Issue 18, 2024

Nanostructure-based orbital angular momentum encryption and multiplexing

Abstract

The orthogonality among the OAM modes provides a new degree of freedom for optical multiplexing communications. So far, traditional Dammann gratings and spatial light modulators (SLMs) have been widely used to generate OAM beams by modulating electromagnetic waves at each pixel. However, such architectures suffer from limitations in terms of having a resolution of only a few microns and the bulkiness of the entire optical system. With the rapid development of the electromagnetic theory and advanced nanofabrication methods, artificial nanostructures, especially optical metasurfaces, have been introduced which greatly shrink the size of OAM multiplexing devices while increasing the level of integration. This review focuses on the study of encryption, multiplexing and demultiplexing of OAM beams based on nanostructure platforms. After introducing the focusing characteristics of OAM beams, the interaction mechanism between OAM beams and nanostructures is discussed. The physical phenomena of helical dichroism response and spatial separation of OAM beams achieved through nanostructures, setting the stage for OAM encryption and multiplexing, are reviewed. Afterward, the further advancements and potential applications of nanophotonics-based OAM multiplexing are deliberated. Finally, the challenges of conventional design methods and dynamic tunable techniques for nanostructure-based OAM multiplexing technology are addressed.

Graphical abstract: Nanostructure-based orbital angular momentum encryption and multiplexing

Article information

Article type
Minireview
Submitted
06 פבר 2024
Accepted
28 מרץ 2024
First published
01 אפר 2024

Nanoscale, 2024,16, 8807-8819

Nanostructure-based orbital angular momentum encryption and multiplexing

X. Ouyang, K. Du, Y. Zeng, Q. Song and S. Xiao, Nanoscale, 2024, 16, 8807 DOI: 10.1039/D4NR00547C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements