Issue 12, 2024

Innovative approaches in skin therapy: bionanocomposites for skin tissue repair and regeneration

Abstract

Bionanocomposites (BNCs) have gained significant attention in the field of biomaterials, particularly for their potential applications in skin tissue repair and regeneration. Advantages of these biomaterials in skin care and wound healing/dressings include their ability to provide a suitable environment for tissue regeneration. They can mimic the extracellular matrix, supporting cellular interactions and promoting the formation of new tissue. They can also be engineered to have controlled release properties, allowing for the localized and sustained delivery of bioactive molecules, growth factors, or antimicrobial agents to the wound site. BNCs can be used as scaffolds or matrices for bioprinting, enabling the fabrication of complex structures that closely resemble native tissue. BNC-based films, hydrogels, and dressings can serve as protective barriers, promoting an optimal wound healing environment and preventing infection. These materials can also be incorporated into advanced wound care products, such as smart dressings, which can monitor wound healing progress and provide real-time feedback to healthcare professionals. This review aims to provide a comprehensive overview of the current trends, advantages, challenges, and future directions in this rapidly evolving field. The current trends in the field are deliberated, including the incorporation of natural polymers, such as silk fibroin, hyaluronic acid, collagen, gelatin, chitosan/chitin, alginate, starch, bacterial cellulose, among others. These BNCs offer biocompatibility/biodegradability, enhanced mechanical strength, and the ability to promote cell adhesion and proliferation. However, crucial challenges such as biocompatibility optimization, mechanical property tuning, and regulatory approval need to be addressed. Furthermore, the future directions and emerging research areas are deliberated, including the development of biomimetic BNCs that mimic the native tissue microenvironment in terms of composition, structure, and bioactive cues. Furthermore, the integration of advanced fabrication techniques, such as 3D bioprinting and electrospinning, and the incorporation of nanoparticles and bioactive molecules hold promise for enhancing the therapeutic efficacy of BNCs in skin tissue repair and regeneration.

Graphical abstract: Innovative approaches in skin therapy: bionanocomposites for skin tissue repair and regeneration

Article information

Article type
Review Article
Submitted
13 אפר 2024
Accepted
30 מאי 2024
First published
30 מאי 2024
This article is Open Access
Creative Commons BY-NC license

Mater. Adv., 2024,5, 4996-5024

Innovative approaches in skin therapy: bionanocomposites for skin tissue repair and regeneration

A. Bal-Öztürk, E. Alarçin, G. Yaşayan, M. Avci-Adali, A. Khosravi, A. Zarepour, S. Iravani and A. Zarrabi, Mater. Adv., 2024, 5, 4996 DOI: 10.1039/D4MA00384E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements