Neural network potential energy surfaces and dipole moment surfaces for SO2(H2O) and SO2(H2O)2 complexes†
Abstract
Full-dimensional, ab initio-based many-body potential energy surfaces and dipole moment surfaces constructed using the neural network method for SO2(H2O)n (n = 1,2) complexes are reported. The database of the SO2 1-body PES, SO2(H2O) 2-body PES and SO2(H2O)2 3-body PES consists of 11 952, 79 882 and 84 159 ab initio energies, respectively. All 1-body energies were calculated at the CCSD(T)/CBS(AVTZ:AVQZ) level and all 2,3-body energies were calculated at the DSD-PBEP86/AVTZ level. The database of DMSs is the same as that of PESs and all dipole moments were calculated at the MP2/AVTZ level. Harmonic frequencies and dissociation energies of SO2(H2O) and SO2(H2O)2 were calculated on these PESs and compared with ab initio results to examine the fidelity of these PESs.

Please wait while we load your content...