

Showcasing joint research from Pohang University of Science and Technology (POSTECH), Republic of Korea, and Tokyo Institute of Technology (TIT), Japan.

Selective dual-purpose photocatalysis for simultaneous H₂ evolution and mineralization of organic compounds enabled by a Cr $_{\rm 2} \rm O_{\rm 3}$ barrier layer coated on Rh/SrTiO $_{\rm 3}$

Dual-purpose photocatalysis for H_2 evolution with the simultaneous mineralization of 4-chlorophenol can be achieved under de-aerated conditions using a Cr₂O₃/Rh/SrTiO₃ photocatalyst, which has Rh nanoparticles covered by a thin $\text{Cr}_\text{2}\text{O}_\text{3}$ barrier layer to selectively control the dual-function surface redox reactions.

As featured in:

Registered charity number: 207890

ChemComm

COMMUNICATION

Cite this: *Chem. Commun.,* 2016, 52, 9636

Received 20th May 2016, Accepted 28th June 2016

DOI: 10.1039/c6cc04260k

www.rsc.org/chemcomm

Selective dual-purpose photocatalysis for simultaneous $H₂$ evolution and mineralization of organic compounds enabled by a $Cr₂O₃$ barrier layer coated on $Rh/SrTiO₃†$

Young-Jin Cho,^a Gun-hee Moon,^a Tomoki Kanazawa,^b Kazuhiko Maeda^b and Wonyong Choi*^a

Dual-functional photocatalysis for H_2 evolution with the simultaneous mineralization of 4-chlorophenol was achieved under de-aerated conditions using a $Cr_2O_3/Rh/SrTiO_3$ photocatalyst which has Rh nanoparticles covered with a thin Cr_2O_3 barrier layer to selectively control and maximize the dual-functional photocatalytic activity.

Hydrogen is considered as an ideal energy storage medium and a promising energy carrier since it can be obtained from abundant natural resources such as water and biomass instead of fossil fuels.^{1–4} In particular, photocatalytic water splitting is widely studied as a promising technology to produce hydrogen using solar light. $5-7$ Another important application of photocatalysis is the degradation of organic compounds for the remediation of polluted water and $air.^{8-12}$ In photocatalytic $H₂$ production, organic electron donors are commonly used as sacrificial agents to scavenge photogenerated holes. $13-17$ However, the intentional addition of organic electron donors (e.g., alcohols, organic acids, amines) for H_2 production is not practically acceptable since the electron donors themselves are another energy resource (often more expensive than H_2). Therefore, a more desirable strategy is to use organic waste and pollutants in water as in situ electron donors. This is the concept of dual-functional photocatalysis which produces H_2 along with the simultaneous degradation of organic pollutants.¹⁸⁻²⁰ Recently, Kim et al. demonstrated that the simultaneous H2 production with the anoxic photocatalytic degradation of organic compounds can be achieved by using $TiO₂$ modified by both surface fluorination and Pt deposition (F-TiO₂/Pt).^{19,20} COMMUNICATION

Selective dual-purpose photocatalysis for
 $\frac{1}{2}$

Clean this Chen, Commun. 2016.

Clean the Chen, Commun. 201

However, the total organic carbon (TOC) removal efficiency was negligible and TOC remained almost unchanged during the photocatalytic degradation of 4-chlorophenol (4-CP) on F-TiO₂/Pt, because dioxygen was needed for mineralization. Meeting the optimal condition for dual-purpose photocatalysis is contradictory because the H_2 evolution requires anoxic conditions whereas the mineralization of organic compounds needs dioxygen.

In this study, a selective dual-purpose photocatalysis that achieves H₂ production and TOC removal simultaneously under anoxic conditions is reported. Instead of using the combination of TiO₂ (as a base photocatalyst) and Pt (as a cocatalyst for H_2 evolution), SrTiO₃ (base photocatalyst) and $Rh@Cr₂O₃$ core–shell nanostructure (cocatalyst) were employed in this work. The photocatalytic activities of the composite materials of $Cr_2O_3/Pt/SrTiO_3$ and other $Rh@Cr_2O_3$ (core–shell) loaded metal oxides have been previously demonstrated for the overall water splitting.^{21,22} In this work, we demonstrate that $Cr_2O_3/Rh/STIO_3$ can be a promising dual-purpose photocatalyst that can produce H_2 along with TOC removal (mineralization) of aromatic pollutants in a de-aerated aqueous suspension which is considered an inappropriate condition to achieve the mineralization of organic pollutants.

 $Cr_2O_3/Rh/SrTiO_3$ photocatalyst was prepared by step-wise photo-deposition of Rh nanoparticles on the $S(\Gamma)$ surface as a core and then the Cr_2O_3 nano-shell on the Rh core.²² The loading amount of Rh and Cr_2O_3 was 0.5 wt% and 0.75 wt%, respectively. Fig. S1 (ESI†) shows the HRTEM images of $Cr_2O_3/$ Rh/SrTiO₃ and Rh/SrTiO₃ photocatalysts. Rh nanoparticles of 2–4 nm diameter were observed to be deposited on the surface of both photocatalysts and the Cr_2O_3 shell was seen around the Rh core of the $Cr_2O_3/Rh/STIO_3$ catalyst. Rh/SrTiO₃ and $Cr_2O_3/Rh/SrTiO_3$ were compared for the photocatalytic degradation of 4-CP under de-aerated conditions as shown in Fig. 1. $Cr_2O_3/Rh/STIO_3$ exhibited a much higher activity than $Rh/SrTiO₃$ in both the removal of 4-CP and the concurrent production of chloride (Fig. 1a). The TOC removal was also highly enhanced with $Cr_2O_3/Rh/STIO_3$ (Fig. 1b). These results clearly indicate that the removal of 4-CP in the suspension of $Cr_2O_3/Rh/STIO_3$ proceeded along with the mineralization

 a School of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, Republic of Korea.

E-mail: wchoi@postech.edu

 b Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-NE-2 Ookayama, Meguro-ku, Tokyo 152-8550, Japan

[†] Electronic supplementary information (ESI) available: Experimental details of the synthesis of Rh/SrTiO₃, Cr₂O₃/Rh/SrTiO₃ and F-TiO₂/Pt, experimental details of photocatalytic reaction and photoelectrochemical tests, and Fig. S1–S7. See DOI: 10.1039/c6cc04260k

Fig. 1 (a) Photocatalytic degradation of 4-CP and the concurrent production of chloride in a de-aerated catalyst suspension. (b) Comparison of TOC removal efficiencies after 2 h photocatalytic reaction. Experimental conditions: [catalyst] = 0.5 g L⁻¹, [4-CP]₀ = 100 μ M, pH₀ = 7, $\lambda > 320$ nm, air-tight, and initially Ar-purged for 1 h before UV irradiation.

(i.e., TOC removal) even under the de-aerated conditions, where the initial dissolved O_2 was measured to be less than 0.1 ppm using a dissolved O_2 meter. In the absence of O_2 that serves as a main electron scavenger, the photocatalytic oxidation and mineralization should be inhibited on a bare semiconductor but the loading of Rh and $Cr₂O₃$ changes the photocatalytic reaction mechanism.

 $H₂$ evolution was also monitored during the anoxic degradation of 4-CP. As seen in Fig. 2a, markedly increased H_2 production was observed with the $Cr_2O_3/Rh/STIO_3$ photocatalyst compared with Rh/SrTiO₃. The initial rate of H_2 production on Cr₂O₃/Rh/SrTiO₃ was around 12 μ mol h⁻¹. The apparent photonic efficiency of $H₂$ evolution (with 300 μ M 4-CP) was separately measured under the irradiation centered around $\lambda = 330 \pm 10$ nm and determined to be 0.7%. Concurrent O_2 evolution was also observed in the case of $Cr_2O_3/Rh/STIO_3$, whereas no O_2 production was observed with $Rh/SrTiO₃$. Such a difference can be ascribed to the fact that the Cr_2O_3 layer over Rh can suppress the back reaction of H₂ with O₂ to produce H₂O.²³ The fact that O₂ was evolved along with the degradation of 4-CP on $Cr_2O_3/Rh/STiO_3$ indicates that holes react with both 4-CP and water molecules. The in situ generated O_2 should be subsequently consumed during the

Fig. 2 (a) Time-profiled production of H_2 and O_2 in the suspension of $Cr_2O_3/Rh/SrTiO_3$ and Rh/SrTiO₃ with 4-CP (300 μ M) in the initially de-aerated suspension. (b) Comparison of photocatalytic $O₂$ evolution in the suspension of $Cr_2O_3/Rh/SrTiO_3$ (after 3 h reaction) in the presence and absence of 4-CP.

mineralization of 4-CP ,^{19,24,25} which explains why the degradation of 4-CP was possible under de-aerated conditions. As a result, the in situ O_2 evolution was significantly enhanced in the absence of 4-CP (Fig. 2b). The mineralization of 4-CP can be expressed by eqn (1) .

$$
C_6H_5OCl (6C_{org}) + 6.5O_2 \rightarrow 6CO_2 + 2H_2O + HCl \qquad (1)
$$

During the initial stage (for 1 h) of photo-irradiation, the rates of \rm{H}_{2} and \rm{O}_{2} evolution were determined to be around 12 µmol \rm{h}^{-1} and 1.2 µmol h^{-1} , respectively. The O₂ evolution rate is much lower than the expected stoichiometric rate (6 μ mol h⁻¹) in the dual-purpose photocatalysis, which should be ascribed to the in situ consumption of $O₂$ in the mineralization (as mentioned above). In this case, the average TOC removal rate was 5.0 μ mol h⁻¹, which corresponds to 5.4 μ mol h^{-1} of the O_2 consumption rate (according to eqn (1)). Therefore, the sum of the apparent O_2 evolution (1.2 µmol h⁻¹) and the *in situ* consumption of O_2 (5.4 µmol h⁻¹) is 6.6 µmol h⁻¹, which is close to the stoichiometric O_2 evolution rate of 6.0 µmol h^{-1} . Incidentally, from a practical point of view, dual-functional photocatalysts working under air-saturated conditions would be desirable. Therefore, H_2 evolution in an aerated suspension of $Cr_2O_3/Rh/STIO_3$ was

also tested. As shown in Fig. S2 (ESI†), H_2 evolved even under air-saturated conditions although they were lower compared with Ar-saturated conditions. This result indicates that this composite photocatalyst can be effectively used for dualfunctional photocatalysis in both the presence and absence of dissolved $O₂$.

The effects of dissolved O_2 and the probe reagents (*i.e.*, *t*-butyl alcohol (TBA) and EDTA) were further investigated to understand the photocatalytic mechanisms of $Cr_2O_3/Rh/STIO_3$ and Rh/SrTiO₃, as shown in Fig. S3 (ESI†). First, it is noted that the effects of dissolved O_2 are drastically different between $Cr_2O_3/Rh/SrTiO_3$ and $Rh/SrTiO₃$. The presence and absence of $O₂$ did not affect the 4-CP degradation on $Cr_2O_3/Rh/STIO_3$ at all while the degradation of 4-CP on $Rh/SrTiO₃$ was significant only in the presence of $O₂$. This observation is fully consistent with the previous reports that the Cr_2O_3 shell layer covering the Rh core blocks the contact of O_2 with the Rh core, but is still permeable to protons.^{22,23} As a result, the CB electron transfer to O_2 on $Cr_2O_3/Rh/SrTiO_3$ is insignificant but the CB electron transfer to protons $(H⁺)$ is allowed with enabling the concurrent hole transfer to 4-CP. Fig. S3 (ESI†) also shows that the photocatalytic degradation of 4-CP remains unchanged in the presence of excessive TBA (as an OH radical scavenger) but is highly retarded in the presence of excessive EDTA (as a hole scavenger).²⁶ This supports that 4-CP degradation proceeds via a direct hole-transfer, and not an OH radical-meditated pathway. Chem.Comm Varian attached on 28 2016. This are how considered in the commonloaded on 10/09/2024 14:31:17. The commonloaded under the method is licensed under the method in the set of the commonloaded the commonloaded the

To investigate the role of the Cr_2O_3 shell on the Rh core and its effects on the interfacial electron transfer on $Cr_2O_3/Rh/SrTiO_3$ and Rh/SrTiO₃, the Fe^{3+/2+} redox couple-mediated photocurrent was collected (via reactions (2) and (3)) in the UV-irradiated suspension of each catalyst.²⁷

 $\text{Fe}^{3+} + \text{e}_{\text{cb}}^- \rightarrow \text{Fe}^{2+}$ (on photocatalyst) (2)

$$
\text{Fe}^{2+} \rightarrow \text{Fe}^{3+} + \text{e}^{-} \text{ (on Pt electrode)} \tag{3}
$$

Fig. S4 (ESI†) shows that the time profile of photocurrent generation is completely suppressed by $Cr_2O_3/Rh/SrTiO_3$ in comparison with Rh/SrTiO₃, which is the opposite to the photocatalytic activity of H_2 evolution. This result reconfirms that the Cr_2O_3 layer on the Rh core suppresses the interfacial electron transfer to $Fe³⁺$ ions as it hinders the electron transfer to $O₂$ molecules. The presence of the Cr_2O_3 layer blocks the CB electron transfer to electron acceptors (e.g., O_2 , Fe³⁺) except protons. On the other hand, holes generated on $Cr_2O_3/Rh/SrTiO_3$ are mostly consumed by water molecules with generation of $O₂$, which enables the anoxic degradation of 4-CP. As a result, the photocatalytic production of H_2 on $Cr_2O_3/Rh/SrTiO_3$ under the de-aerated conditions depended little on the presence and kind of organic electron donors (see Fig. S5, ESI†). The photocatalytic H₂ production rates on Cr₂O₃/Rh/SrTiO₃ only moderately changed among the different conditions of water, 10 vol% MeOH, and 300 µM 4-CP whereas the electron donor effect on H_2 production was very critical for Rh/SrTiO₃. This implies that the photocatalytic production of H_2 with the simultaneous decomposition of organic pollutants can be achieved effectively in the $Cr_2O_3/Rh/STIO_3$ photocatalytic system regardless of the kind and concentration of organic pollutants.

Fig. 3 Comparison of the initial photocatalytic H_2 production rate between $Cr_2O_3/Rh/SrTiO_3$ and F-TiO₂/Pt photocatalytic systems in the presence of 4-CP (300 μ M). Experimental conditions: [catalyst] = 0.5 g L⁻¹, $\lambda > 320$ nm, air-tight and initially Ar-purged for 1 h before UV irradiation.

Our recent studies demonstrated that the $TiO₂$ modified with both Pt and fluoride $(F-TiO₂/Pt)$ exhibited a dual-functional photocatalytic activity for the simultaneous production of H_2 and degradation of 4-CP.^{19,20} In Fig. 3, the H₂ production on $Cr_2O_3/Rh/SrTiO_3$ was compared with F-TiO₂/Pt under neutral and acidic pH conditions. The photocatalytic activity of Cr_2O_3 / $Rh/SrTiO₃$ is higher than that of F-TiO₂/Pt and less affected by the pH change. It should be noted that the activity of F-TiO₂/Pt is markedly reduced at neutral pH whereas that of $Cr_2O_3/Rh/SrTiO_3$ was little influenced by pH. As a result, $Cr_2O_3/Rh/STIO_3$ is a better dual-functional photocatalyst from a practical point of view. In terms of the charge transfer characteristics, the following two major features make $Cr_2O_3/Rh/STIO_3$ a practical dual-functional photocatalyst. For the electron transfer part, CB electrons are selectively consumed by protons only and their transfer to O_2 and other electron acceptors (EA) is hindered because the Cr_2O_3 barrier layer is selectively permeable only to protons. On the other hand, VB holes are utilized to oxidize both H_2O (to O_2) and 4-CP (organic pollutants) simultaneously and the in situ generated O_2 is immediately consumed for the mineralization of the organic pollutants.^{19,24,28} The reaction mechanisms described above are schematically illustrated in Scheme 1. In the absence of the Cr_2O_3 layer, the CB electrons can be consumed by not only protons but also in situ generated $O₂$ and other reaction intermediates, which would reduce the overall dual-photocatalysis activity.

To check the photostability of $Cr_2O_3/Rh/STIO_3$, the photocatalytic H_2 production was repeated up to four cycles in the same batch of catalyst by injecting 100 μ M 4-CP every 2 h (Fig. S6, ESI†). The activity was not maintained and gradually decreased with repeated uses. To elucidate whether the gradual loss of activity was caused by the instability of the photocatalyst, the same experiment was performed without 4-CP injection. In this case, the photocatalytic activity was maintained without showing activity loss. The composite photocatalyst itself seems to be stable. Therefore, the gradual loss of photocatalytic activity observed in the presence of 4-CP might be ascribed to

Scheme 1 Schematic illustrations of photocatalytic reaction mechanisms occurring on the surface of $Cr_2O_3/Rh/SrTiO_3$.

the accumulation of organic degradation intermediates on the catalyst surface.^{29,30} To further investigate the effect of organic compounds in this dual functional photocatalysis, the evolution of H_2 and O_2 was simultaneously measured with repeated photocatalysis cycles. In this case, $100 \mu M$ 4-CP was initially added but not replenished in the subsequent cycles. Fig. S7 $(ESI⁺)$ shows that H₂ production was higher in the first cycle than in the subsequent cycles: the difference in H_2 production should be ascribed to the organic electron donor $(i.e., 4\text{-CP})$ effect. The extra holes scavenged by 4-CP make an equal number of electrons to be used for H_2 production. At the same time, $O₂$ evolved in the first cycle is immediately consumed for the mineralization of 4-CP. As a result, the ratio of H_2 to O_2 in the first cycle was significantly higher $(H_2/O_2(r) = 6.9)$ than the stoichiometric water splitting ratio $(r = 2.0)$. The ratio progressively approached the stoichiometric ratio as the cycle was repeated $(r: 6.9 \rightarrow 2.7 \rightarrow 2.5 \rightarrow 2.2).$ Communication

View Hell

Some Commons Article 2011 and the common 28 2016. Downloaded on 28 2016. The published on 28 2016 and the BRF (1009/2024) and the BRF (1009/2024) and the BRF (1009/2024) and the BRF (1009/2024) a

In conclusion, this study demonstrated that the mineralization of organic pollutants can be achieved under the de-aerated conditions with the simultaneous H₂ production over a $Cr_2O_3/$ Rh/SrTiO₃ photocatalyst. The present study showed the highest H2 evolution efficiency in dual-purpose photocatalysis to our knowledge. It is proposed that the Cr_2O_3 shell on the Rh nanoparticle core markedly enhances the H_2 production and TOC removal of aromatic pollutants, which makes $Cr_2O_3/Rh/STIO_3$ an active dual-functional photocatalyst.

This work was supported by the Global Research Laboratory (GRL) Program (NRF-2014K1A1A2041044), the Global Frontier R&D Program on Center for Multiscale Energy System (2011-0031571), and KCAP (Sogang Univ.) (No. 2009-0093880) funded by the Korea government (MSIP) through the National Research Foundation of Korea (NRF). K. M. acknowledges a Grant-in-Aid for Young Scientists (A) (Project 25709078) and the PRESTO/JST program ''Chemical Conversion of Light Energy'' for funding support.

References

- 1 G. Zhang, C. Ni, X. Huang, A. Welgamage, L. A. Lawton, P. K. J. Robertson and J. T. S. Irvine, Chem. Commun., 2016, 52, 1673.
- 2 M. Ni, D. Y. C. Leung and M. K. H. Leung, Int. J. Hydrogen Energy, 2007, 32, 3238–3247.
- 3 F. Sastre, M. Oteri, A. Corma and H. Garcia, Energy Environ. Sci., 2013, 6, 2211.
- 4 Y. Tachibana, L. Vayssieres and J. R. Durrant, Nat. Photonics, 2012, 6, 511.
- 5 A. Kudo and Y. Miseki, Chem. Soc. Rev., 2009, 38, 253.
- 6 Y. Ma, X. Wang, Y. Jia, X. Chen, H. Han and C. Li, Chem. Rev., 2014, 114, 9987.
- 7 T. Hisatomi, J. Kubota and K. Domen, Chem. Soc. Rev., 2014, 43, 7520.
- 8 H. Park, Y. Park, W. Kim and W. Choi, J. Photochem. Photobiol., C, 2013, 15, 1.
- 9 M. R. Hoffmann, S. T. Martin, W. Choi and D. W. Bahnemann, Chem. Rev., 1995, 95, 69.
- 10 Q. Xiang, J. Yu and M. Jaroniec, Chem. Soc. Rev., 2012, 41, 782.
- 11 J. Yang, R. Hu, W. Meng and Y. Du, Chem. Commun., 2016, 52, 2620.
- 12 H. Park, H.-i. Kim, G.-h. Moon and W. Choi, Energy Environ. Sci., 2016, 9, 411.
- 13 X.-Y. Zhang, H.-P. Li, X.-L. Cui and Y. Lin, J. Mater. Chem., 2010, 20, 2801.
- 14 M.-C. Wu, J. Hiltunen, A. Sápi, A. Avila, W. Larsson, H.-C. Liao, M. Huuhtanen, G. Tóth, A. Shchukarev, N. Laufer, Á. Kukovecz, Z. Kónya, J.-P. Mikkola, R. Keiski, W.-F. Su, Y.-F. Chen, H. Jantunen, P. M. Ajayan, R. Vajtai and K. Kordás, ACS Nano, 2011, 5, 5025.
- 15 P. Gomathisankar, K. Hachisuka, H. Katsumata, T. Suzuki, K. Funasaka and S. Kaneco, Int. J. Hydrogen Energy, 2013, 38, 11840.
- 16 W. Zhang, Y. Wang, Z. Wang, Z. Zhong and R. Xu, Chem. Commun., 2010, 46, 7631.
- 17 M. Wen, Y. Kuwahara, K. Mori, D. Zhang, H. Li and H. Yamashita, J. Mater. Chem. A, 2015, 3, 14134.
- 18 Y.-J. Cho, H.-i. Kim, S. Lee and W. Choi, J. Catal., 2015, 330, 387.
- 19 J. Kim and W. Choi, Energy Environ. Sci., 2010, 3, 1042.
- 20 J. Kim, D. Monllor-Satoca and W. Choi, Energy Environ. Sci., 2012, 5, 7647.
- 21 K. Maeda, A. Xiong, T. Yoshinaga, T. Ikeda, N. Sakamoto, T. Hisatomi, M. Takashima, D. Lu, M. Kanehara, T. Setoyama, T. Teranishi and K. Domen, Angew. Chem., Int. Ed., 2010, 49, 4096.
- 22 K. Maeda, K. Teramura, D. Lu, N. Saito, Y. Inoue and K. Domen, Angew. Chem., Int. Ed., 2006, 45, 7806.
- 23 M. Yoshida, K. Takanabe, K. Maeda, A. Ishikawa, J. Kubota, Y. Sakata, Y. Ikezawa and K. Domen, J. Phys. Chem. C, 2009, 113, 10151.
- 24 D. Hufschmidt, D. Bahnemann, J. J. Testa, C. A. Emilio and M. I. Litter, J. Photochem. Photobiol., A, 2002, 148, 223.
- 25 J. Kim, J. Lee and W. Choi, Chem. Commun., 2008, 756.
- 26 C. Minero, G. Mariella, V. Maurino, D. Vione and E. Pelizzetti, Langmuir, 2000, 16, 8964.
- 27 H. Park and W. Choi, J. Phys. Chem. B, 2003, 107, 3885.
- 28 J. Theurich, M. Lindner and D. W. Bahnemann, Langmuir, 1996, 12, 6368.
- 29 M. I. Franch, J. Peral, X. Domenech and J. A. Ayllon, Chem. Commun., 2005, 1851.
- 30 S. Weon and W. Choi, Environ. Sci. Technol., 2016, 50, 2556.