilling potential applications.”®® The sequencing by
tandem mass spectrometry (MS/MS) is popularly considered as
a versatile and valid tool to read the sequence information
stored in both biological and synthetic polymers. During MS/

Table 1 MALDI-TOF MS characterization and yields of palindromic
sequence-defined polymers

Palindromic [M — Furan + M/Zexp. Error Yield”
sequence Na]' m/zcq, (Da) (Da) (Da) (%)
AAA 1343.438 1343.856 +0.418 59.8
ABA 1349.391 1349.499 +0.108 54.7
BAB 1355.344 1355.690 +0.346 51.8
AAAAAAA 2660.031 2660.401 +0.370 33.6
ABABABA 2677.891 2678.046 +0.155 23.6
BABCBAB 2717.828 2718.203 +0.375 26.3
ABADABA 2771.965 2772.322 +0.357 18.4

“Isolated yield: Over a CTMMC-integrated IEG cycle (4 steps in total)
and purified by column chromatography over silica gel.

This journal is © The Royal Society of Chemistry 2020

MS sequencing, the metastable polymer chains are fragmented
into many sequence-induced species upon the imposed
energy, such as a pulsed electric field or inert gas
collision.”””’> The m/z analysis of the fragmented species
enables the restoration of the sequence information. However,
due to similar bond energies of the covalent bonds of the poly-
meric chain, the MS/MS sequencing frequently induced many
irregular and secondary chain fragmentations, giving rise to
many interfering and unattributable MS signals.”>’* On the
other hand, both fragment pieces from the cleavage of each
chemical bond are detected by MS/MS, which could further
perturb the sequencing process. Therefore, for “easy-to-read”
and predictable MS/MS signals, the selective cleavage of
chemical bonds in repeat units to afford legible sequence-
related MS signals is highly desirable. For example, Lutz et al.
cleverly incorporated wieldy C-ON alkoxyamine bonds in each
repeating unit to provide a clear and easily readable MS/MS
fragmentation pattern.'®”>’® In order to probe the infor-
mation readability of these palindromic sequences, the tetra-
mers were subjected to MS/MS sequencing. Excitingly, the MS/
MS spectra of tetramers showed clear fragmentation patterns,
which were possibly due to the controlled cleavages on the C-S
bonds of the DTS moiety (Fig. S56, S57 and Tables S2, S37). To
confirm this hypothesis, the computer calculation of the bond
dissociation energy (BDE) was performed via the density func-
tional theory method (Table S1t). According to the results, a
synergetic cleavage mechanism was proposed (Fig. S547).
Specifically, during MALDI-TOF MS/MS sequencing, the clea-
vage of one C-S bond attached to the succinimide group gave
rise to a carbon radical species. The driving force of stabiliz-
ation causes the BDE of the adjacent C-S bond to significantly
drop from 56.8 to 7.9 kcal mol™".”” Thus, after rearrangement,

Polym. Chem., 2020, 11, 5974-5980 | 5977
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Fig. 5 (a) lllustration of the theoretical fragmentations of ABADABA. (b) The MALDI-TOF MS spectrum and (c) MALDI-TOF MS/MS spectrum of
ABADABA. *Signals arise from concomitant fragmentations, detailed in the ESI (Table S77).

a series of dominant fragments with stable maleimide termi-
nus were observed in the tandem mass spectrum, resulting in
the easy-to-read sequences.

To further validate the good decodability of these synthetic
palindromic sequences, ABADABA was sequenced by MS/MS
spectrometry (Fig. 5). It found that the MALDI-TOF MS/MS
spectrum of ABADABA displayed a clear fragmentation pattern
(Fig. 5b and c). The MS/MS-induced synergetic cleavages of the
C-S bonds of DTS broke the polymer chain and led to distinct
sequence-related signals in the MS/MS spectrum, e.g., the first
fragment at m/z 607.475 assigned to [A-o + Na]" (named q,qs,)
and the homolog series of qsqs; at m/z 942.816 ([B-A-o + Na]"),
qaqss at m/z 1272.054 ([A-B-A-o + Na]'), qsqss at m/z 1701.374
([D-A-B-A-w + Na]"), q6qSe at m/z 2030.645 ([A-D-A-B-A-w + Na]"),
and q,qs; at m/z 2365.825 ([B-A-D-A-B-A-w + Na]") could be
easily identified with the concomitant fragmentation signals
([M + 32]") marked with asterisks as shown in Table S7.{ Thus,
the sequence information a-A-B-A-D-A-B-A-o could be explicitly
deciphered (Fig. 5c¢) from the dominant and unidirectional
MS/MS signals. Interestingly, the structural information of the
side chain pendent on the DTS moiety could also be decoded
by calculating the m/z interval with the precursor ion. For
example, the m/z intervals 118.775 and 124.176 Da implied the
hexyl mercaptan (A) and benzyl mercaptan (B)-derived side
chains, respectively. This information could be decoded and
the intervals 218.367 and 184.225 Da revealed unit D (marked
in red in Fig. 5¢). To demonstrate the “easy-to-read” character-
istic of the palindromic sequence, a “sequence unknown”
sample with a given MS/MS-induced fragmentation pattern
(Table S87) could be easily deciphered within 30 minutes. The
details of the deciphering process are described in the ESI
(Fig. S627). Therefore, owing to the unique DTS moiety, the
clear and unidirectional fragmentation patterns greatly facili-

5978 | Polym. Chem., 2020, 11, 5974-5980

tated the sequencing of these palindromic sequences (Tables
S2-S77). Such easily readable palindromic sequences could be
used as artificial DNA for anti-counterfeit purposes.”® As a
proof-of-concept, an anti-counterfeit inkjet ink labelled by a
DTS-incorporated palindromic  sequence-defined macro-
molecule was illustrated (Fig. S637), highlighting its good
potential in anti-counterfeit applications.

Conclusions

In summary, a straightforward and efficient CTMMC com-
bined IEG strategy was demonstrated for constructing palin-
dromic sequence-defined polymers. This chemistry allows fast
chain growth with convenient side chain installations. An
array of palindromic sequences with different side chains was
successfully constructed. Moreover, tandem MS sequencing
provided a unidirectional, clear and predictable fragmentation
pattern due to the synergetic cleavages of DTS moieties,
endowing the palindromic sequence with good decodability.
This work offered an example for constructing palindromic
sequences by applying cascade chemistry, establishing an
efficient platform for constructing precision polymers.
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