Issue 22, 2020

Design of superior phototheranostic agents guided by Jablonski diagrams

Abstract

Phototheranostics represents a promising direction for modern precision medicine, which has recently attracted great research interest from multidisciplinary research areas. Organic optical agents including small molecular fluorophores, semiconducting/conjugated polymers, aggregation-induced emission luminogens, etc. with tuneable photophysical properties, high biosafety and biocompatibility, facile processability and ease of functionalization have delivered encouraging performance in disease phototheranostics. This review summarizes the recent progress of organic phototheranostic agents with an emphasis on the main strategies to manipulate the three excitation energy dissipation pathways, namely, radiative decay, thermal deactivation, and intersystem crossing, with the assistance of a Jablonski diagram, which particularly showcases how the Jablonski diagram has been guiding the design of organic agents from molecule to aggregate levels to promote the disease phototheranostic outcomes. Molecular design and nanoengineering strategies to modulate photophysical processes of organic optical agents to convert the absorbed photons into fluorescent/phosphorescent/photoacoustic signals and/or photodynamic/photothermal curing effects for improved disease phototheranostics are elaborated. Noteworthily, adaptive phototheranostics with activatable and transformable functions on demand, and regulation of excitation such as chemiexcitation to promote the phototheranostic efficacies are also included. A brief summary with the discussion of current challenges and future perspectives in this research field is further presented.

Graphical abstract: Design of superior phototheranostic agents guided by Jablonski diagrams

Article information

Article type
Review Article
Submitted
04 יונ 2020
First published
02 ספט 2020

Chem. Soc. Rev., 2020,49, 8179-8234

Design of superior phototheranostic agents guided by Jablonski diagrams

G. Feng, G. Zhang and D. Ding, Chem. Soc. Rev., 2020, 49, 8179 DOI: 10.1039/D0CS00671H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements