
1008 |  Phys. Chem. Chem. Phys., 2025, 27, 1008–1016 This journal is © the Owner Societies 2025

Cite this: Phys. Chem. Chem. Phys.,

2025, 27, 1008

Exploring buoyancy-driven effects
in chemo-hydrodynamic oscillations
sustained by bimolecular reactions

Adam Bigaj, *a Marcello A. Budroni *b and Laurence Rongy *a

Exotic dynamics, previously associated only with reactions involving complex kinetics, have been

observed even with simple bimolecular reactions A + B - C, when coupled with hydrodynamical flows.

Numerical studies in two-dimensional reactors have shown that oscillatory dynamics can emerge from

an antagonistic coupling between chemically-driven buoyancy and Marangoni convective flows, induced

by changes in density and surface tension, respectively, as the reaction occurs. Here, we investigate

reactions increasing both surface tension and density, leading to a cooperative coupling between the

flows and show how, in this configuration, buoyancy-driven contribution dampens spatio-temporal

oscillations of concentration. We finally identify the key parameters controlling the onset and persis-

tence of the oscillatory instability, namely the density and surface tension gradients, and the systems

height.

1. Introduction

Chemical oscillations represent captivating examples of a sys-
tem’s spontaneous self-organization and find applications in
various fields, including material sciences,1–6 chemical artifi-
cial intelligence,7–9 environmental science.10,11 These dynamics
are particularly interesting as they also provide understanding
of biological functional behaviors12–24 (e.g. morphogenesis,
quorum sensing, calcium signaling, circadian rhythms, syn-
chronization, etc.).

Throughout years, several reactions in which self-sustained
dynamics can be induced have been highlighted such as
the Belousov–Zhabotinsky,25 Bray–Liebhafsky,26,27 Briggs–
Rauscher,28,29 Bruk Temkin–Gorodsky Novakovic (BT–GN)30,31

and chemiluminescence32–34 reactions. The latter all share a
common characteristic essential for inducing oscillatory
dynamics: the presence of a nonlinear chemical feedback. Such
loops were demonstrated to be crucial in the occurrence of
oscillations as in the Brusselator and Oregonator models to
name but the most famous.35,36

However, it was recently shown that even in the absence
of complex kinetics (e.g. in A + B - C systems) oscillatory
dynamics can occur in spatially extended systems37 when

coupled with hydrodynamic effects. The pioneering work of
Gàlfi and Ràcz showed that when two pools of reactant solu-
tions A and B initially separated in space react upon diffusive
mixing, a reaction–diffusion (RD) front emerges.38,39 In systems
where both reactants present the same initial characteristics
(diffusion rate and concentrations), this RD front is localized
at the initial position of contact, but as small discrepancies
are introduced in the system, the front starts propagating in
time.40,41

In this context, the occurrence of complex dynamics has
been investigated in simple bimolecular reactions in the
presence of natural convection.37,42,43 In reactive fluids, local
gradients in the physical properties of the system (density
and/or surface tension) can be induced as changes in concen-
tration and/or temperature occur in the system, further cou-
pling with the initial RD front and setting the fluid itself in
motion. This configuration is modeled in Fig. 1 and will be
further discussed in the next section.

Previous studies have shown that damped oscillations can
emerge from a competitive mechanism involving oppositely
directed vertical transport processes when the reaction increases
surface tension: an upward diffusion relaxation and a downward
compressive Marangoni-induced flow. These oscillatory dynamics
are further sustained by the addition of so-called antagonistic
buoyancy driven flows induced by a local decrease in density and
reinforcing the vertical diffusion fluxes [Fig. 2 region I, where DM
and DR are parameters representing the changes in surface
tension and density occurring during the reaction, respectively,
and will be fully defined in the next section].37,42,43
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A dynamical regime is defined as oscillatory if the temporal
evolution of a variable (concentration, stream function,
vorticity,. . .) presents at least two successive maxima. Oscillations
with rapidly decreasing amplitude (of the variable) over time are

defined as damped oscillations, whereas oscillations with
quasi-constant amplitude over time are defined as sustained.
Since the system is closed and will reach equilibrium at very
long times, all the oscillations are eventually damped but in the
timeframe considered in this study, it is possible to distinguish
damped oscillations from sustained ones. If the system is kept
out of equilibrium by introducing an inflow of reactants and an
outflow of the products, sustained oscillations will persist.37

In the opposite antagonistic case where a decrease in surface
tension is coupled to an increase in density [Fig. 2 region III],
the competition between both convective flows is essential for
the occurrence of oscillatory dynamics.44 In both antagonistic
cases, sustained oscillations were observed in an optimal range
of DM and DR, eventually dampening and going extinct as one
of the convective effects becomes predominant.

Similar effects have been seen, both numerically and experi-
mentally, in non-reactive systems where the introduction of a
droplet inducing changes in surface tension led to nonlinear
oscillatory dynamics of the surface tension. These oscillations
were further affected when buoyancy effects due to a difference
in density between the droplet and the solvent were at play,
modifying for example the period/amplitude of oscillations or
the onset of oscillatory dynamics.45–47

In this paper, we review the dynamics observed when a local
production of C increases both surface tension and density
[Fig. 2 region II], completing the classification of oscillatory
behavior observed in chemo-Marangoni-buoyancy regime for
equal diffusion coefficients and initial properties of all species.
Here, both convective flows are acting cooperatively, i.e. we
expect the convection rolls to reinforce themselves. In auto-
catalytic fronts, such a coupling between chemically-induced
flows has highlighted particular dynamics (steady asymptotic
regimes, also observed in the pure solutal Marangoni effect),
different to the ones observed in an antagonistic configuration
(spatio-temporal oscillations).48,49 We note that the opposite
cooperative case (i.e. when a local production of C decreases
both surface tension and density [Fig. 2 region IV]), has also
been investigated but showed no oscillations and will therefore
not be discussed.

2. Model

The model system, represented in Fig. 1 is a two-dimensional
solution layer of length LX and height LZ in the (X, Z) reference
frame, where Z is oriented against the gravitational acceleration
g = (0, �g). We suppose the reactor isothermal, closed at the
bottom and lateral borders and open at the top border with an
air–liquid interface supposed non-deformable. Any evaporation
is neglected. The system consists of two miscible reactant
solutions (A and B) initially separated horizontally as

ðA; B; CÞ ¼

A0; 0; 0ð Þ for XoX0 8 Z;

0; B0; 0ð Þ for X4X0 8 Z;

A0; B0; 0ð Þ for X ¼ X0 8 Z:

8>>><
>>>:

Fig. 1 Sketch of the dimensionless A + B - C system. The reactant
solutions of A and B, sharing the same properties (~gA = ~gB = ~gR and ~rA =
~rB = ~rR), are initially separated in space and react upon contact to form the
product C in the reactive zone (centered in x0), increasing locally the
surface tension (~gP 4 ~gR) and the density (~rP 4 ~rR).

Fig. 2 Parametric space diagram (DM, DR) of the oscillatory behavior in
the chemo-Marangoni-buoyancy regime with system dimensions Lz = 20
and Lx = 256 for equal diffusion coefficients of all species and equal
properties of all reactants. DM and DR are parameters representing the
changes in surface tension and density occurring during the reaction,
respectively. Positive (negative) values of DM represent an increase
(decrease) of surface tension during the reaction, and positive (negative)
values of DR represent a decrease (increase) of the density during the
reaction. When both parameters are of same sign, the induced flows are
acting in opposite directions and the coupling is antagonistic (regions I/III).
Contrarily, when DM and DR are of opposite signs, the coupling is
cooperative and the flows reinforce themselves (regions II/IV).
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As the reactant solutions, assumed to have the same properties
(density, surface tension and equal initial concentrations), react
upon diffusive mixing across the contact line, the product C is
formed following the bimolecular A + B - C reaction. The coupling
of the latter with molecular diffusion allows for the propagation of
a planar reaction–diffusion front, inducing local changes in surface
tension and density. The resulting gradients in surface tension and
density further trigger convective transport in the system.

The nonlinear dynamics is governed by a set of partial
differential reaction–diffusion–convection (RDC) equations for
the chemical species A, B, C (eqn (1)–(3)), coupled to the
incompressible Navier–Stokes equations for the fluid velocity
(eqn (4) and (5))

qTA + (V�r)A = Dr2A � kAB, (1)

qTB + (V�r)B = Dr2B � kAB, (2)

qTC + (V�r)C = Dr2C + kAB, (3)

@TV þ ðV � rÞV ¼ �
1

r0
rPþ m

r0
r2V � g

r� r0ð Þ
r0

1Z; (4)

=�V = 0, (5)

where T is the time, V = (U, V) is the velocity field, D is the
molecular diffusion coefficient assumed constant and equal for
all species, P is the dynamic pressure, m is the constant dynamic
viscosity, g is the gravitational acceleration and the symbol 1Z

represents the unity vector in z-direction. The Boussinesq
approximation is also introduced50 and implies that density

changes only affect the gravitational force term g
r� r0ð Þ
r0

. The

chemo-hydrodynamical coupling is made via the state equation

for the density r ¼ r0 1þ 1

r0

P
I

I@Ir
� �

, and the surface tension,

g ¼ g0 1þ 1

g0

P
I

I@Ig
� �

, where I = A, B, C are the dimensional

concentrations of the chemical species. In diluted solutions,
these equations are assumed to be linear combinations of the

chemical concentrations, with
1

r0
@Ir and

1

g0
@Ig representing

respectively the density and surface tension solutal coefficient
of the Ith species.51 r0 and g0 represent the solvent density and
surface tension respectively.

A Marangoni boundary condition (eqn (6)) is imposed at the
free surface to describe the chemically-induced shear stress

mqZU = qXg, V = 0 at Z = LZ. (6)

No-flux boundary conditions are imposed for the chemical
concentrations at the four boundaries of the reactor, and no-
slip conditions are used for the velocity field at the three solid
boundaries.

The system’s dimensionless form is expressed by using the
reaction–diffusion scales for concentration, A0, time, t0 = 1/kA0,
length, L0 ¼

ffiffiffiffiffiffiffiffi
Dt0
p

, and the derived scales for velocity,

V0 ¼
ffiffiffiffiffiffiffiffiffiffi
D=t0

p
, pressure, P0 = m/t0, density, r0 ¼ m

t0L0g
, and

surface tension, g0 ¼ mL0

t0
. The dimensionless solutal Rayleigh,

Ri, and Marangoni, Mi, numbers of the Ith species represent the
contribution of each species to the density, (qIr), and surface
tension, (qIg), respectively. They are defined as

Ri ¼
@IrA0L0

3g

Dm
; (7)

Mi ¼ �
1

m

ffiffiffiffiffiffiffi
A0

kD

r
@Ig; (8)

using the dimensionless density, ~r ¼ r� r0
r0

¼
P
i

Rii, and the

dimensionless surface tension, ~g ¼ g� g0
g0
¼ �

P
i

Mii (with i

representing the dimensionless concentration of A, B and
C).37,42,43

When the reactants have same initial concentrations and
identical diffusion coefficients, the conservation of mass37

implies that a + b + 2c = 1 8 x, z, t. This allows to reconstruct
the dimensionless concentration field of the product c from the
reactants concentrations a and b by introducing two key para-
meters DR and DM, defined as, DR = R � Rc/2 and DM = M �Mc/
2 respectively, where R = RA = RB, M = MA = MB. DR (DM) tunes
the relative importance of buoyancy (surface tension) to the
convective flows.

The final dimensionless RDC equations, in which the lower-
case characters represent dimensionless variables, therefore
read

qta + (v�r)a = r2a � ab, (9)

qtb + (v�r)b = r2b � ab, (10)

qtv + (v�r)v = Sc(�rp + r2v � DR(qxa + qxb)1z),
(11)

r�v = 0, (12)

with the Marangoni boundary condition

qzu = DM(qxas + qxbs) at z = Lz. (13)

where as, bs represent the dimensionless concentrations at the
surface of the reactant solutions. Sc = m/Dr0 = n/D is the Schmidt
number where n = m/r0 is the kinematic viscosity. Based on the
typical values for the kinematic viscosity n = 0.0089 cm2 s�1 and
diffusivity of chemical species D B 10�5 cm2 s�1 in aqueous
solutions, Sc is set equal to 1000.

Eqn (9)–(12) are solved numerically by using the alternating
direction implicit (ADI) method52,53 with the defined initial and
boundary conditions. Typical simulations are run over a spatial
domain of dimensionless length Lx = 256 and variable dimen-
sionless height Lz, discretized over a grid with the integration
space steps hx = hz = 0.25 and the integration time step
ht = 10�5.
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3. Results
3.1. Explaining the role of buoyancy in the cooperative
region II

In the pure chemo-Marangoni regime, when the reaction increases
surface tension, the mechanism at the core of the oscillatory
dynamics is the competition between the Marangoni-induced
flow and the vertical diffusion relaxation. The addition of an
upward buoyancy-driven flow (DR 4 0) reinforces the mecha-
nism leading to sustained oscillations for a range of optimal
values of DR. In contrast with region I, the addition of a
downward buoyancy-driven flow (DR o 0) not only fails in
providing sustained oscillations in the cooperative case (region
II) but also can quench the dynamics. The underlying role of DR
in this cooperative coupling is described below.

As the reaction occurs, density and surface tension locally
increase in the reactive zone, giving rise to a velocity field
initially characterized by two convection rolls, one on either
side of the reactive zone. The position of the center of a
convective roll along the z-axis (zr) is computed as the position
in the system where both the horizontal and vertical velocities
are null. In the absence of gravitational forces [Fig. 3a], the
convective rolls are centered around 2Lz/3 [Fig. 4 DM = 250, DR =
0.00] and oscillations develop according to the mechanism
summarized above. By contrast, in the other limit case with
no Marangoni contribution (i.e. in systems closed at the top
surface), the convective rolls resulting from the density gradient
are centered at Lz/2 [Fig. 4 DM = 0, DR = �0.50] but no
oscillatory dynamics have been observed.

When both effects are coupled, as |DR| increases the con-
vective cells initially centered at 2Lz/3 are gradually pushed
toward the bottom of the system [Fig. 4 DM = 250, DR = �0.50

and DM = 250, DR = �1.00]. The amount of product c reaching
the surface of the system thus decreases [as can be seen in
Fig. 3 at t = 110–150–180 by comparing the convection roll’s
height in both cases] and, past a certain intensity of the
buoyancy-driven flow, becomes insufficient to restore surface
tension gradients, further disabling the oscillations. Thus, the
coupling with an downward buoyancy flow does not sustain the
oscillatory dynamics. Indeed, it dampens them by modifying
the velocity field and preventing the renewal of the necessary
conditions (i.e. sufficient surface tension gradients) for the
emergence of new convective rolls.

Fig. 3 Typical spatio-temporal evolution of the product concentration with increasing dimensionless time for systems of length Lx = 256, height Lz = 20
in a (a) pure Marangoni case (DM = 300 and DR = 0.00) and (b) coupled Marangoni-buoyancy cooperative case (DM = 300 and DR = �0.50). The fluid
velocity field is superimposed on a 2D field of the product concentration c ranging from 0 (blue areas) to the highest concentration, c = 0.44 (red areas).

Fig. 4 Dimensionless temporal evolution of the position of the convec-
tive rolls center along the z-axis (zr) for systems of length Lx = 256, height
Lz = 20 and various combinations of DM and DR. The orange curve
represents a pure chemo-Marangoni regime, the green and blue curves
represent cases of region II and the red curve represents a pure chemo-
buoyancy regime.
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The temporal evolution of the local concentration of C is
illustrated in Fig. 5 for different combinations of Marangoni
and buoyancy contributions. In the pure chemo-Marangoni-
driven dynamics (DM = 250, DR = 0.00), damped oscillations are
observed as long as a sufficient gradient in surface tension
(DM 4DMcrit) is created by the reaction.37,42 The addition of
antagonistically oriented buoyant flows (DM = 250, DR = 1.00),
allows for sustained oscillations37,42,43 to be reached in parti-
cular ranges of DM and DR. In the presently studied case, even
if both flows reinforce each other, damped oscillatory dynamics
are observed for specific combinations of the hydrodynamic
parameters. However, the oscillation’s amplitude decreases as
buoyancy-induced flows are added (DM = 250, DR = �0.50),
further quenching the oscillatory dynamics (DM = 250, DR =
�1.00) due to the pushing of the convective cells to the bottom
of the system.

3.2. Conditions to induce oscillations

The complete picture of the dynamical regimes obtained in
region II by varying the convective flows intensity is represented
in Fig. 6 and highlights major differences with regions I and III.
First, the addition of buoyancy flows allows for the emergence of
sustained oscillations in previously studied regions I and III, but
can only lead to the dampening of the dynamics in this cooperative
case. This shows that the coupling can either have a positive/
negative impact on the dynamics by sustaining/quenching them,
depending on the changes in density occurring during the reaction.
More importantly, it emphasizes that no sustained oscillations are
observed in the cooperative case. Secondly, there is a threshold
separating non-oscillatory and oscillatory scenarios which scales
linearly with the two hydrodynamic parameters DM and DR.

To observe oscillatory dynamics in the case of a cooperative
coupling between flows, several conditions have to be fulfilled.

Firstly, the surface tension gradient induced by the reaction
must be sufficient to initiate an oscillatory motion, which
means that the convection rolls formed must have sufficient
horizontal surface velocity to carry a sufficiently large quantity
of product away from the center of the reaction front (by the
return flow). In particular, we found that at the surface, in both
the pure chemo-Marangoni and in the chemo-Marangoni-
buoyancy driven systems, the horizontal velocity associated
with the first convective roll uR

s must be greater than the initial
horizontal velocity uI

s (close to the center of the system, in the
reactive zone) [Fig. 7]. Since the role of buoyancy is to displace
the center of the convective rolls to the lower part of the system,
it effectively reduces the horizontal velocity, thereby decreasing
the amount of product c brought to the surface and quenching
the oscillations.

Based on the Marangoni boundary condition (eqn (13)), it is
possible to identify a scaling between DM and the horizontal
surface velocity. In fact, the typical form of the horizontal

component of the Marangoni return flow scales as uMa �

�Lz

2
DM

3

2
ẑ� 1

� �
ẑ and fits well with the velocity profiles devel-

oped in pure chemo-Marangoni systems.42 Fig. 8 shows that the
maximum horizontal surface velocity linearly increases with
DM in the different regimes, as predicted by the analytical
solution for the Marangoni return flow uMa. A higher slope is
observed in the presence of oscillatory dynamics and the
velocity field is more intense than in their absence, revealing
two distinct linear relations.

In this regime II, oscillations are associated with high
horizontal velocities as long as there is a dominating effect of
the Marangoni contribution (DM). High flows do not trivially
imply oscillations, as can be seen in Fig. 8 where non-
oscillating systems (e.g. DM = 450 DR = �2.00) present higher

Fig. 5 Dimensionless temporal evolution of the concentration c at a
representative point of the system (x0 � 30, 3Lz/4). The dashed curve
represents a typical system in the pure chemo-Marangoni system, the
dotted curve represents a typical sustained oscillatory system in region I,
the continuous curve represents a typical damped oscillatory system in the
cooperative coupling (region II) and the squared curve represent a typical
non-oscillatory system in region II.

Fig. 6 Classification of the dynamics observed via a cooperative coupling
between chemically induced Marangoni and buoyancy convection in a
(DM, DR) parametric space diagram with Lz = 20 and Lx = 256. The orange
squares represent damped oscillatory dynamics and red diamonds repre-
sent non-oscillatory systems. The purple line represents the linear thresh-
old between oscillatory and non-oscillatory dynamics.
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maximum horizontal velocities than oscillating systems
(e.g. DM = 175 DR = �0.25). A similar observation applies to
previously studied regimes as well.37,42–44

A second condition arising from the first one is that the
product must arrive at the surface in sufficient quantity to
recreate gradients and thus re-initiate oscillations. Fig. 9 shows
that the maximum vertical velocity vR in the system decreases as
density effects are increased, whatever the values of DM con-
sidered. The denser the species produced, the lower the maxi-
mum vertical velocity, due to the intensification of downward
buoyancy-driven flow. As the intensity of the return flow
decreases, less product is brought back to the surface of the
system, inhibiting the reconstruction of a gradient at the sur-
face and driving the dampening of the oscillatory dynamics.

Furthermore, Fig. 9 highlights two distinct linear relation-
ships between the flow intensity and the control hydrodynamic

parameter DM, with the maximum vertical velocity increasing
with the surface tension variation. In the pure chemo-
Marangoni case (DR = 0), a linear relationship is observed
between vR and DM. As buoyancy-driven effects are added, a
deviation from linearity appears for oscillating systems close to
the threshold separating the dynamics (defined by the purple
line in Fig. 6) and two linear regimes are thus distinguished.
The first one (dotted curves) is close to the boundary where
oscillations start to appear and hydrodynamic parameters
counterbalance each other. In the second regime (dashed
curves), systems are assimilated to pure chemo-Marangoni
cases, since density effects are significantly weaker than surface
tension effects and are therefore annihilated.

Fig. 7 (top) Profiles of horizontal velocities at the surface (us) at t = 60 for
different values of DR at constant DM = 250. The profiles are displayed in a
semi-system (from �Lx/2 to x0 = 0) since the dynamics is symmetric with
respect to x0 = 0, u(x) = �u(�x). The continuous curves represent
oscillatory systems and the dashed curves represent non-oscillatory
systems. (bottom) Zoom in the region of interest indicated by the red
square. The purple line represent the initial maximum horizontal velocity at
the surface (uI

s) and sketches an approximate limit between the oscillatory
and non-oscillatory regimes. uR

s represents the maximum horizontal
velocity associated to the first convective roll. Its value varies over time
and is shown here at t = 60.

Fig. 8 Maximum horizontal velocity at the surface associated to the first
convective roll (uR

s ) reached over time (global) as a function of DM for
different values of DR. The velocities are computed in a semi-system (from
�Lx/2 to x0 = 0). The empty squares represent non-oscillatory systems,
filled circles represent oscillatory dynamics and dotted lines represent
linear regressions.

Fig. 9 Maximum vertical velocity reached over time vR as a function of
DM for different values of DR in the oscillatory regime. The velocities are
computed in a semi-system (from �Lx/2 to x0 = 0). The dashed and dotted
curves represent linear regressions.
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3.3. Influence of Lz

As the amount of product c reaching the surface appears to be a
key ingredient for the onset and the control of the oscillatory
dynamics, and as it is directly related to the system’s height (Lz),
we expect Lz to be an important control parameter. We there-
fore explore the influence of the latter.

Previous studies in the pure chemo-Marangoni case
have shown that, in thin layers, the initial convective rolls
responsible for the oscillatory dynamics cannot develop
and a minimum cell’s height (Lmin

z ) below which wave for-
mation is hindered has been highlighted. Furthermore,
Lmin

z varies with the initial change in surface tension neces-
sary to induce oscillatory dynamics and scales as Lmin

z B
DM�1. An additional scaling between the period t at which
oscillations are emitted from the center and Lz has been
identified42 as t B Lz

2.
In region I, buoyancy contributions to the flow are at play

and the velocity field consists not only of two counter-rotating
rolls due to the converging Marangoni flow, but also of two
counter-rotating rolls at the bottom of the reactor, pushing the
fluid upwardly at x0.37,42 Increasing the thickness of the cell,
increases the size and intensity of buoyancy-driven forces,
which can enhance the oscillatory mechanism (reinforcing
the relaxation phase of the cycle) when moderate but, even-
tually, suppress oscillations as soon as they become dominant
and prevail over Marangoni forces. Correspondingly, the char-
acteristic period of the oscillation, t, first increases as the cell
enlarges due to a larger displacement of the concentration field
during each spatio-temporal oscillation. However, above a
threshold height LMax

z , linked to a maximum value of t, the
period further decreases linearly as the system gets thicker,
marking a switch from Marangoni- to buoyancy-controlled
dynamics.

In the case studied here (region II), a range of Lz in which
oscillatory dynamics are observed has been highlighted for
different values of DM and DR (Fig. 10). This range increases

(decreases) as DM (DR) increases at constant DR (DM), between
LMin

z and LMax
z . In agreement with previous observations, if the

system is too thin, the initial Marangoni convective rolls cannot
develop, whereas if the system is too thick, the latter rolls are
shrunk due to the extend of buoyancy convective rolls and the
oscillatory dynamics are inhibited.

However, Fig. 11 shows that the relation t(Lz) takes the form
t B Lz

2 for all values of DM and DR tested, and an increase in
DM (|DR|) translates in an increase (decrease) in the oscillatory
period. In contrast to the antagonistic coupling in region I, the
period evolves here similarly to the pure Marangoni case. This
observation is in line with results obtained in the previous
section, showing that the cooperatively coupled cases actually
behave like pure Maragoni-driven systems, in which the addi-
tion of buoyancy-driven flows has no other effect than to inhibit
the complex dynamics.

Fig. 10 Classification of dynamical regimes in the parametric space diagram (DM, Lz) with DR = �0.50 and DR= �1.50 and Lx = 256. The red diamonds
correspond to non-oscillating systems and the orange squares correspond to systems presenting damped oscillations.

Fig. 11 Characterization of the oscillation period, t, as a function of the
system height, Lz, for different values of DM and DR. The solid lines
represent linear regressions.
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4. Conclusions

In this paper, we have expanded the realm of complex dynamics
in bimolecular reactions where Marangoni- and buoyancy-
driven flows are triggered by the chemical process. In particu-
lar, we have shown that chemo-hydrodynamic oscillations,
known to develop in the presence of an antagonistic coupling
between Marangoni- and buoyancy-driven contributions, can
persist even in a cooperative configuration though the buoy-
ancy effect plays here a quenching role.

The dynamics observed in regions I (antagonistic) and II
(cooperative) present morphological similarities, as the core
mechanism responsible for the onset of oscillatory dynamics is
the same (i.e. introduced in the pure Marangoni case). How-
ever, when a bimolecular reaction increases surface tension,
the precise nature of the dynamics is determined by the
way Marangoni-driven flows are coupled to density effects.
When antagonistically coupled (DR 4 0), the initial oscillatory
dynamics can be sustained. When a cooperative coupling is at
play (DR o 0), the oscillations will always be dampened as the
reinforcement of the initial flow pushes the convective cells to
the bottom of the system.

The key role of the surface tension gradient in inducing
oscillations has already been demonstrated from previous
studies.37,42,44 Here, we deepen the physical understanding of
the gradients’ key role by showing the importance of the
horizontal velocity at the surface associated to the convective
roll (uR

s ). In fact, in order for the system to present oscillations,
the latter must be greater than the initial horizontal velocity (uI

s)
close to the system’s center. Furthermore, distinct linear rela-
tions between uR

s and DM have been highlighted in both
oscillatory and non-oscillatory regimes. These relations match
the analytical scaling predicted for the Marangoni return flow.

In addition, the maximum vertical velocity in the system
decreases as the density effects intensify. In turn, less product
is brought back to the surface, thus preventing the renewal of a
gradient at the surface, which is essential for further oscilla-
tions. Moreover, two linear relationships between the maxi-
mum vertical velocity and DM have been demonstrated,
separating two distinct regimes. In the first regime hydrody-
namic parameters counterbalance each other, while in the
second one coupled systems can be assimilated to pure chemo-
Marangoni systems when surface tension effects are significantly
stronger than density effects.

Finally, the variation of the system’s height Lz shows that
oscillatory dynamics are observed only in a range of Lz, which
depends on both hydrodynamic parameters DM and DR. A
scaling between the period of oscillation t and Lz has been
identified and takes the form t B Lz

2, characteristic of pure
Marangoni cases. The latter observation reinforces the idea that
the cooperatively coupled cases behaves like pure Marangoni
systems.

This work completes the general classification of oscillatory
dynamics in a (DM, DR) plane, paving the way for further
theoretical studies in asymmetric systems (different physi-
cal properties/diffusion coefficients/concentrations for all the

chemical species). This complete picture also extends the range
of chemical reactions that can be explored to demonstrate
chemo-hydrodynamic oscillations experimentally.
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