Issue 3, 2023

Observations of coastal dynamics during lake breeze at a shoreline impacted by high ozone

Abstract

The lake breeze circulation along Lake Michigan is associated with high tropospheric ozone concentrations at shoreline locations. The 2021 Wisconsin's Dynamic Influence of Shoreline Circulation on Ozone (WiscoDISCO-21) campaign involved atmospheric measurements over Chiwaukee Prairie State Natural Area in Southeastern Wisconsin from May 21–26, 2021. Three different platforms, two uncrewed aerial systems (UAS) and a Doppler lidar instrument, were used to collect data on this campaign, supplemented by a ground-based Wisconsin DNR maintained regulatory monitor at the site. A Purdue University M210 multirotor copter, and the University of Colorado RAAVEN fixed-wing aircraft were flown in coordination. Using data from the ground station, RAAVEN and onsite lidar, lake breezes were detected on several days of the campaign. The longest sustained lake breezes during the campaign were detected on May 22, 2021, from 17:00–21:38 UTC and on May 24, 2021, from 14:24–22:51 UTC. The presence of the lake breezes correlated with detected temperature inversions measured from the RAAVEN and high ozone events measured from the M210. Lake breezes were investigated with their relationship to vertical profiles measured on the UAS, ozone concentrations, and marine boundary layer height observed with Doppler lidar to demonstrate a multi-layered lower atmosphere. A buoyant internal boundary layer was observed over land from 40–100 m AGL below highest ozone concentrations. Marine layer extent was investigated through minimum buoyancy and Richardson number analysis, showing limited vertical mixing at altitudes up to 200 m AGL, below easterly lake breeze circulation patterns extending upward to 400 m AGL in the late day.

Graphical abstract: Observations of coastal dynamics during lake breeze at a shoreline impacted by high ozone

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
10 אוג 2022
Accepted
29 דצמ 2022
First published
04 ינו 2023
This article is Open Access
Creative Commons BY-NC license

Environ. Sci.: Atmos., 2023,3, 494-505

Observations of coastal dynamics during lake breeze at a shoreline impacted by high ozone

J. Tirado, A. O. Torti, B. J. Butterworth, K. Wangen, A. Voon, B. Kies, J. P. Hupy, G. de Boer, R. B. Pierce, T. J. Wagner and P. A. Cleary, Environ. Sci.: Atmos., 2023, 3, 494 DOI: 10.1039/D2EA00101B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements