Bromine sequestration by advanced functional porous materials

Abstract

The capture and storage of bromine have garnered significant attention in recent years due to its widespread industrial applications as well as its environmental impact as a pollutant. Advanced functional porous materials (AFPMs)—including metal–organic frameworks (MOFs), porous organic polymers (POPs), covalent organic frameworks (COFs), and porous organic cages (POCs)—have emerged as exceptional adsorbent materials in this field. Their high surface areas, tunable porosities, controllable structures, thermal/chemical stability, versatile molecular design, and capacity for functionalization (via pre- or post-synthetic modification) make them highly promising for bromine capture. This review highlights recent advancements in AFPMs for bromine capture from both gaseous and solution phases. We analyze key strategies to enhance bromine uptake, such as redox reactions, coordination interactions, bromination, functional group oxidation, heteroatom interactions, surface area/pore volume optimization, chemical functionalization, and post-synthetic modifications. Additionally, we discuss design strategies for developing next-generation AFPMs with superior bromine adsorption performance. As research progresses, we anticipate broader adoption of these materials in bromine capture applications.

Graphical abstract: Bromine sequestration by advanced functional porous materials

Article information

Article type
Feature Article
Submitted
01 Jul 2025
Accepted
03 Oct 2025
First published
10 Oct 2025
This article is Open Access
Creative Commons BY-NC license

Chem. Commun., 2025, Advance Article

Bromine sequestration by advanced functional porous materials

S. Fajal and S. K. Ghosh, Chem. Commun., 2025, Advance Article , DOI: 10.1039/D5CC03718B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements