Issue 26, 2023

Giant coercivity enhancement in a room-temperature van der Waals magnet through substitutional metal-doping

Abstract

FexGeTe2 (x = 3, 4, and 5) systems, two-dimensional (2D) van der Waals (vdW) ferromagnetic (FM) metals with high Curie temperatures (TC), have been intensively studied to realize all-2D spintronic devices. Recently, an intrinsic FM material Fe3GaTe2 with high TC (350–380 K) has been reported. As substitutional doping changes the magnetic properties of vdW magnets, it can be a powerful means for engineering the properties of magnetic materials. Here, the coercive field (Hc) is substantially enhanced by substituting Ni for Fe in (Fe1−xNix)3GaTe2 crystals. The introduction of a Ni dopant with x = 0.03 can enhance the value of Hc up to ∼200% while maintaining the FM state at room temperature. As the doping level increases, TC decreases, whereas Hc increases up to 7 kOe at x = 0.12, which is the highest Hc reported so far. The FM characteristic is almost suppressed at x = 0.68 and a spin glass state appears. The enhancement of Hc resulting from Ni doping can be attributed to domain pinning induced by substitutional Ni atoms, as evidenced by the decrease in magnetic anisotropy energy in the crystals upon Ni doping. Our findings provide a highly effective way to control the Hc of the 2D vdW FM metal Fe3GaTe2 for the realization of Fe3GaTe2 based room-temperature operating spintronic devices.

Graphical abstract: Giant coercivity enhancement in a room-temperature van der Waals magnet through substitutional metal-doping

Article information

Article type
Paper
Submitted
13 פבר 2023
Accepted
05 יונ 2023
First published
06 יונ 2023

Nanoscale, 2023,15, 11290-11298

Giant coercivity enhancement in a room-temperature van der Waals magnet through substitutional metal-doping

H. Ahn, S. Jung, H. Lim, K. Kim, S. Kim, T. Park, T. Park and C. Lee, Nanoscale, 2023, 15, 11290 DOI: 10.1039/D3NR00681F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements