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Cell reproducibility remains a significant challenge for emerging proton-conducting ceramic

electrochemical fuel cell and electrolyzer technologies. This study investigates the factors contributing

to cell-to-cell performance variation. Gaussian process and random forest regressor machine learning

models were utilized to analyze 86 cells for fuel cell performance and 84 cells for electrolysis

performance. The study focused on BaCe0.4Zr0.4Y0.1Yb0.1O3−d (BCZYYb4411) + NiO—BCZYYb4411—

BaCo0.4Fe0.4Zr0.1Y0.1O3−d (BCFZY) material sets for the negatrode, electrolyte, and positrode,

respectively. Key processing and morphological parameters impacting performance were identified. The

electrolyte thickness to grain size ratio emerged as a critical factor for both fuel cell and electrolysis

performance, with maximum gains at ratios #1. A NiO particle size threshold of ∼6 mm was identified,

below which performance increases markedly. Evaporating organics from the electrolyte spray or

positrode application process before sintering may improve performance significantly, but the extent of

this improvement remains uncertain. The optimal BCFZY positrode thickness for fuel cell performance is

20–25 mm. Fuel cell performance is primarily influenced by positrode microstructure. Optimizing this

microstructure can bring the largest benefit to fuel-cell performance through reduced polarization

resistances. In contrast, electrolysis performance is strongly governed by electrolyte microstructure.

Improving electrolyte conductivity and reducing ohmic resistance greatly benefits electrolysis performance.
1. Introduction

Hydrogen is poised to play a crucial role in the future green
energy economy. Hydrogen offers solutions for decarbonizing
industries like steel production, serving as a chemical feed
stock for compounds such as ammonia, and functioning as
both a fuel and a medium for chemical energy storage.1–4

Consequently, developing devices that efficiently utilize
hydrogen as fuel and electrolyze water to generate hydrogen is
of paramount importance. Proton-conducting ceramic
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electrochemical cells (PCCs) emerge as a promising technology
for these applications.

PCCs operate at intermediate temperatures (350–600 °C),5

offering high efficiencies and oxygen reduction reaction (ORR)
capabilities without requiring precious metal catalysts. This
temperature range also allows for low stack material costs,
crucial for commercialization.6–8 These reversible cells can both
generate and consume hydrogen.7,9–12 PCCs are fuel exible,
meaning they can generate electricity from a wide range of
chemicals.13 Operated as electrolyzers, PCCs can generate pure,
dry hydrogen that can be electrochemically pressurized.14

PCCs are a relatively new technology with a technology
readiness level (TRL) of about 4.15 Further development is
necessary for PCCs to become commercial devices capable of
supplying economically viable hydrogen and/or electricity. High
performance is vital for PCC commercialization, with cell
performance identied as the most critical parameter in
determining stack cost.8 Higher-performing cells allow for the
same power output or hydrogen generation with less cell and
stacking materials.8

Lab-scale results in literature show promising fuel cell
performance, with many cells achieving peak power densities
exceeding 1 W cm−2 at 600 °C.5,10,16–25 Additionally, high elec-
trolysis cell water splitting performance has been achieved, with
J. Mater. Chem. A, 2025, 13, 10863–10880 | 10863

http://crossmark.crossref.org/dialog/?doi=10.1039/d4ta08326a&domain=pdf&date_stamp=2025-04-07
http://orcid.org/0000-0003-0844-5947
http://orcid.org/0000-0002-9487-5128
http://orcid.org/0000-0002-0848-5941
http://orcid.org/0000-0002-8621-678X
http://orcid.org/0000-0001-5292-6292
http://orcid.org/0000-0002-3968-816X
http://orcid.org/0009-0004-6722-9923
http://orcid.org/0009-0002-7552-2834
http://orcid.org/0000-0002-4538-4218
http://orcid.org/0000-0003-3762-3052
https://doi.org/10.1039/d4ta08326a
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4ta08326a
https://pubs.rsc.org/en/journals/journal/TA
https://pubs.rsc.org/en/journals/journal/TA?issueid=TA013015


Journal of Materials Chemistry A Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

3 
M

ar
ç 

20
25

. D
ow

nl
oa

de
d 

on
 0

7/
08

/2
02

5 
12

:5
1:

55
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
current densities surpassing 0.5 A cm−2 at 500 °C and
1.3 V.10,19,22,24,26

While high reported performances are promising, repro-
ducibility remains a challenge in the PCC eld. This issue stems
partly from the “champion cell” model, where only the best-
performing cells are reported in literature.

A lack of testing standards also contributes to the problem,
though standardization efforts are underway in the research
community.27 Recently, there have been calls for researchers to
provide detailed testing records.28 Fabrication process control
can be limited in the research laboratories advancing these
early-stage devices. The aforementioned high-performing cells
utilize diverse materials, architectures, and processing
methods. There is a need to investigate the mechanisms behind
high-performing cells to better understand the factors that lead
to high performance. A deeper comprehension of which pro-
cessing variables most-impact performance will accelerate the
research and development of PCC devices.

PCC fabrication is complex, involving numerous processing
steps with diverse fabrication methods and intricate materials.
This complexity likely contributes to signicant cell-to-cell and
laboratory-to-laboratory variability. The multitude of possible
parameters and cell characteristics that could impact perfor-
mance makes it challenging to discern interrelations using
simple statistical regression.

This study takes a novel approach by examining a relatively
large experimental dataset consisting of 86 cells, all fabricated
in the same laboratory by a single researcher, to better under-
stand which processing parameters and cell characteristics
most signicantly impact peak power density. Importantly, this
dataset represents a full and unbiased collection of cells
successfully tested by a single researcher over several years,
including both high and low-performance cells. For each cell,
68 processing parameters and cell characteristics are tracked to
identify sources of cell-to-cell variability. Machine learning
models are employed to unravel the complex interrelationships
between these parameters and PCC performance.

Machine learning (ML) models can enable the under-
standing of the complex interrelationship between processing
parameters, cell characteristics, and performance. ML models
program computers to optimize a performance criteria based
on data or experience.29 These models develop pattern recog-
nition from prior data and attempt to minimize error in future
predictions of target values based on unseen input data. Thus,
ML models can explain complex phenomena and interrela-
tionships that humans are unable to solve independently.29 In
the eld of PCCs and solid-oxide cells, ML models have been
utilized for materials selection and understanding cell fabrica-
tion processes.30,31 We have previously applied ML models to
determine which processing parameters most impact negatrode
shrinkage and electrolyte grain size.32

This paper implements Gaussian process (GP) and random
forest regression (RFR) models to analyze the PCC data. GP
models are probabilistic, non-parametric ML tools that predict
probability distributions over potential outcomes rather than
single target values.33,34 This feature allows GPs to quantify
prediction uncertainty, making them robust when dealing with
10864 | J. Mater. Chem. A, 2025, 13, 10863–10880
noisy data.33,35 As non-parametric models, GPs can capture
complex data patterns and generate condence intervals for
predictions without assuming a xed number of parameters.34

The computational cost of GPs scales with the cube of the
number of observations,33 making them suitable for the small
datasets used in this study.

GP models have been applied to adjacent elds, such as
solving the distribution of relaxation times,36 and to diverse
areas like geostatistics,37 but have not yet been used to analyze
PCC performance. The ability of GP models to handle small,
noisy, and non-linear data makes them well-suited for PCC
device analysis.

Random forest regression (RFR) models predict target values
using an ensemble of decision trees. Decision trees are
owchart-like models that recursively split data based on
parameter thresholds to minimize prediction error.38 In
random forest models, each tree is built using random subsets
of parameters and observations,39 decorrelating predictors and
improving accuracy. By averaging predictions from multiple
trees, random forests reduce overtting risk while enhancing
prediction reliability.39,40 RFR models work with raw feature
values, requiring minimal data preprocessing. The ability of
RFR to model complex, non-linear relationships with high
accuracy makes them well-suited for analyzing PCC data.

Section 3.1 of this study employs GP and RFR models to
identify the processing parameters and cell characteristics that
most impact PCC fuel cell performance. All data fed into the ML
models is from PCCs utilizing BaCe0.4Zr0.4Y0.1Yb0.1O3−d
(BCZYYb4411) electrolytes that were fabricated and tested at the
Colorado School of Mines. The models analyze data from 86
PCCs, encompassing 14 parameters (post-initial selection) that
encode to 137 features, with peak power density (PPD) as the
target variable. Feature importance, averaged over ve-fold cross-
validation, determines which features most signicantly inu-
ence PPD prediction. Both GP and RFR models calculate feature
importance, with RFR additionally generating partial depen-
dence plots (PDPs) to visualize how key features impact PPD.

In Section 3.2, this process is repeated for electrolysis
performance using data from 84 PCCs encompassing 19
parameters (aer initial parameter selection) that encode to 164
features. The target value for the electrolysis performance
studies is current density (CD) at 1.3 V. Additionally, the PPD
and CD data is correlated, using simple regression, with ohmic
and polarization resistance (Rp) data from 88 BCZYYb4411 cells
fabricated and tested across two universities, as described in
Section 3.3.

This study reveals crucial factors for optimizing PCC
performance in both fuel cell and electrolysis operation. Evap-
orating off organics prior to sintering, small electrolyte thick-
ness to grain size ratios, and small NiO particle sizes lead to
increased performance. Optimizing the positrode morphology
to decrease Rp should be prioritized for fuel cell performance
gains. Optimizing the electrolyte microstructure to lower ohmic
resistance should be prioritized for electrolysis performance
gains. Generally, PCCs with high fuel cell performance exhibit
high electrolysis performance, though Rp and ohmic resistance
are uncorrelated with xed material sets.
This journal is © The Royal Society of Chemistry 2025
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2. Experimental
2.1 Materials powder fabrication

All cells in this study were fabricated through the solid-state
reactive sintering process (SSRS), a method that integrates cell
fabrication, phase formation, grain growth, and densication
into a single high-temperature sintering step.41–44 This process
involves mixing stoichiometric ratios of precursor powders with
a sintering aid, then forming them into the desired cell shape
and architecture. During subsequent high-temperature sinter-
ing, the single-phase ceramic and the negatrode-electrolyte
assembly are formed in a single step. SSRS can decrease cell
manufacturing costs.8

To create the BCZYYb4411 electrolyte powder, stoichiometric
precursor powders of BaCO3, CeO2, ZrO2, Y2O3, and Yb2O3 were
wet-ball milled for two days in isopropanol with 3 mm yttria-
stabilized zirconia (YSZ) spherical milling media. The solution
was then dried at 93 °C in a drying oven and milled for one
additional day. Precursor supplier, purity, and particle size
information can be found in ESI Table S1.†

The negatrode powder was made with stoichiometric ratios
of BaCO3, CeO2, ZrO2, Y2O3, Yb2O3, and either of two types of
NiO, coarse NiO or ne Type F NiO. Potato starch and corn
starch (Alfa Aesar) were used as pore formers. The ratios of
electrolyte precursors to NiO to starch were varied from 29 to
36 wt%, ∼47 wt%, and 16–23 wt%, respectively as part of this
study. The negatrode powders were wet-ball milled in iso-
propanol with 5 mm magnesia-stabilized zirconia cylindrical
milling media for two days. The solution was dried at 93 °C in
a drying oven and then milled for one additional day. The
resulting negatrode powder was sieved through a 250 micron
mesh to eliminate agglomerates.

The BaCo0.4Fe0.4Zr0.1Y0.1O3−d (BCFZY) positrode powder was
made through sol–gel processing. Stoichiometric ratios of
Ba(NO3)2, Co(NO3)2$6H2O, Fe(NO3)3$9H2O, 35 wt% zirconyl
nitrate solution in dilute nitric acid, and Y(NO3)3$6H2O were
dissolved into DI water while being mixed on a stir plate. Eth-
ylenediaminetetraacetic acid (EDTA) and citric acid mono-
hydrate were added to the solution. The ratio of EDTA to citric
acid to metal ions was 1.5 : 1.5 : 1. Ammonium hydroxide was
added to the solution in a ratio of 300 mL per 0.1 mol of BCFZY
powder. Precursor supplier and purity can be found in ESI Table
S2.† The solution was mixed at 250–300 °C until the gel became
viscous to the point that the stir bar was not able to move. The
gel was dried at 150 °C for 24 hours. The resulting charcoal was
calcined at 600 °C for ve hours. The calcined powder was then
ball milled for one day in isopropanol with a 50 : 50 ratio of
3 mm YSZ spheres and 5 mm YSZ cylinders. The isopropanol to
media ratio was 2 mL : 1 g. The milled solution was dried and
passed through a 250-mesh sieve to break up agglomerates.
2.2 Cell fabrication

Green negatrode pellets were fabricated by mixing a liquid-
binder solution with negatrode precursor powders in a mortar
and pestle in concentrations of 10–14 wt%. The liquid-binder
solution was composed of 10 wt% polyvinyl alcohol in DI
This journal is © The Royal Society of Chemistry 2025
water. The binder-powder mixture was weighed into 2–4 g
pellets and pressed in a 2.8 cm (1 1/8 inch) diameter metal die at
52 MPa (7500 lbs) for 10 seconds. This negatrode pellet serves as
the mechanical support for the cell.

Following dry pressing, the pellet was spray-coated with
electrolyte. The electrolyte spray solution was made using
13 wt% BCZYYb4411 precursors, wt% V-006, 2.5 wt% alpha
terpineol, 1 wt% polyethylene glycol, 1 wt% poly-
vinylpyrrolidone, and 80 wt% isopropanol. More information
on the polymers used in cell fabrication can be found in ESI
Table S3.†

The electrolyte was applied to the green, as-pressed negatrode
using a hand sprayer (Master Airbrush model S68) or an auto-
mated ultrasonic spray coating system (Sono-Tek Align). The
spray nozzle was mounted onto a three-axis translation stage
controlled with a microprocessor (Arduino uno R3). Each cell
underwent 5–18 layers of electrolyte spray application. The nozzle
was positioned approximately 5 cm above the cells. Key spray
parameters include spray power (3–5W), air ow rate (6–8 SLPM),
and ow rate of the electrolyte spray solution (0.3–0.9mLmin−1).
The air ow helps shape the spray pattern and inuences the rate
of solvent evaporation. Negatrode and positrode functional layers
(NFL and PFL, respectively) were applied to the cells in a similar
manner, typically with one or two layers.

The electrolyte-negatrode co-sintering process began with
a ve-hour binder burnout step at 450 °C. Subsequently, the
high-temperature step was carried out at temperatures between
1475 °C and 1550 °C, with holds spanning 0.1 or 5 hours and
ramp rates of 3 °C min−1. The cells were placed on setters made
from either alumina (AdValue Technology, AL-D-82-6) or
yttrium-doped magnesia-stabilized zirconia (MgSZY) with
varying degrees of prior usage. All cells were sintered while
covered with alumina kiln furniture contaminated with nickel
(blue) that allowed for air ow. All cells were sintered in the hot-
zone of the furnace. Sintering neighbors were introduced to the
furnace environment by placing powders in crucibles posi-
tioned a few centimeters from the cells.

The BCFZY precursor powders were mixed into a paste
consisting of 2.5 g BCFZY powder, 0.5 g 20% solsperse 28 000 in
alpha terpineol, and 0.2 g 5% V-006 in alpha terpineol. The
paste was painted onto the sintered electrolyte with a total area
of 0.5 cm2. The BCFZY positrode was sintered at 900 °C for ve
hours with a ramp-rate of 2 °C min−1. Gold contact paste (fuel
cell materials, 233 001) diluted with isopopanol, silver contact
paste (Vivtek, DAD-87), and silver wires (Alfa Aesar, 0.01 inch
diameter, 99.9%) were placed on the electrodes to serve as
current collectors and voltage sensors. The research at Colorado
School of Mines (Mines) was conducted in a laboratory at an
elevation of 1750 m, where the oxygen partial pressure (pO2) is
0.17 atm, compared to 0.21 atm at sea level. All cells analyzed in
this paper have the material-sets BCZYYb4411 + NiO—
BCZYYb4411—BCFZY.
2.3 Cell testing

PCC performance was characterized in a custom-built
laboratory-scale test stand (ESI Fig. S1†). The cells were
J. Mater. Chem. A, 2025, 13, 10863–10880 | 10865
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heated to 550 °C at 1–3 °C min−1 without gas ow. Reduction
occurred at 550 °C with 5 SCCM H2 balanced with 45 SCCM Ar
(dry) owing to the negatrode, and 100 SCCM synthetic air (21
SCCM O2, 79 SCCM Ar) bubbled through water at room
temperature owing to the positrode. Ar was used instead of N2

due to test stand constraints. Cell open circuit voltage (OCV)
was recorded during heat-up and reduction. The reduction
process lasted 1.5 hours to one day. Post-reduction, H2

concentration was gradually increased to 100% on the nega-
trode. Then air ow was increased to 200 SCCM. Some earlier
tests used 50 or 100 SCCM air ow to the positrode. Aer
increasing the air ow, the cell was le to equilibrate for at least
15 minutes.

Aer equilibration, electrochemical impedance spectroscopy
(EIS) was performed potentiostatically with an excitation
amplitude of 10 mV. This was followed by a fuel cell mode
current–voltage curve (IV-curve) from OCV to 0.4 V at a scan rate
of 0.001 A s−1. Aer a brief rest, an electrolysis IV-curve was
obtained from OCV to 1.35–1.5 V at 0.001 A s−1. All performance
data was collected at 550 °C using a Gamry Reference 3000
potentiostat with a ve-probe setup. EIS data was analyzed to
determine ohmic and polarization resistances using soware
developed by Huang et al.45–47

2.4 Cell characterization

Cell morphology was examined using scanning electron
microscopy (SEM, Thermo-Fischer Scientic, Phenom). Elec-
trolyte grain size was quantied by analyzing SEM surface
images using ImageJ soware. An imageJ macro placed three
concentric circles on the sample images; grain size was deter-
mined by dividing the number of grain-boundary intersections
by the total length of the circles. This process was repeated for
three images per sample. Electrolyte and positrode thickness
were calculated by measuring the electrolyte at 10 different
spots on three different cross-sectional images of the electrolyte
of each cell.

Particle sizes for negatrode and electrolyte powders were
determined using a Microtrac Flowsync laser diffraction
analyzer, averaged over three runs with a refractive index of 1.9.
The data was analyzed with the Microtrac soware.

2.5 Gaussian process machine learning models

Gaussian process (GP) machine learning models were imple-
mented using the GaussianProcessRegressor class from the
scikit-learn Python library. A Matérn kernel was chosen for its
ability to t rough data and superior performance in tting the
data in this paper compared to the common radial basis func-
tion kernel.48 Kernels calculate dot products in higherdimen-
sional feature spaces, without explicitly mapping data to those
spaces. This enables computationally efficient modeling of non-
linear relationships between datapoints.48

The GP model includes several tunable hyperparameters. The
a hyperparameter, which is kernel-independent, quanties the
magnitude of assumed (normally distributed) noise in target
value measurements. Meanwhile, the Matérn kernel depends on
hyperparameters n and length scale. The n parameter controls the
10866 | J. Mater. Chem. A, 2025, 13, 10863–10880
GP tting function's smoothness, with smaller values allowing
rougher functions. The lengthscale determines how quickly the
correlation between points decays with distance in the input
space. Closer points exhibit higher similarity. The lengthscale is
automatically tuned using an L-BFGS-B algorithm to maximize
the log-marginal-likelihood, a Bayesian metric that inherently
balances complexity with goodness of t (default setting in
GaussianProcessRegressor.t). The lengthscale optimization is
constrained to the range between 0.1 and 104.

Prior to modeling, numerical data-parameters underwent Z-
score normalization, which adjusts each parameter to a mean of
0 and standard deviation of 1. This process neutralizes scaling
differences and aids in handling outliers. Categorical data was
encoded using one-hot encoding (OHE), appropriate for
nominal data. No encoded parameters were dropped in the
OHE process.

Aer preprocessing, the data was split for cross-validation
using the KFold Python class. The parameters were set to n
splits = 5 and shuffle = True, with random state optimized
through hyperparameter tuning. The random state function
was used to seed the randomization of data into training and
testing groups, and was tuned so that it was not set arbitrarily.

The hyperparameters a and n, along with the random state
for cross validation, were tuned using the Optuna Python
package. Tuning alpha before tting the model lead to the
largest increases in goodness-of-t than any other hyper-
parameter. The hyperparameter tuning process for the GP
model involved:

1. Optimizing random state for ve-fold cross-validation
using 150 Optuna trials with values between 0 and 100. The
state yielding the lowest negative log-likelihood (NLL) was
selected.

2. Optimizing a (range: 10−5–1) in GaussianProcessRe-
gressor using 250 Optuna trials, selecting the value that results
in the smallest NLL for the model t.

3. Testing Matérn kernel n values (0.5, 1.5, and 2.5), selecting
the one that results in lowest NLL for the model t.

Aer hyperparameter optimization, feature importance was
calculated. This was done using scikit-learn's permutation
importance function, with rootmean squared error (RMSE) as the
error metric. This method assesses each parameter's impact by
measuring the effect of its removal from the model. Positive
importance indicates that removal worsens the t, while negative
importance suggests potential improvement. To ensure robust
results from the small datasets in this paper, feature importance
was averaged across all folds of ve-fold cross-validation.

To evaluate GPmodel performance, ve-fold cross-validation
was employed using the same KFold call as for feature impor-
tance. For each fold, RMSE, mean absolute error (MAE), nega-
tive loglikelihood (NLL), and R2 values were calculated and
averaged. RMSE and MAE measure the magnitude of errors
between predicted and observed values, both computed in the
target value's units. RMSE penalizes larger errors more heavily.
Lower RMSE and MAE values indicate better model t.

The R2 coefficient, ranging from −N to 1, indicates how well
the model explains variance in measured target variables. An R2

value of 0.7 indicates that the model can explain 70% of the
This journal is © The Royal Society of Chemistry 2025
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variance in the target values. Higher R2 values signify better ts.
Negative log-likelihood (NLL), tailored for probabilistic models
like GP, measures prediction accuracy and condence of the
model in those predictions. Lower (more negative) NLL values
are preferred. The standard deviation of the model-predicted
values for the NLL calculation was calculated using
GaussianProcessRegressor.predict.

Learning curves, which show how model performance
changes with training and validation sample sizes, were also
used to evaluate goodness-of-t.49 Additionally, coverage plots
were employed to analyze t quality. These plots display
measured target values against model predictions with 95%
condence intervals. The percentage of target values falling
within the predicted range is the coverage percentage, with
higher percentages being desirable.

2.6 Random forest regressor machine learning models

Random forest regressor (RFR) models were implemented using
scikitlearn's RandomForestRegressor class. Four hyper-
parameters were tuned:

1. n estimators: number of trees (estimators) in the model
(range: 50– 100).

2. Min samples split: minimum samples required to split an
internal node. If a node has below the min samples split it
becomes a leaf (end) node (range: 2–10).

3. Min samples leaf: minimum samples required in a leaf
node (set to 1 based on early ndings).

4. Max features: fraction of total features to consider when
looking for the optimal split at each node in the decision tree. It
is represented by a fraction (range: 0.1–1).

One-hot encoding (OHE) preprocessing was applied to
categorical data, while numerical data remained unprocessed
due to random forest models' insensitivity to input feature
scaling. RFR models used the same data and random state as
their corresponding GP models. The hyperparameters n
estimators, min samples split, and max features were concur-
rently tuned using 500 Optuna trials. The optimal value of min
samples leaf was consistently found to be 1 so it was not tuned.

Aer hyperparameter tuning, feature importance was
calculated identically to the GP models and averaged over ve-
fold cross-validation. Model performance was evaluated using
ve-fold cross-validation, employing RMSE, MAE, and R2 as
predictors. Additionally, an out-of-bag (OOB) score based on R2

was used to assess model ts. OOB score, a performance metric
specic to RFR models, estimates model accuracy using data
points omitted from each tree's training data set. This provides
a reliable measure of the model's generalization to unseen data.
Learning curves were also used for model validation.

Partial dependence plots (PDPs) were generated using Par-
tialDependenceDisplay.from_estimator with the trained RFR
and parameter training data as inputs. Partial dependence plots
are only shown for numerical data columns.

2.7 Parameter selection

Seventy processing parameters, listed and dened in Appen-
dices A and B ESI,† were considered in total. Parameter
This journal is © The Royal Society of Chemistry 2025
selection was conducted to ensure an optimal model t using
statistically sound methods. For the BCZYYb4411 models, 29
parameters were removed due to missing values, unique cate-
gorical parameters, zero variance, and signicant collinearities
with other parameters (summarized in ESI Table S4†), leaving
39 viable parameters. Parameter selection was conducted with
the GP models rather than the RFR models due to reduced
hyperparameter tuning requirements.

The hyperparameters for the GP model with 39 parameters
were tuned as described in Section 2.5. The 39-parameter model
was then t and the top- and bottom-10 most important
features were recorded. Additionally four performance metrics,
root mean squared error (RMSE), mean absolute error (MAE),
NLL, and R2, were recorded. The feature selection process pro-
ceeded as follows:

1. The least important parameter (most negative feature
importance, assumed to worsen the t) was removed.

2. The model was re-t, and the outcomes were categorized:
� No change in metrics: feature marked as neutral and

retained.
� Any of the performance metrics got worse (NLL had to

change > j0.005j to be considered signicant): feature marked as
important and retained.

� Any metrics improved (NLL change > j0.005j): feature
marked as noisy and removed.

� Some metrics increased while other decreased: feature
marked as mixed and retained.

This process was iterated for all 39 parameters. Once the
bottom-10 features were occupied by essential categorical
parameters, the remaining parameters were sequentially
removed by their listed order. Aer all parameters were evalu-
ated, neutral parameters were excluded to form the nal model.

A crucial assumption of this procedure is that a parameter's
impact on the model typically remains consistent, irrespective
of other parameters present. This consistency allows for linear
parameter selection, eliminating the need to test every possible
parameter permutation to achieve the optimal model.

3. Results and discussion
3.1 ML model results on fuel cell performance

This section presents and analyzes the Gaussian process (GP)
and random forest regressor (RFR) model results, identifying
the processing parameters and cell characteristics that most
signicantly impact BCZYYb4411 fuel cell performance. All
peak power density values were obtained at 550 °C. All cells were
fabricated and tested at the Colorado School of Mines (Mines).
Additional data were not extracted from the literature, as the
model requires all parameters to have values to t the data.
Many of the parameters tracked in this paper go unreported.
Two cells were excluded from the model: one due to excessive
missing values, and another which had an Rp value exceeding
three standard deviations from the mean (ESI Fig. S2†).

Initially, 29 parameters were dropped due to zero variance or
high collinearity (ESI Table S4, detailed in Appendix B, ESI†). Of
the remaining 39 parameters (detailed in Appendix A, ESI†), 25
were removed during the subsequent down-selection process as
J. Mater. Chem. A, 2025, 13, 10863–10880 | 10867
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they either worsened or did not affect the t (ESI Table S5†
summarizes the effect of removal). The nal data model
incorporates performance data from 86 cells, encompassing 14
parameters encoded to 137 features. These 14 parameters are
found in the “model got worse” and “slightly worse” columns of
ESI Table S5,† because their removal led to worse model ts. It
is crucial to note that ML models demonstrate correlation, not
causation. ML-derived information can be valuable in guiding
follow-on causation studies.

Fig. 1 illustrates the importance of the 10 most signicant
features as determined by the GP model. Feature importance
indicates the increase in model error if a particular feature is
removed. Thus, more important features are stronger predictors
of the target value and, if modulated, are likely to signicantly
impact it. It is noteworthy that feature importance does not
capture the directionality of its effect on the target value (i.e., it
can positively or negatively impact the target value).

Four of the 10 parameters in Fig. 1 relate to the positrode,
four to the electrolyte, and three to the negatrode. This distri-
bution underscores the signicant role of positrode and elec-
trolyte characteristics in determining fuel cell performance.

Perhaps surprisingly, the parameter days (spray to sinter)
has the largest impact on performance. This parameter repre-
sents the number of days between spraying the electrolyte and
co-sintering the cell. Cells were stored in a desiccator between
spraying and sintering, and thus may have experienced organic
evaporation (i.e., isopropanol, terpineol and PEG-400 from the
spray solution). This could bring benecial rearrangement of
particle packing in the green electrolyte layer and improved
interfacial contact between the electrolyte and the negatrode
during extended storage. Recent research indicates that higher
CO2 content can impede the sintering of BCZY-based perov-
skites;50 removing organics prior to sintering could therefore
Fig. 1 Feature importance results from the GPmodel. The top 10most
important encoded features, color-coded by the cell layer or process
they represent, are displayed. This model analyzed 86 BCZYYb4411
cells and 14 parameters, encoded to 137. A Matérn kernel with a length
scale of 919 and n = 0.5 was used for fitting. Model performance
metrics and detailed goodness-of-fit results appear in ESI Table S7 and
Fig. S3,† respectively.

10868 | J. Mater. Chem. A, 2025, 13, 10863–10880
help explain the positive impact of the days (spray to sinter)
parameter.

Seven of the 86 cells were dried in an oven at 100 °C for a few
hours before sintering. However, this categorical feature was
dropped from the fuel cell GP model due to its minimal effect,
possibly resulting from low variance causing noise in the model
t. A deeper analysis of the days (spray to sinter) data (ESI Table
S6†) also suggests that the high importance of this feature may
be at least somewhat coincidental, as many of these best cells
were also part of the same co-sinter and electrolyte spray batch.
However, as the co-sinter and electrolyte spray batch categorical
parameters were divided into numerous smaller subgroups (44
and 29, respectively), they yielded low individual impact on the
model. ML models typically require thousands to millions of
data points for robust results. While these models, based on
only 86 cells, provide valuable insights, they are not infallible.

A second important nding in Fig. 1 is the signicance of the
electrolyte thickness to grain size ratio in predicting fuel cell
performance. This aligns with numerous studies showing that
grain boundaries are highly resistive51–53 and have higher acti-
vation energy for proton motion than the bulk,53,54 due to space
charge layer effects and grain boundary disorder.54–59 Electrolyte
thickness to grain size ratio is essentially indicative of the
number of lateral grain boundaries that a proton is expected to
cross. A schematic of electrolyte thickness and grain size
measurements can be found in ESI Fig. S4.†

The ratio of electrolyte thickness to grain size is rarely re-
ported in literature when discussing cell performance. The GP
model suggests that, using identical materials, this ratio is an
impactful parameter in determining peak power density. This
nding is noteworthy, given that ORR activity of the positrode is
oen considered the rate-limiting step in proton-conducting
ceramic fuel cell performance.6,60–62 It may help to explain the
wide performance variance observed in the literature for cells
made with nominally identical positrode materials. Variation
across studies in literature may therefore have less to do with
the positrode in these cases, and more to do with the grain size
and thickness of the electrolyte.

Days (positrode application to sinter) is a signicant
parameter, but its low variance requires cautious interpretation.
Only 4 out of 86 cells had a value of 1 for this parameter, with
three of these cells being top performers. Despite low con-
dence due to limited data, we hypothesize that extended time
might improve electrode/electrolyte contact through particle
settling or reduced CO2 production during sintering via pre-
evaporation of organics.63 While denitive conclusions are
precluded, this parameter merits further investigation in future
studies.

The nal numerical parameter appearing in the top 10 is NiO
particle size in the negatrode. This is unexpected, as the nega-
trode is one of the least studied PCC components due to its
similarity to well-researched solid-oxide fuel cell negatrodes.64–66

As will be shown later, the NiO particle size parameter appears
to have a threshold effect, leading to a strong boost in perfor-
mance when the NiO particle size falls below a critical value.

A key insight from Fig. 1 is the prevalence of categorical
parameters, such as Positrode paste_11Feb21 BCFZY and
This journal is © The Royal Society of Chemistry 2025
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Negatrode batch_14Feb21, among the most important features.
While partly due to the encoding process, which resulted in
many categorical features, we believe this nding also reects
the signicant batch-to-batch variation in precursor materials,
suspensions, fabrication techniques, and furnace runs. Such
variability complicates drawing accurate conclusions from
literature in this low-throughput eld.

To conrm the ndings from Fig. 1, a random forest regressor
(RFR) model was applied to the nal dataset, with results shown
in Fig. 2. The consistency between Fig. 1 and 2 reinforces the
initial conclusions, with top features largely maintaining their
importance and order across both models. The RFR model
supports the unexpected prominence of days (spray to sinter) as
the most critical parameter. Additionally, electrolyte thickness to
grain size ratio and NiO particle size (mm) continue to be signif-
icant predictors of fuel cell performance.

Positrode thickness (mm) appears as a new numerical feature
in the RFR model, further emphasizing the importance of
positrode characteristics and ORR activity on fuel cell perfor-
mance. It is worth noting that positrode thickness measure-
ments varied considerably for individual cells, introducing
noise that may reduce its predictive capability and perceived
importance. This may have caused its lower prominence in the
GP model.

Fig. 2 emphasizes the importance of positrode features on
fuel cell performance. Five of the top 10 most-important
features relate to the positrode side of the cell. Two electrolyte
features rank among the top three, highlighting the signicant
impact of electrolyte characteristics. The negatrode contributes
two important features, indicating that negatrode microstruc-
ture also impacts performance.

The prevalence of categorical parameters, mirroring Fig. 1,
underscores that minor cell-to-cell and batch-to-batch differences
Fig. 2 Feature importance results from the RFR model. The top 10
most important features are displayed, color-coded by the cell layer or
process they represent. This model analyzed 86 BCZYYb4411 cells and
14 parameters, encoded to 137 features. The hyperparameters used for
this model can be found in ESI Table S8.† Model performance metrics
can be found in ESI Table S7.† Detailed goodness-of-fit results can be
found in ESI Fig. S5.†

This journal is © The Royal Society of Chemistry 2025
are major sources of variability in protonic-ceramic fuel cell
performance, particularly in regard to the positrode. As the
second-most important feature is the positrode paste batch, this
suggests that paste rheology strongly affects performance, hinting
at the signicant impact of positrode microstructure. Although
challenging to measure post-sintering, Fig. 2 suggests that the
surface area and microstructure of the positrode may be among
the largest contributors to cell-to-cell performance variation.

A signicant advantage of RFR models is their ability to t
numerical data in its native form, enabling model outputs to
retain the original units of the measured values. Consequently,
partial dependence plots (PDPs) can be generated from the RFR
model in intuitive units, aiding in decision-making. PDPs are
valuable as they isolate and display the predicted relationship
between a single parameter and the target value. Fig. 3 presents
PDPs for every numerical column among the top 10 most
important features in the RFR model.

Fig. 3a demonstrates a signicant improvement in fuel cell
performance with increased time between spraying the elec-
trolyte and sintering, plateauing aer 50 days. This trend may
be inuenced by several high-performing batches sintered 30–
50 days post-spraying (ESI Table S6†). Considering grain size is
already accounted for, the lower CO2 concentration from less
organics in the furnace likely improves the grain boundary
characteristics. A plausible explanation is that higher pO2 in the
furnace leads to either less defective grain boundaries or a more
favorable space-charge layer (higher pO2 / fewer oxygen
vacancies / less-positive space charge layer / less-resistive
grain boundary). The potential benets of gradual organic
evaporation suggested by these ndings warrant further inves-
tigation. Additionally, increased CO2 concentration could
stymie phase formation and hinder sintering.50,67 No parame-
ters in the model account for phase purity, so perhaps days
(spray to sinter) acts as a proxy for phase purity.

Fig. 3b illustrates the PDP for electrolyte thickness to grain
size ratio. Substantial performance gains are observed when the
electrolyte to grain size ratio drops below two, and again when
the ratio reaches unity. Lower average electrolyte thickness and
larger average grain size reduce the number of resistive grain
boundaries that protons must cross. The signicant perfor-
mance gains observed when the ratio reaches unity likely reect
the attainment of a bamboo-like electrolyte grain structure,
which eliminates lateral grain-boundary encounters.51–59 Given
the grain size distribution aer sintering,58,68 further decreasing
this ratio below one may continue to enhance performance.

Fig. 3c exhibits the PDP for NiO particle size in the negatrode
precursor powder. Performance increases substantially when
NiO particle size falls below six microns. This improvement is
possibly due to smaller NiO grains having larger surface area
and higher sintering driving force,69 potentially leading to better
negatrode densication and improved electrolyte sintering.17

This could enhance conduction pathways for protons and
electrons, potentially augmenting the hydrogen oxidation
reaction (HOR).70

Additionally, smaller NiO particle sizes will lead to more
electrochemically active triple phase boundary area further
increasing HOR activity. While HOR is not considered rate-
J. Mater. Chem. A, 2025, 13, 10863–10880 | 10869
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Fig. 3 Partial dependence plots (PDPs) for the top five most important numerical parameters in predicting fuel cell performance, as determined
by the RFRmodel. Note that the y-axis scaling differs for each feature, with more important features having a larger y-axis range. The histograms,
right y-axis, illustrate the underlying structure of the raw-parameter data.
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limiting in PCFCs, distribution of relaxation times analysis
reveals non-negligible high-frequency resistance associated
with negatrode processes such as these.47,71 While porosity is
necessary for mass transfer to reaction sites, the 40 vol% change
of NiO to Ni upon reduction leads to large amounts of inherent
porosity (ESI Fig. S4c†). PCFCs have been fabricated using
negatrodes without pore former and have achieved favorable
performance.72,73 Performance gains plateau below 6 mm. This
threshold may vary with different processing techniques and
cell materials but it suggests that there is a critical NiO particle
size for signicant fuel cell mode performance improvements.

Fig. 3d suggests that waiting a day to sinter the positrode
aer application could increase performance. Despite low
variance in this parameter, we suspect the delay might allow for
organics evaporation or favorable particle settling. Both of these
effects could enhance the sinterability, morphology and
adherence of the positrode.

Fig. 3e indicates an optimal positrode thickness of 20 to 25
mm. This is consistent with previous experimental and compu-
tational ndings for BCFZY positrodes.74,75 Studies of solid-
oxide fuel cell positrodes generally recommend thicknesses
10870 | J. Mater. Chem. A, 2025, 13, 10863–10880
between 10 and 35 mm.76–79 Performance improves up to a posi-
trode thickness of 25 microns due to increased ORR reaction
sites. However, thicknesses beyond this show decreased
performance, likely due mass transfer losses due to the nano-
scale structure of the positrode. Additionally, BCFZY's low
electronic conductivity can lead to increased resistance
losses.80,81

Both the GP and RFR ML models highlight the signicant
impact of the positrode and electrolyte on fuel cell mode
performance. Electrolyte thickness to grain size ratio strongly
inuences performance and should be reported when
comparing cell performances. Although the negatrode has
a smaller relative effect, NiO particle size should be kept below 6
mm to maximize cell performance. The time delays between
spraying and sintering, and between positrode application and
sintering, warrant further investigation. Both delays show
surprisingly large performance impacts, but collinearity with
a high performing electrolyte spray batch of cells and low vari-
ance could be skewing these parameters. Positrode thickness
should be maintained at 20–25 microns to maximize ORR
activity without excessive electronic resistance.
This journal is © The Royal Society of Chemistry 2025
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3.2 Model results on electrolysis performance

This section analyzes BCZYYb4411 electrolysis performance
using Gaussian process (GP) and random forest regressor (RFR)
models, identifying the processing parameters and cell char-
acteristics with the most signicant impact. The models are
based on current density values obtained at 550 °C and 1.3 V for
84 cells.

Two cells were excluded from themodel: one due to excessive
missing values, and another which had an ohmic resistance
exceeding three standard deviations from the mean (ESI
Fig. S6†). The electrolysis model contains two fewer cells than
the fuel cell model, as two cells lacked electrolysis performance
data.

Parameter selection resulted in the removal of 19 parameters
that either worsened the t or had no effect. ESI Table S9† lists
the 39 parameters considered for analysis and the effects of
their removal from the model. The nal data model incorpo-
rates performance data from 84 cells, encompassing 20
parameters encoded to 163 features. These parameters are lis-
ted in the “model got worse”, “slightly worse”, and “mixed”
columns of ESI Table S5.†

Fig. 4 displays the importance of the 10 most signicant
features determined by the GP model for electrolysis perfor-
mance. The similarity between fuel cell and electrolysis feature
importances in Fig. 1 and 4, respectively, is notable. This
similarity reects the correlation between fuel cell and elec-
trolysis cell performance, which will be demonstrated later in
this study.

Electrolyte thickness to grain size ratio was found to have the
largest impact on electrolysis performance. This highlights the
signicant inuence of resistive grain boundaries in the elec-
trolyte on proton transport during electrolysis. The effect is
more important in the electrolysis model compared to the fuel
Fig. 4 Feature importance results from the GP model on electrolysis
performance. The top 10most important features are displayed, color-
coded by the cell layer or process they represent. This model analyzed
84 BCZYYb4411 cells and 20 parameters, encoded to 163 features
using a Matérn kernel with a length scale of 29.3 and a n = 1.5. Model
performance metrics and detailed goodness-of-fit results appear in
ESI Table S7 and Fig. S7,† respectively.

This journal is © The Royal Society of Chemistry 2025
cell model, emphasizing that electrolyte characteristics have
a greater impact on electrolysis performance.

Perhaps surprisingly, the model revealed that absolute
humidity during co-sinter (g m−3) strongly affects electrolysis
performance. Our previous work showed that this parameter
hinders negatrode shrinkage and electrolyte grain growth.32 Its
substantial effect on electrolysis performance further under-
scores the importance of electrolyte characteristics.

Days (spray to sinter) and days (positrode application to
sinter) also signicantly impact electrolysis performance. As
was discussed in the context of the fuel cell model analysis,
allowing time for organics to evaporate off the cell likely bene-
ts sintering. The high importance of these factors may be
overstated. This potential overestimation stems from the
collinearity of days (spray to sinter) with electrolyte spray and
co-sinter batches, as well as the limited data for days (positrode
application to sinter).

NiO particle size (mm) also emerges as important for elec-
trolysis performance, indicating that the negatrode side of the
cell affects electrolysis performance, albeit to a lesser extent
than in fuel cell performance. Positrode thickness shows
a larger effect on electrolysis performance compared to fuel cell
performance, likely due to the increased importance of the
positrode electronic conductivity under the higher current
densities associated with electrolysis-mode operation.

Comparing the GPmodels of fuel cell (Fig. 1) and electrolysis
(Fig. 4) performance reveals that electrolysis cell performance is
more closely tied to electrolyte characteristics. Six of the top 10
most important parameters in the electrolysis GP model relate
to the electrolyte or the co-sintering step, which signicantly
inuences electrolyte microstructure. The positrode and nega-
trode each account for only two parameters among the top 10
features.

The greater importance of electrolyte microstructure in
electrolysis performance compared to fuel cell performance
likely stems from the asymmetry of chemical species produc-
tion and transport in these two modes of operation. In fuel cell
mode, water vapor generated at the positrode occupies potential
ORR reaction sites and negatively impacts reactant mass
transport, increasing polarization resistance. This explains why
many positrode materials oen perform better in electrolysis
mode than in fuel cell mode, and also oen perform better on
oxygen ion conducting electrolytes than on proton-conducting
electrolytes at the same temperature.25,82,83

During electrolysis, water vapor consumption at the posi-
trode maintains open reaction sites on the positrode surface.
Furthermore, electrolysis operation decreases water vapor
partial pressure and increases oxygen partial pressure at the
positrode, yielding benecial thermodynamic and kinetic
effects.84 These factors reduce the performance burden on the
positrode, making the electrolyte the primary bottleneck for
electrolysis performance.

To validate and expand on the conclusions from Fig. 4, we
tted the nal dataset using a random forest regressor (RFR)
model, with results shown in Fig. 5. While similar to Fig. 4,
there are notable shis in feature importance. Days (positrode
application to sinter) dropped out of the top 10, likely due to its
J. Mater. Chem. A, 2025, 13, 10863–10880 | 10871
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Fig. 5 Feature importance results from the RFR model. The top 10
most important encoded features are displayed, color-coded by the
cell layer or process they represent. This model analyzed 84
BCZYYb4411 cells and 20 parameters, encoded to 163 features. The
hyperparameters used for this model can be found in ESI Table S8.†
Model performance metrics and detailed goodness-of-fit results
appear in ESI Table S7 and Fig. S8,† respectively.

Fig. 6 Partial dependence plots (PDPs) for the five numerical features
performance, as determined by the RFRmodel. The y-axis scaling varies fo
histograms, right y-axis, illustrate the underlying structure of the raw-pa
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low variance (affecting only 4 of 84 cells). Positrode thickness
(mm) also shied out of the top 10, possibly because the RFR
model placed higher importance on batch data. The RFR model
found days (spray to sinter) relatively more important than the
GP model did, while attributing less importance to electrolyte
thickness to grain size ratio, again likely due to an emphasis on
batch data.

Negatrode thickness (mm) appears in the top 10 most
important features, a unique occurrence across all four models
presented. During parameter selection, its removal led to mixed
results, as it improved some error metrics while worsening
others. We therefore suspect that the importance of negatrode
thickness (mm) is likely due to noise in the data.

The electrolysis RFR model further emphasizes the impor-
tance of the electrolyte in electrolysis mode performance. Seven
of the top 10 most important parameters relate to the electrolyte
or to the negatrode/electrolyte co-sintering process, while none
are associated with the positrode.

Fig. 6 shows the partial-dependence plots determined by the
RFR model for the numerical columns among the top 10 most
important features. Similar to the fuel cell performance PDPs,
among the top 10 most important features in predicting electrolysis
r each feature, withmore important features having a larger range. The
rameter data.

This journal is © The Royal Society of Chemistry 2025
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increasing the delay between spraying and cell sintering to ∼30
days can lead to signicant performance gains (Fig. 6a). This
effect may be due to collinearity with a high-performing batch of
cells. Although, it may also potentially reect real physical
effects associated with the benecial impact of organics
evaporation.

Similar to fuel cell performance, Fig. 6b shows signicant
electrolysis performance gains by decreasing the electrolyte
thickness to grain size ratio, with notable jumps at ratios of two
and one. However, for barium-based perovskites with moderate
to high zirconium ratios, like BCZYYb4411, electronic leakage
can occur at 550 °C.12,71,85–87 Decreased electrolyte thickness has
been shown to increase electronic leakage,88–90 potentially
explaining why this ratio is more important in electrolysis
mode. This might also explain why increasing positrode thick-
ness (mm), a top 10 feature in the GP model (Fig. 4), leads to
lower electrolysis performance (ESI Fig. S9†), as thicker BCFZY
positrodes increase the cell's electronic resistivity. While some
of the observed electrolysis performance gains due to a smaller
electrolyte thickness to grain size ratio may stem from (unde-
sirable) electronic leakage, most of the gain is likely the bene-
cial result of achieving a more favorable electrolyte
Table 1 Recommendations for improving fuel cell and electrolysis perfo

This journal is © The Royal Society of Chemistry 2025
microstructure. Given its signicance, we advise that this ratio
should always be reported when disclosing electrolysis perfor-
mance data.

Fig. 6c shows that electrolysis performance increases with
higher relative humidity during co-sintering. This result is
unexpected, as higher absolute humidity during co-sintering
typically impedes electrolyte grain growth and negatrode
shrinkage.32 We hypothesize that higher water content in the
furnace during co-sintering could potentially inhibit the
formation of amorphous grain boundary layers during electro-
lyte densication, thereby increasing electrolyte conductivity.91

Interestingly, cells dried in an oven at 100 °C before co-
sintering (a top 10 feature in the GP model, Fig. 4) show
increased performance compared to undried cells (ESI
Fig. S10†). Although this column has low variance (only 4 of 84
cells labeled “yes”), the combination of evaporating organics to
lower furnace CO2 concentration and maintaining higher water
vapor concentration during sintering might result in electrolyte
microstructures that benet electrolysis performance. To
examine the relationship between absolute humidity at co-
sinter and fuel cell performance, this parameter is reintro-
duced to the fuel cell RFR model aer its initial exclusion from
rmance based on the ML model results

J. Mater. Chem. A, 2025, 13, 10863–10880 | 10873
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the GP model. The PDP (ESI Fig. S11†) reveals a moderate but
positive correlation between humidity at co-sinter and fuel cell
performance.

The increase and subsequent plateau in electrolysis perfor-
mance shown in Fig. 6d with decreasing NiO particle size (mm)
mirrors the fuel cell performance response previously shown in
Fig. 3d. The rebound at around 8 mm is likely noise. Counter-
intuitively, Fig. 6e suggests that thicker negatrodes lead to
higher electrolysis performance. Negatrode thickness was
dropped from the fuel cell GP model, showed mixed results in
the electrolysis GP model, and wasn't among the most impor-
tant factors in the GP model; therefore we suspect this param-
eter's apparent importance is likely noise.

The electrolysis ML results on 84 BCZYYb4411 cells indicate
that electrolyte characteristics, particularly the electrolyte
thickness to grain size ratio, have the largest impact on
performance. The negatrode has a minor effect, but NiO particle
size should be kept below 6 (mm). The effects of the waiting time
between spraying and sintering, and between positrode appli-
cation and sintering warrant further investigation. Higher
humidity during co-sintering may benet electrolysis perfor-
mance even though it impedes electrolyte grain growth. Evap-
orating organics from the cell aer spraying (prior to sintering)
also appears benecial to electrolysis performance.

Table 1 summarizes recommendations for improving fuel
cell and electrolysis performance. These recommendations are
based on insights from the GP and RFR models applied to the
84+ BCZYYb4411 PCC devices discussed both in this section
and in Section 3.1.

3.3 Resistance and performance correlations

Electrochemical impedance spectroscopy (EIS) was performed
before obtaining fuel cell and electrolysis IV-curves for all
button cells in this study. From EIS data, ohmic and
Fig. 7 Relationships between resistance values and performance metr
(Mines) and Curtin University (Curtin). (a) Peak power density (PPD) vs.
density (CD) at 1.3 V vs. ohmic resistance. (d) CD at 1.3 V vs. Rp. All resis

10874 | J. Mater. Chem. A, 2025, 13, 10863–10880
polarization (Rp) resistances can be calculated.84 Ohmic resis-
tance is primarily attributed to ionic transport in the electrolyte,
although ionic and electronic transport in the electrodes and
electrode/electrolyte contact resistances can also contribute.84

Rp stems from resistances associated with various electro-
chemical reaction and mass transport processes at the
electrodes.84

Plotting ohmic and Rp against fuel cell and electrolysis
performance, as shown in Fig. 7, reveals notable trends. The
peak power density (PPD) and current density (CD) plots
contain data from 88 and 86 BCZYYb4411 cells, respectively.
Both data sets were ltered for ohmic and Rp values with Z-
scores above 3s. Each dataset in Fig. 7 was t with either an
exponential function (eqn (1)) or a reciprocal function (eqn (2)).
Full t details can be found in ESI Table S10.† All EIS data was
obtained at OCV at 550 °C. EIS data at OCV was used because it
is available for all 88 cells.

Plots (a), (b), and (d) in Fig. 7 were best t with the expo-
nential function, while (c) was best t with the reciprocal
function, with corresponding goodness of t parameters dis-
played on each of the plots. Denitions for eqn (1) and (2) are as
follows:

y = a exp(−bx) (1)

y ¼ 1

cx
(2)

where a, b, and c are tting parameters. These ts mirror
physical phenomena in the cell. The exchange current density,
jo, has an exponential relationship with the activation energy for
the reaction (DG‡) as shown in eqn (3):84

jo ¼ nFc*Rf exp

�
DG‡

RT

�
(3)
ics from cells fabricated and tested at the Colorado School of Mines
ohmic resistance. (b) PPD vs. polarization resistance (Rp). (c) Current
tance data for the cells was obtained at OCV at 550 °C.

This journal is © The Royal Society of Chemistry 2025
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Fig. 8 Correlations between (a) performance metrics and (b) resistance metrics. The performance and resistance data include 86 and 88
BCZYYb4411 cells, respectively. The data sets were filtered for outlier resistance values (>3s). Of the 88 cells, 85 were fabricated and tested at
Mines, and 3 at Curtin.
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where n is moles of charge transferred, F is Faraday's constant
(96 485C mol−1), c*R is reactant surface concentration (mol
cm−2), f is product decay rate, R is the ideal gas constant (J
mol−1$k−1), and T is temperature (K). Exchange current density
relates to electrode kinetic processes. On the other hand, the
reciprocal function, expressed by eqn (2), reects Ohm's law
(eqn (4)):

V ¼ IR; I ¼ V

R
(4)

where V is voltage (V), I is current (A), and R is resistance (U).
Fig. 7b shows that an exponential function more accurately

models the relationship between Rp and fuel cell performance,
as Rp is linked to electrode processes. Similarly, Fig. 7c illus-
trates that a reciprocal function most effectively captures the
relationship between ohmic resistance and electrolysis perfor-
mance, since ohmic resistance primarily reects the resistance
of proton motion through the electrolyte.

The goodness-of-t for PPD vs. Rp and CD vs. ohmic are
superior to their counterparts, indicating that Rp better predicts
fuel cell performance while ohmic resistance better predicts
electrolysis performance. Since Rp mainly derives from elec-
trode processes, while the ohmic resistance largely derives from
electrolyte processes, fuel cell performance will benet most
strongly from improving the electrodes and lowering Rp, while
electrolysis performance will benet most strongly from
improving the electrolyte and decreasing ohmic resistance. This
further substantiates the results from Sections 3.1 and 3.2,
where fuel cell mode performance was more strongly tied to the
positrode characteristics while electrolysis performance was
more strongly dependent on the electrolyte characteristics.

Furthermore, we nd that these trends are universal across
cells made and tested at two universities: Colorado School of
Mines (Mines) and Curtin University (Curtin) in Perth, Western
Australia. Although the sample size is small, Curtin cells follow
the same trends as Mines cells.

An optimal electrode morphology requires both nanoscale
structures to maximize surface area and well-sintered particle
networks to enhance ionic conductivity and effective active
surface area. Research has demonstrated that increased elec-
trode surface area correlates with improved performance.92–95

Minimal evidence exists for gas transport limitations on
performance, suggesting that most electrodes in literature
This journal is © The Royal Society of Chemistry 2025
achieve sufficient porosity. Distribution of relaxation time
(DRT) analysis indicates that surface diffusion and species
dissociation signicantly inuence polarization
resistance.47,71,96

At 550 °C, the average ohmic and Rp values aggregated across
all 88 tested cells are roughly even, as shown in ESI Fig. S12.†
This indicates that ohmic and Rp contribute approximately
equally to performance losses in the cells presented in this
paper.

Fig. 8 probes the cross-correlations between fuel cell vs.
electrolysis performance and between ohmic and polarization
resistance metrics. The fuel cell vs. electrolysis performance
comparison (Fig. 8a) reveals moderate correlation (R2 = 0.47),
suggesting PCCs with high fuel cell performance likely exhibit
high electrolysis performance. On the other hand, Fig. 8b
reveals no correlation between ohmic and polarization resis-
tance. While Luo et al. found ohmic and Rp were interrelated
when testing different electrode materials due to their effect on
electrolyte hydration,97 here we nd that these resistances are
unrelated when using xed material sets.
4. Conclusions

This study utilized Gaussian process and random forest
regressor machine learning models to identify the key pro-
cessing and cell morphology parameters that most impact fuel
cell and electrolysis performance in protonic-ceramic electro-
chemical cells. All PCCs in this paper were fabricated using the
material sets BCZYYb4411 + NiO—BCZYYb4411—BCFZY for the
negatrode, electrolyte, and positrode, respectively. Aer
parameter and cell selection, the fuel cell models analyzed 86
cells with 14 processing parameters (encoded to 137 features),
while the electrolysis models examined 84 cells with 20
parameters (encoded to 163 features). Additionally, general
correlations between PCC performance and resistance metrics
were t using 86 and 88 cells, respectively.

The electrolyte thickness to grain size ratio emerged as
a critical factor for both fuel cell and electrolysis performance,
with an ideal ratio # 1. Due to its importance in driving
performance, we recommend that this parameter be disclosed
when reporting PCC results. We identify a critical NiO particle
size threshold of ∼ 6 mm, below which performance increases
rapidly before plateauing. Evaporating organics from the
J. Mater. Chem. A, 2025, 13, 10863–10880 | 10875
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electrolyte and/or positrode layers before sintering could
signicantly improve performance, though collinearity and low
variance may have inuenced the importance of these param-
eters. For fuel cell mode operation, the optimal BCFZY posi-
trode thickness is 20–25 mm, while for electrolysis, a relative
humidity during co-sintering >15% can enhance performance.

Fuel cell performance is primarily inuenced by positrode
microstructure, with the electrolyte also playing an important
role. Reducing Rp should be prioritized for fuel cell performance
gains. Conversely, electrolysis performance is strongly governed
by electrolyte microstructure, and lowering ohmic resistance
should be the focus for improvement. Generally, PCCs with
high fuel cell performance likely exhibit high electrolysis
performance. However, with a xed material set, Rp and ohmic
resistance vary independently. These ndings provide valuable
insights for optimizing PCC performance in both fuel cell and
electrolysis operation.
Data availability

Raw performance data and open-source code utilizing ML
models to analyze the performance data are available online at
GitHub: https://github.com/C-Meisel/PCC-performance.
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