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A review of recent advances and applications of
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In tribology, a considerable number of computational and experimental approaches to understand the

interfacial characteristics of material surfaces in motion and tribological behaviors of materials have

been considered to date. Despite being useful in providing important insights on the tribological

properties of a system, at different length scales, a vast amount of data generated from these state-of-

the-art techniques remains underutilized due to lack of analysis methods or limitations of existing

analysis techniques. In principle, this data can be used to address intractable tribological problems

including structure–property relationships in tribological systems and efficient lubricant design in a cost

and time effective manner with the aid of machine learning. Specifically, data-driven machine learning

methods have shown potential in unraveling complicated processes through the development of

structure–property/functionality relationships based on the collected data. For example, neural networks

are incredibly effective in modeling non-linear correlations and identifying primary hidden patterns

associated with these phenomena. Here we present several exemplary studies that have demonstrated

the proficiency of machine learning in understanding these critical factors. A successful implementation

of neural networks, supervised, and stochastic learning approaches in identifying structure–property

relationships have shed light on how machine learning may be used in certain tribological applications.

Moreover, ranging from the design of lubricants, composites, and experimental processes to studying

fretting wear and frictional mechanism, machine learning has been embraced either independently or

integrated with optimization algorithms by scientists to study tribology. Accordingly, this review aims

at providing a perspective on the recent advances in the applications of machine learning in tribology.

The review on referenced simulation approaches and subsequent applications of machine learning in

experimental and computational tribology shall motivate researchers to introduce the revolutionary

approach of machine learning in efficiently studying tribology.

1. Introduction

Tribology – the fundamental science of interacting surfaces in
relative motion – has fascinated researchers due to its applica-
tions in different fields including energy,1,2 biomedicine,3

biology,4 food,5 automobiles,6 and aerospace.7,8 Thus, it is no
surprise that key elements in tribology, such as motion
dynamics and interfacial mechanism as well as attributes of
surfaces in motion, such as friction, wear, adhesion, indenta-
tion, lubrication, and so on, have been extensively studied.9–12

For example, high energy consumption, failure of industrial
processes, mechanical equipment, and increased transporta-
tion cost caused by unavoidable friction and wear have

motivated researchers to understand the tribological pheno-
menon at different time and length scales.13–16 In recent years,
a majority of these studies have developed and employed state-
of-the-art experimental methods with the intention of reducing
friction and wear, which account for one-fifth of all annual
energy consumption.17 Specifically, advanced experimental
techniques such as nanoindentation, atomic force microscopy
and imaging,18 digital image correlation,19 and in situ spectro-
scopy, have been developed with the aim of studying tribo-
logical systems. Significant progress has been made in studying
tribology at nano- and micro-scales through quantum ab initio
simulations, as well as empirical, and mathematical appro-
aches such as continuum mechanics,20,21 multi-scale,22

atomistic,23 and coarse-grained molecular dynamics (CG MD)
simulations,24 non-equilibrium molecular dynamics (NEMD)
simulations,25 reactive molecular dynamics (RMD) simulations,26

probabilistic and stochastic modeling,27–29 finite element
method,30 and fractal methodology.31,32
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One of the effective ways to overcome and control friction
and wear is through lubrication.33 In recent decades, numerous
studies have been conducted to enhance lubrication in moving
components of machinery by developing novel lubricants.
These include novel varieties of solid-based lubricants includ-
ing ball-bearings, diamond-like carbon (DLC), etc. or liquid-
based lubricants like composites of gels, mineral or vegetable
oils, among others. Moreover, the reinforcement of solid-state
materials like short carbon fibers (SCFs), graphite, titanium
oxide (TiO2) particles, boron carbide (B4C), titanium carbide
(TiC), silicon carbide (SiC), and/or fly ash in oil/polymer-based
liquids have enhanced lubrication.34–36 However, due to limited
knowledge on the individual contributions of functionalities
of each component and uncertainty associated with it, the
development of new hybrid materials remains challenging.
Moreover, the traditional methods to create these hybrid
materials mainly rely on a highly inefficient, trial and error
approach. Modern-day data-driven techniques of ML have
emerged as new approaches for understanding and advancing
complex processes in tribological studies. This is because, with
the aid of ML, higher-dimensional problems and datasets can
be modeled with ease and at a minimal cost, with better
adaptive abilities to changing conditions.37 Several studies have
combined the design of experiments (DOE) and modeling
techniques with ML to accelerate the design of tribological
materials with the desired characteristics/properties.38,39 This,
in turn, has enabled researchers to analyze, predict, optimize,
and accelerate the discovery of tribological materials by suc-
cessfully establishing structure–property or structure–function-
ality relations in the existing available data.40,41 Thus, it is no
surprise that there has been a surge in the use of ML for
tribological applications recently (2010-today) as compared to
that until 2010.

The field of tribology has been explored in recent years by
reviewing applications of artificial neural networks (ANNs), as
well as other machine learning (ML) techniques.37,42,43 Most of
these reviews are focused on models developed using experi-
mental data, with relatively low emphasis on computationally

modeled tribological studies.38,44 This is because, in spite of
the enormous amounts of data generated using computational
approaches, the use of ML to solve tribological problems has
been scarce. To the best of our knowledge, this is the first
comprehensive review article with a focus on applications of
ML with experimental and molecular simulations studies
in tribology. Specifically, we provide details of different ML
methods used to perform tribological studies as well as their
applications in predicting and/or studying properties and per-
formance of tribological systems and designing novel lubri-
cants. Thus, making this review more appealing to all
the relevant scientific communities. We highlight a detailed
procedure used for data-generation, including description on
design of experiments (DOE), as well as the pre-processing
of the experimental and/or computational data for ML
methods.38 Consequently, the importance of having the
appropriate data for pre-processing tools and methods is
demonstrated in improving the predictive accuracy of
models based on the available data. There is a particular
emphasis on integrating machine learning with optimization
algorithms to resolve an important task of tuning hyperpara-
meters during model training and the use of ML models as
surrogates or objective functions during optimization. Thus,
the goal of this comprehensive review is to provide insights
into tribology obtained from the molecular modeling tech-
niques and discuss recent trends of ML in the field of
tribology.

We have divided this review article into six sections as
presented in Fig. 1 as the contents and Table S1 of ESI.†
According to different ML algorithms applied, Section 3 is
divided into the 9 subsections in the subsequent order of
the material formulation of (i) lubricants and (ii) com-
posites material formulation, including (a) polymer matrix
composites (PMCs), (b) metal matrix composites (MMCs), and
(c) ceramic matrix composites (CMCs). Following the section on
emerging, new and unexplored tribological materials, the chal-
lenges and our perspective on the applications of ML are also
presented.

Fig. 1 The visual representation of the table of contents (overall flow) of the review is presented.

Perspective PCCP

Pu
bl

is
he

d 
on

 2
6 

Z
en

âr
 2

02
3.

 D
ow

nl
oa

de
d 

on
 0

1/
11

/2
02

5 
02

:4
9:

21
. 

View Article Online

https://doi.org/10.1039/d2cp03692d


4410 |  Phys. Chem. Chem. Phys., 2023, 25, 4408–4443 This journal is © the Owner Societies 2023

2. Fundamentals of tribology
2.1 Experimental studies of tribology

Experimentally, tribological materials, either pure or compo-
site, are generally assessed through a number of test rigs
including pin-on-disk (POD), four-ball tester, rub shoe, etc. to
determine physical bulk or chemical tribological properties
including interfacial friction, wear, and surface energy. Here,
two of the widely used test rigs to generate training data for ML
models are discussed:

(i) Pin-on-disk. The friction and wear between two materi-
als can be characterized using POD experiments. The experi-
mental setup of materials, pin, and disk, sliding against each
other is shown in Fig. 2(a). During the test, the dynamometric
responses, including applied load (N), linear speed (Ls), track
radii (R), and the turning speed (o), can be varied in addition
to the environmental conditions like external temperature,
pressure, and humidity, as well as the lubricant additives. Here,
the fixed pin holder is allowed to deflect minimally while the
transducer takes care of the forces such as the applied normal
force and the frictional force. The performance of the material
is generally characterized by the coefficient of friction (CoF),
specific wear rate (SWR), and/or wear scar diameter (WSD),
determined by the mass (or volume) loss during the
sliding experiment. The relative simplicity and abundance of
tribological contacts make this a popular experiment for
tribological tests.

(ii) Four-ball tester. The Four-ball tester as shown in
Fig. 2(b) is used for analyzing lubricants for wear, extreme
pressures, and frictional properties. An experimental
setup involves rubbing a rotating ball against three stationary
lubricated balls in order to develop and measure wear scars.
The applied load, rotating speed, the temperature of contact,
and time of experimental run are specified as per the American
Society for Testing and Materials (ASTM) standards. The
volume of wear given by its size, on the rotating ball, is indicative
of the performance of the lubricant. The primary objective
of this test is to evaluate the wear-prevention abilities of a
lubricant.

In general, the evaluation metric for a given tribological
material is through their wear characteristics like the CoF,
SWR, WSD, and/or mechanical properties like compressive
and tensile moduli, and strength. Typically, these properties
are used to train the ML models and the following subsection
describes these properties:

(i) Coefficient of friction (CoF). The CoF can be quantified as
the amount of friction occurring between two surfaces. The
expression for CoF can be given by eqn (1):

mðCOFÞ ¼ Frictional force ðF Þ
Normal force ðNÞ (1)

In the case of a low CoF, the force required for a sliding
action to occur is substantially less than in the case of a
high CoF.

(ii) Specific wear rate. Wear is defined as the irreversible
material loss resulting from sliding of the interacting surfaces.
The SWR (Ws) is calculated by the following eqn (2):

Ws ¼
Dm

r � v � t � FN
ðmm3 N�1 m�1Þ (2)

where, Dm is the mass loss, r is the density of the material, v is
the sliding speed and t is the duration of the test. Note, here v�t
can be shown as sliding distance (d). FN represents the normal
applied force imposed on that substance while sliding. However,
in order to simplify and reduce testing parameters, a time-
dependent depth wear rate (Wt) given in eqn (3), where Dh is
the height reduction of the substance after the test, is defined to
evaluate wear behavior under pv-conditions.

Wt ¼Ws � p � v ¼
Dh
t
ðmm s�1Þ (3)

2.2 Introduction to machine learning algorithms and their
applications

ML has been demonstrated in numerous studies to develop a
thorough understanding of structure–property relationships in
complex higher dimensional tribological problems.47–50 In
addition to quantifying frictional and wear behavior, ML has

Fig. 2 (a) Schematic diagram of POD tribometer. Reproduced from ref. 45 with permission from Elsevier, copyright 2015. (b) Four ball tester schematic
diagram. Reproduced from ref. 46 with permission from Springer Nature, copyright 2019.
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proven to be effective in the design of new lubricant materials
for desired tribological applications such as ball-bearing, shaft
seals, piston rings, spacecrafts, etc.12,37,38,43,51 In light of the
fact that the impact of multiple complex factors on a system
remains uncertain in tribology, the potential of ML also goes
beyond purely academic perspectives into actual industrial
applications.52,53 In general, the formulation of ML models is
driven either by the deterministic approach of logic and algo-
rithmic theory or the stochastic way of probability theory. Data
preprocessing followed by an appropriate choice of the algo-
rithm and hyperparameter tuning, constitutes the training
phase of ML models. The constructed and trained ML system
can thereby be used to model, analyze, and predict solutions to
that problem. Given a myriad of formulated algorithms, they
can be broadly classified as either ‘supervised’, ‘unsupervised’
and ‘reinforcement’ learning techniques as shown in Fig. 3.54

The supervised learning approach is designed to learn through
a feature-property relationship, such that the model learns over
time by evaluating and improving the labeled output for a given
input vector. A supervised learning model can be successfully
constructed by identifying and defining a vector of unique
features that are anticipated to significantly affect the outcome.
Examples of supervised learning techniques include SVM,
DT, RF, the Naive-Bayes model, and so on.55 An unsupervised
learning approach, on the other hand, uses an unlabeled
dataset for analyzing and clustering data based on its common
characteristics.56 K-means clustering algorithm, hierarchical
clustering, density-based spatial clustering of applications with
noise (DBSCAN), etc. constitute the examples for unsupervised
learning method. Another important category of ML models is
‘reinforcement learning’, which may be classified as supervised
learning, employing an approach of a reward-punishment
mechanism.57 These ML models can be multi-layered feedfor-
ward NN, convolutional NN (CNN), RNN, modular NN (MNN),
radial basis function NN (RBFNN), etc.58

In the field of tribology, the tribological performance of
materials are not only related to their material composition
or physical/chemical properties, but also on the experimental
testing conditions such as external temperature, pressure,
humidity, etc. Thus, it is crucial to understand how the

performance of a material is influenced by different experi-
mental parameters. A systematic approach of determining the
important factors affecting friction and wear in complex pro-
blems can be challenging as it may require running plenty of
experiments. The design of experiments (DOE) including full
and fractional DOE, as well as Taguchi method can be effective
as they allow a systematic study of the effect of input para-
meters on outcome in addition to a simple, robust, efficient,
and systematic way of designing experiments.59 The ortho-
gonality of this DOE allows the effects of each variable to be
separated from one another. Taguchi’s method of DOE, in
addition to the reduced number of experiments, is one of the
most robust, efficient, and systematic methods to provide a
parameters design for the experiments. Taguchi’s method is
particularly useful when operating on a set of 3 to 50 variables
in which only a few variables have significant contributions
and interactions are relatively minor.60 Several studies have
successfully demonstrated the use of orthogonal arrays gener-
ated by the Taguchi methodology to reduce the number of
experiments.61,62 Data obtained from these experiments are
employed to model, analyze, and predict/answer the required
questions, through ML/AI models. This is reviewed and discussed
in-depth in the following sections, which are divided into sub-
sections according to the aforementioned ML algorithms imple-
mented in their studies.

3. Applications of ML algorithms in
tribological experiments
3.1 Artificial neural networks (ANN)

ANNs, due to their adaptive learning, generalization, model
independence, and analytical capabilities have proven vital in
studying, designing, and predicting material formulations with
enhanced properties in various fields of research.63–69 Particu-
larly, ANNs have been broadly used for optimizing minimum
wear rate, high lubrication, and/or the minimum CoF. Initial
successful research on the implementation of ANN includes
fretting wear damage prediction,70 tool wear,71 faulty rolling
bearings diagnosis,72 composites’ tribological properties

Fig. 3 The visual representation of the hierarchical methods of artificial intelligence. In addition, the classification of machine learning into supervised,
unsupervised, and reinforcement learning is also presented.
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prediction, surface roughness, and disk brake performance.
In general, the application of ANNs to lubricant design has not
only led to the discovery of novel lubricants with different
additives, but has also provided physical insights into the
formulation and correlation between inputs of new lubricants
and resulting outputs. The recent articles on the applications of
ML in the design and development of triboinformatics,38

lubricants,37 MMCs,73 and structural materials74 further shed
light on the current advances in the field of tribology using ML
methods. The following sections provide a review of the for-
mulation of lubricants and composites through the utilization
of ANNs.

(i) Oil-based lubricants. Friction and wear can be reduced
by lubrication, which ensures a smooth relative motion
between two surfaces of two bodies, resulting in reduced energy
loss. Lubricants are heavily used in the manufacturing and
transportation sectors.75,76 The current focus of research on
lubricants encompasses petroleum-based, composite-based,
and carbon-based lubricants.77–79 However, due to their
enhanced viscosity, volatility variation with temperature, addi-
tive susceptibility, and high thermal stability, petroleum-based
lubricants have gained much attention over the years.78,79

Jones et al. were the first to endeavor to model an ANN on
finite available data from POD, four-ball, and rub shoe rig
experiments on perfluoropolyether (PFPE) lubricant.80 They
showed that the ANN model accurately predicted the wear rate
while also emphasizing on the influence of 6 input variables
and specifications of material systems like sliding speed, dis-
tance, viscosity, applied load, CoF, and temperature on their
tribological properties. They reported that the input layer
dampened with a feedback loop (RNN architecture) was most
suitable to predict the wear behavior. Because RNNs recirculate
previous outputs along with new inputs from the input layer,
they are able to learn better from past instances.80 Bhaumik
and Kamaraj studied for the first time, a blend of 60% glycerol
and 40% castor oil (NCO), which produced a 37% reduced CoF
compared to NCO and cashew nut shell liquid (CNSL) and 50%
less CoF to commercial mineral oil (CMO). A total of 60 data
points collected from experiments from four-ball tester rigs on
the lubricant developed by varying volumetric levels of men-
tioned three oils were used to train an ANN model. Ignoring the
testing conditions, only the significance of the content of oil
(in vol%) was studied on CoF and WSD.81 Humelnicu et al. used
ANN to predict the low CoF composite of the diesel oil com-
bined with two vegetable oils, namely, sunflower oil and rape-
seed oil. The resulting mixture comprising 4% sunflower oil
and 0% rapeseed oil indicated lower CoF compared to 0%
sunflower oil and 20% rapeseed oil. In addition, ANN success-
fully predicted reduced CoF for 6.5% sunflower oil and 0%
rapeseed oil compared to pure diesel oil, which was in good
agreement with the experimental observation.82

Durak et al. successfully illustrated the use of feed-forward
back-propagation neural network (BPNN) to explore the fric-
tional behavior of the polytetrafluoroethylene (PTFE)-based
additives in mineral oil under different loads and rotating
speeds of the journal bearings.83 A 3-5-3-1 BPNN architecture

was implemented with load, velocity, and additive concen-
tration as input to predict CoF as output with 98% accuracy.
Their study reported the successful experimental validation of
ANN predicted PTFE loadings for different forces in the optimal
hydrodynamic lubrication regime. Particularly, in experiments,
10–15% of PTFE at 153 N load, and 3–5% of PTFE at 253 N
yielded maximum reduction CoF, while the same was observed
in ANN for 15% of PTFE at 153 N, and 10–15% of PTFE at 253 N.
These four articles, as summarized in Table S2 (ESI†), success-
fully operated on determining a perfect blend of different oils
including mineral, vegetable, and commercial oils using ANN.

(ii) Composite-based materials design for tribology.
Composites, which consist of multiple heterogeneous compo-
nents with the aim of achieving diverse chemical or physical
characteristics, are promising candidates in engineered mate-
rials. Because of their unique properties, including higher
mechanical strength, lower density and cost, as well as longer
life cycles, composites may be distinguished from their indivi-
dual elements. Composites can be broadly classified into three
major categories: (a) PMC, (b) MMC, and (c) CMC.

(a) Polymer matrix composites (PMC). Polymers, when com-
bined with additives/fillers like carbon (CF) or glass fibers (GF)
form PMC, which generally have improved thermal conduc-
tivity, mechanical, and tribological properties compared to the
pure polymer.84,85 PMCs exhibit interesting tribological proper-
ties, including their chemical stability, extreme temperature,
and wear resistance.11,84,86,87 Owing to these properties, PMCs
are applied as lubricants in spacecrafts, automobile engines
and under high vacuum conditions.88–92 For example, poly
(ether ether ketone) (PEEK) composites have been examined
largely for their low CoFs and high wear resistance.93–97 It has
also been reported that the wear resistance of higher molecular
weight PEEK was more than that of lower molecular weight
PEEK.93

PTFE, a material possessing a high wear rate but with a low
CoF,98 when blended with PEEK forms a PMC displaying a
blend of both, low CoF and low wear rates.93 Lu and Friedrich,
in their study, reported the value of the lowest CoF for a PEEK
blend with 15% PTFE, as it formed a lubricating transfer film
on the steel interface.93 Furthermore, a reinforcement of CF
with PEEK polymer decreased the wear CoF at high tempera-
tures (4493 K).94 At higher temperatures (4493 K), local sur-
face heating of the contact area was observed, which led to a
decrease in the specific shear stress and thus, also the CoF.94

PEEK matrix reinforced with CF matrix exhibited a low CoF
compared to aramid fiber matrix.96 A higher enhancement in
the reduction of abrasive wear was observed when PEEK was
reinforced with CF compared to glass fiber.97 SEM images of CF
reinforced PEEK (CF-PEEK) have shown that the surface of CF-
PEEK was smoother as compared to aramid fiber matrix.95 The
time required to remove a fiber from the surface was shorter in
the case of aramid fiber matrix than CF-PEEK as the fiber had
to be broken into many pieces before final removal could take
place in CF-PEEK.96 Additionally, a higher degree of crystallinity of
PEEK reduced the abrasive and sliding wear of the matrix.99
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Owing to these advantages, it becomes imperative to determine a
precise blend of PMCs in order to achieve enhanced tribological
performance. However, in light of the large design space for
exploration, the design of an optimal PMC for the desired
applications continues to be a challenge. Therefore, in recent
years, researchers have circumvented this issue through various
data-driven techniques like ANN.100 We list these papers used to
predict the properties of PMCs in Table S3 (ESI†) and discuss
them here.

Friedrich and coworkers were pioneers in successfully
implementing the ANN technique for predicting the mechan-
ical and wear properties of PMCs.67,101–107 The early work of
Jones et al. was followed by the work of Velten et al. as they
modeled ANN for wear volume prediction in short fiber rein-
forced polymeric bearing when in contact with a steel ball. In
Velten et al.’s ANN model, 10 input variables were utilized and
pre-processing through PCA was applied for dimensionality
reduction, and to identify the correlations between input
variables.108 Subsequently, Zhang, Friedrich, and Velten pre-
dicted the SWR and CoF using multi-layer feed-forward ANN on
composites of polyamide reinforced by short fibers. Particu-
larly, they reported the influence of learning rules including
bayesian regularization, Powell–Beale conjugate gradient algo-
rithm (CGB), BFGS quasi-Newton method, Adaptive learning
rate (GDX), and Levenberg–Marquardt algorithm (LM) on the
coefficient of determination (B). In addition, the influence of
altering ANN architectures i.e., 9-25-1, 9-50-1, 9-20-10-1, 9-15-10-
5-1, and 9-12-8-5-5-1 and varying number of training data
sets on B, which is formulated as shown in eqn (4), was also
investigated.109

B ¼ 1�

PM

i¼1
½OðpðiÞÞ �OðiÞ�2

PM

i¼1
½OðiÞ �O�2

(4)

where, O(p(i)) represents the ith predicted wear characteristic,
O(i) represents the ith measured value, and O represents the
mean value of O(i).

A survey by Frangu and Ripa110 revealed the applications of
neural networks (NN) for modeling and predictions in contin-
uous nonlinear approximation and classification data.110 Later,
Zhang et al., who focused on the erosive wear of three polymers,
i.e., polyethylene (PE), polyurethane (PUR), and epoxy modified
by hydrothermally decomposed polyurethane (EP-PUR), intro-
duced the compelling potential of ANNs to study polymer
composites.67,101 Jiang et al. followed up this work by investi-
gating the wear properties like SWR, CoF, and mechanical
properties such as compressive strength and modulus, tensile
strength (Ts) and flexural strength (Fs) in polyamide 4.6 (PA 4.6:
synthesized with diaminobutane (C4 diamine) and adipic acid
(C6 diacid)), and 6.6 (PA 6.6: synthesized with hexamethylene-
diamine (C6 diamine) and adipic acid (C6 diacid)) composites.
They varied material compositions, including PA 4.6 matrix
content with GF, PTFE filler and graphite filler, at different
surrounding conditions like temperature, normal force, and

sliding speed to train their ANN model.102,104 In another study,
Jiang et al. shifted their focus to polyphenylene sulfide (PPS)
composites reinforced with SCFs and TiO2 particles. An excel-
lent agreement of their ANN model with their experimental
validation confirmed that introducing fillers to PPS improved
the wear resistance (4.0 � 10�7 mm3 N�1 m�1) for a specific
composition (PPS with 15 vol% SCF and 5 vol% TiO2). ANN-
based models are also efficient at modeling nonlinear relation-
ships between material compositions and testing conditions
with wear characteristics, so estimating optimal compositions
is simplified.103 This study by Jiang et al. was further acceler-
ated by Gyurova by incorporating the graphite and PTFE in PPS
composites blended with SCF and TiO2 fillers. A set of 90 data
obtained from a POD experiment by varying loads and sliding
velocities was used to train the ANN model. The inputs also
included material composition and thermo-mechanical proper-
ties like tensile and compressive properties of materials to
predict the SWR and CoF as outputs. To minimize the mean
relative error and predict the CoF, ANNs were trained separately
on gradient descent back-propagation algorithm with momen-
tum and adaptive learning rate. Uniquely, the efficiency and
performance of the ANNs were improved by removing irrele-
vant network nodes through a network optimization technique
called the optimal brain surgeon (OBS) algorithm.111–113 The
predictions on pruned data showed a good agreement with
experimental data while portraying better accuracy than the
ANN model trained on unpruned data.105 Further, in their
second study, they suggested that the tribological characteris-
tics predicted by ANNs were primarily altered by the material
type, applied pressure, and sliding speed in the POD experi-
ment. The composite data, predicted using their ANN models
and experimental data were in fair agreement, resulting in the
best wear resistance (i.e., lowest SWR) for the composition of
PPS with 15 vol% SCF and 8 vol% submicron TiO2.106 Effec-
tively enough, the model was able to predict the SWR and CoF
with reduced mean relative errors (0.55 for SWR and 0.1 for
CoF) compared to their previous study.104,105 Busse and Schlarb
further improved this wear rate prediction efficiency (six times
higher than their previous studies) by using the LM training
algorithm with mean squared error regularization as a perfor-
mance function.114 The aforementioned study by Gyurova106

also evaluated the effect of the size of the data set (of compo-
sites of PPS with TiO2 and SCF) used to train the ANN model.114

Zhu et al. showed that an increase in the number of training
data points can further improve the accuracy of ANN predic-
tion. The tribological properties of the composites of PTFE
reinforced by the CF and TiO2 particle were predicted by an
ANN model. 12 compositions of PTFE reinforced with CF
(ranging 5–25 wt%), and TiO2 particles (ranging from 3–15 wt%)
were utilized. The varying sliding velocities, applied normal loads,
and the material composition along with corresponding mechan-
ical properties, were used as input to predict the wear volume loss
and CoF. Interestingly, the least mean squared errors were shown
in a multi-layered model (with an architecture of 7-[15-10-5]3-1) by
the scaled conjugate gradient (SCG) algorithm with tan-sigmoid
transfer functions between input and hidden layers and linear
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transfer functions between hidden and output layers. For the case
of moderate-level testing conditions, they concluded that the
exhibited best wear resistance for PTFE (79 vol%) was due to a
synergistic effect of CF (15 vol%) and TiO2 (6 vol%), while the
lowest CoF for PTFE/CF/TiO2 content at 69/25/6%.115

A study on the CoF and weight loss of the composites of
PEEK reinforced by using 30 wt% CF (PEEK-CF30) was per-
formed by LiuJie et al.116 Using a non-linear ANN model
through BPNN; they determined that pv factor (a mechanical
factor i.e. product of applied pressure and sliding speed)
significantly influenced CoF whereas contact temperature
affected the weight loss. Kranthi and Satapathy investigated
epoxy resin (Araldite LY 556) composites reinforced with pine
wood dust (PWD) using POD experiments.117 Employing ANN
on the data obtained from full-factorial DOE experiments
(L9(34) orthogonal array), they constructed a 3-10-1 topology
with sliding velocity, PWD content, and applied load as inputs.
The experimental validation of ANN predictions was in good
accordance with SWR errors o8%. They also rank PWD con-
tent, sliding velocity, and normal load in the order of most
influential parameters for SWR.117 Following up, Rout and
Satapathy investigated the epoxy composites blended with
(5–20 wt%) rice husk (RH) for their SWR calculation using
POD setup. They utilized an L16 orthogonal array determined
from Taguchi DOE to obtain the experimental parameters. ANN
model with 3-6-1 architecture, including RH content (wt%),
sliding velocity and applied load as inputs for SWR as output
was developed. In the 16 data points that were used, ANN
predictions were in reasonable agreement with experiments
since the errors were r9.64%.118 Additionally, the work by
Padhi and Satapathy illustrated the use of a BPNN on the
experimental data obtained from Taguchi’s experimental
design on epoxy composites with SGF and blast furnaces slag
(BFS). A data set of 16 parameters were run experimentally
using a POD setup, and a SWR was determined. An ANN-
trained model was used to estimate the SWR for composites
with BFS (errors between 0.9% and 5.1%) and without BFS
(errors between 2.5% and 6.9%).119 Dai et al. designed novel
antiwear additives by applying the BPNN-assisted quantitative
structure tribo-ability relationship (QSTR) model.120 This study
investigated 90 structural descriptors, including octanol-water
partition coefficient, 3D Jurs descriptors, and topological and
quantum indices for 36 additives, to determine their WSD area
under three loads.

Umar Nirmal investigated the frictional performance of
polyester (T-BFRP) composite reinforced by treated betelnut
fiber.121 They trained an ANN model on 492 experimental sets
of a block-on-disk experiment with normal load, sliding dis-
tance, and fiber orientation as inputs, used to predict the CoF.
ANN trained with LM training function, and Logsig transfer
function yielded the lowest errors compared to other training
algorithms.121 The work by Nasir et al. also highlighted the
good accuracy of the LM training function in training ANN to
predict the frictional performance of a polymeric composite
of polyester resin reinforced by multi-layered GF. Here, a large
dataset of 7389 parameters of experimental disk-on-flat

tribometer setup was utilized with different fiber orientations,
applied normal load, sliding speed, and test duration as the
input. Interestingly, higher accuracy was shown by a single-
layered model with a large number of neurons (90% in predic-
tion) as compared to a multi-layered model with fewer
neurons.122 Parikh and Gohil investigated polyester composites
reinforced with cotton fibers and fly ash to study composites’
wear responses. Experiments were conducted on the POD setup
to evaluate a devised composite. A Box Behnken DOE was
utilized to determine the experimental operating parameters
with sliding velocity, applied load, and sliding distance as three
inputs. An ANN model was trained with a total of 7 inputs
including above three operating parameters and four compo-
sites specifications (polyester, cotton fiber polyester composite,
3 wt% fly ash filled CFPC, and 5 wt% fly ash filled CFPC).
An ANN architecture of 7-10-1 was generated to achieve excel-
lent agreement of predictions with experiments with R2 value of
0.90916.123 Another prime example of determining an optimum
composition with reduced SWR using ANN on the polyester
(epoxy thermoset) composites generated by utilizing waste
marble dust as the fillers was demonstrated by Nayak and
Satapathy.124 In their study, wear trials using POD tests were
performed on 25 test parameters generated by varying sliding
velocity, sliding distance, normal load, and marble dust con-
tent with the assistance of the Taguchi L25 orthogonal array.

Zakaulla et al. formulated and designed polycarbonate com-
posites blended with graphene (GR) and B4C particles through
an injection molding process. They demonstrated the profi-
cient use of ANN on the database collected through POD
experiments. Employing material compositions (volume con-
tent of polycarbonate, GR, and B4C) and operating conditions
(applied load and sliding speed) as inputs, and SWR and CoF as
outputs. The effect of the number of hidden layers and the
number of neurons in hidden layers on the training ANN model
was shown. A topology of 5-10-5-2 yielded the best results with
CoD for SWR and CoF were 0.9375 and 0.9853 respectively.
A polycarbonate composite with 10 vol% GR and 5 vol% B4C
produced the lowest CoF (0.13) and SWR (35 mm). They attri-
bute their decrease in wear with increasing GR content to the
interlocking with polycarbonate which aids in enhanced load
transfer.125 Yet another study exemplifies the successful use of
ANN on polypropylene composite reinforced by blast furnace
glass by Padhi and coworkers.126 Both above studies used the
Taguchi method to perform experiments on distinct arrays of
parameters to generate input for the ANN model. Particularly,
this study emphasizes the significant influence of sliding velocity
and BFS filler content on the minimization of SWR.126

Kurt and Oduncuoglu magnificently illustrated that sliding
speed and normal load significantly affected the wear volume
losses. Their study comprised an ANN model trained on 125
datasets extracted from established literature on ultrahigh
molecular weight polyethylene (UHMWPE) composites rein-
forced with zinc oxide (ZnO), zeolites, carbon nanotubes
(CNT), CF, graphene oxide (GO), and wollastonite. A total of
11 inputs as shown in Fig. 4(a), including the weight% of each
component, in addition to ZnO and zeolite sizes as well as
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sliding speeds and applied load, were used to train conven-
tional feed-forward BPNN (with LM training function and
logistic sigmoid transfer function) to predict the wear volume
loss. A sensitivity analysis shown in Fig. 4(b) indicates that wear
volume loss is significantly affected by the sliding speed,
followed by the applied load, ZnO wt%, UHMWPE wt% and
zeolite wt%. This study also involved volume loss calculation
through a theoretical formulation, of which the volume loss is
plotted against ANN predicted losses and experimental testing
results as shown in Fig. 4(c) and (d) respectively.127 Zhang et al.
studied PEEK-based composite with SiC filler materials using
ANN.128 The model was successfully trained using applied load
and sliding velocity as input variables to predict CoF and wear
accurately. They observed that both outputs were significantly
influenced by sliding conditions when the applied load was
larger than 9N. On the other hand, for applied load o9N, they
reported that the relationship between CoF and sliding velocity
was parabolic.128 Overall, Zhang et al. conclude their work by
attributing the effect of testing conditions that affected the
contact temperature in the experiments.

(b) Metal matrix composites. Metals, primarily aluminum,
magnesium, and titanium, reinforced with other materials such
as ceramic, other alloys, and organic compounds can be classified
as MMCs.129 MMCs are characterized by high specific strength,
low density, controlled thermal expansion, high fatigue resis-
tance, good corrosion resistance, thermal stability, enhanced
electrical performance, and remarkable tribological behavior.130

Therefore, they have been utilized in aerospace, automobile,
electronics, petrochemical, and biomedical sectors.131–134 The
tribological performance of MMCs was successfully enhanced

by the variation of the composition of fillers and reinforcement
with materials such as alumina, SiC, and B4C.134–137 Moreover,
an increase in their tribological performances was shown by
reinforcement of these MMCs with CNT.138–140 For example, a
study by Zhou et al. showed a maximum decrease in the CoF at
20 wt% of CNT, which was attributed to increased surface
fraction of CNTs, resulting in the reduced contact area between
Al matrix and steel pin.138 On the other hand, several studies
show that excessive addition of nanoparticles led to their
agglomeration on the surface of MMCs, which adversely
affected the tribological properties of MMC.139,140 Thus,
the ability to a priori design MMCs with desired tribological
performance under different conditions remains an open chal-
lenge. In principle, ANN models, which are capable of modeling
and handling nonlinear, complex relationships can be used to
address this challenge.141 Indeed, several studies have exem-
plified the utilization of ANN for designing MMCs to minimize
the tribological properties such as SWR, CoF, wear loss, etc.142–149

Table S4 (ESI†) and text below summarizes the studies on MMCs
that apply ANN approach.

A study by Saravanan et al. splendidly demonstrated the
use of ANN on the prediction of wear behavior and CoF of
composites of aluminum alloys reinforced with rice husk ash
(RHA).150 The POD experiments were performed on the para-
meters generated by an orthogonal array (L27) based on the
Taguchi technique. Specifically, the input parameters, applied
load, sliding speed, RHA particle size, the weighted content of
RHA and wear rate, and CoF as outputs were used to train a
four-layered feed-forward BPNN. The LM training function
yielded the best prediction results (B95% for both CoF and
SWR). The morphological study showed that aluminum reinforced

Fig. 4 (a) A schematic diagram representing ANN structure with an architecture of 11-12-1 is shown. (b) Sensitivity analysis of wear volume loss w.r.t. the
11 input parameters. A plot of formulated value of wear loss plotted against (c) ANN predicted volume loss values and (d) experimental results.
Reproduced from ref. 127 with permission from Hindawi, copyright 2015.
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with RHA particles exhibited a lower wear rate due to their slightly
plastic deformation.150 Satyanarayana et al. successfully demon-
strated the use of ANN to model the wear behavior of aluminum
MMCs blended with red mud nanoparticles. In this study, POD
experiments were performed on the devised composite of different
compositions and deformation by varying applied load, and slid-
ing velocity. A regression model and an ANN model were trained
on these experimental results with a goal to predict the volumetric
rate. Their results indicate that the composite with 10% red mud
fraction and 30% deformation yielded minimum volumetric wear.
Further, their ANN model (MAPE: 7.3% and R2: 0.989) with 4-7-6-1
topology exhibited superior modeling performance compared to
their regression model (MAPE: 12.96% and R2: 0.9775) assumably
due to its excellent ability to model non-linear relationship.151

In addition, a study by Genel et al. showed that the wear
resistance of zinc–aluminum alloy could be significantly
improved by alumina fiber reinforcement. An ANN model
trained on sliding speed, applied loads, alumina fiber fraction,
and orientation as input parameters were used to predict the
wear performance of the composites. ANN model with the
prediction of 94.2% and 99.4% for SWR and CoF, respectively,
with a mean relative error (MRE) between experimental and
predicted values of 2.4% and 0.43%, respectively, were
reported.152 Furthermore, Kumar et al. predicted the wear rate
and CoF of aluminum-fly ash composites with 95% accuracy
using an ANN model.153 Particularly, a 4-6-2 architecture, with
load, sliding speed, fly ash particle size, and their wt% as
inputs were utilized with 98 training and 10 testing data sets.
These studies further showed that the time and cost of the
experimental process of designing an optimal material compo-
sition could be averted through the ANN models.153

Hayajneh et al. investigated the wear mass loss for compo-
sites of aluminum–copper alloy reinforced with SiC using ANN.
Specifically, the weight content of copper and SiC in addition to
the time of the POD test was used as an input for ANN to
predict mass loss. A Neuralware’s rule of thumb was used to
determine the optimal number of neurons in the hidden layer
as shown in eqn (5) to form the ANN architecture of 3-6-6-1 with
the normalized squared error of 8.5 � 10�5.

h ¼ Number of training cases

5ðmþ nÞ (5)

where, h, m, and n are the number of neurons in the hidden
layer, output, and input layer, respectively. The sensitivity
analysis suggested that cumulative time (Rel. sensitivity =
0.7796) was the dominating input parameter as compared to
Cu (Rel. sensitivity = 0.2441) and SiC (Rel. sensitivity = 0.1805)
weight contents.154

A356, another aluminum silicon alloy was investigated by
Özyürek et al. to fabricate MMCs with SiC reinforcements by
thixomoulding method to study their wear behavior.155 A 64
experimental (POD) data sets with manufacturing temperature,
applied load, sliding distance, and weight content of SiC as
inputs and resulting weight loss, as an output, were used to
train the ANN model. A topology of 4-5-3-2-1 was used along
with the Fermi transfer function to achieve excellent agreement

between experiments and predictions with R2 value of 0.9985.155

Another study by Shabani and Mazahery illustrated the use of a
combination of ANN and finite element method (FEM) to model
the wear properties of A356 alloy MMCs blended with B4C. FEM
was utilized to determine the temperature gradient and cooling
rate as two input parameters for the ANN model in addition to the
sliding distance of POD experiments, and boron nitride’s particle
size and volume content. The ANN model with 5-4-2 architecture
and sigmoid activation function for their neurons was utilized to
determine SWR and variation of porosity. An ANN model with
MSE values of approximately 0.2 suggested that predictions were
in excellent agreement with experimental results.156 Rashed and
Mahmoud were successful in modeling the wear behavior of A356
MMCs with SiC using ANN. Applied load, weight content and
particle size of SiC, and the testing temperature were used as
inputs, with 7 neurons in hidden layers to determine SWR as one
output neuron was established to form 4-7-1 topology. The pre-
dictions of ANN were in good agreement with experimental
observations with R-value of B0.99, and MRE B6%.157

Pramod et al. employed ANN to model the prediction
behavior of aluminum alloy (Al7075) MMCs reinforced with
aluminum oxide (Al2O3) particulates. The weight content of
Al2O3, applied load, sliding distance, and density were used as
inputs to predict SWR. The L27 orthogonal array obtained from
Taguchi DOE to determine the experimental parameters.
A topology of 4-5-7-1 was exercised to model this non-linear
relationship with an average value of regression R2 = B0.99 and
errors within 5%.158 Veeresh Kumar et al. exemplified the
superior tribological performance of aluminum 6061 alloy
when it was reinforced with Al2O3. Their study demonstrated
the use of BPNN to model these composites on the data
obtained from POD experiments. The process/experimental
design parameters were determined from the L27 orthogonal
array of Taguchi DOE. Similar to the aforementioned paper,
ANN model with 4-5-7-1 was constructed to determine wear
tallness loss (output) with sliding distance, applied load, weight
content of Al2O3, and density as inputs. A prediction error
within 5% and correlation R2 value of 0.999 suggested a good
agreement of ANN predictions with experiments.158

Mehra et al. investigated the fabrication process of RZ-5
magnesium alloy MMCs blended with TiC to reduce their wear
properties. The experiments showed that the introduction of
TiC improved the hardness of the RZ5 alloy. Moreover, the ANN
model with Broyden–Fletcher–Goldfarb–Shanno (BFGS) algo-
rithm was trained on the experimental data with sliding
distance and applied load as inputs to predict CoF. A topology
of 2-2-1-1 was utilized to achieve the errors that were within
3.5% compared to their experimental results, which suggested
the high-quality proficiency of NNs in the least possible time.159

Younesi et al. exercised application of ANN in designing
nickel-free stainless-steel composites (NFSS) reinforced with
hydroxyapatite (HA). The composites were characterized through
POD experiments to estimate appropriate HA content in NFSS,
applied load, and sliding distance for reduced wear loss. BPNN
was employed with LM training algorithm, and with 3-5-5-1
topology and R2-value of 0.999, while the prediction errors
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o12% for the volume loss. Owing to the higher accuracy of
their ML model, they employed it as a surrogate for determin-
ing the volume loss of different composite for varying applied
loads and sliding distances (0–1000 m).160

(c) Ceramic matrix composites. CMCs are ceramic fiber-
reinforced materials that are formed by embedding ceramic
fibers in a ceramic matrix and they possess high oxidation and
corrosion resistance and are stable at elevated temperatures.161

C/SiC matrix composites are widely used in vehicle braking
systems.162 Compared to C/C, composites of C/SiC have higher
oxidation and wear resistance.162 But the problem with CMCs is
that they are brittle and possess low fracture resistance.163

Hence research on CMCs is primarily focused on the enhance-
ment of their toughness and ductility. CMCs are mostly applied
while sliding against metal counterparts.164 Reduction in the
wear and increase in the tribological compatibility with the iron
surface by reducing the adhesion of Si3N4 composites has been
observed by the addition of SiC whiskers.165,166 The maximum
reduction of wear in Si3N4 composites has been observed at
a composition of 30 wt% SiC whisker.164 The addition of
TiC particles to Al2O3 composite ceramic has been shown to
enhance the tribological performance of Al2O3 composite when
sliding on an iron surface.166 Reinforcement of alumina matrix
composite with GR also leads to a significant reduction in the
CoF, with the lowest values observed at 0.3 wt% GR in Gr/Al
composite.167,168 The CoF for Gr/Al increases with an increase
in the applied load and decreases with the sliding speed.168

In the context of this review article, the application of ANN
in designing CMCs remains limited.169,170 Malazdrewicz and
Sadowski were the first to venture in predictions of wear
for CMCs through ANN.169 Specifically their study included
curation of data for cementitious composites blended with
high-calcium fly ash. Their ANN model constituted 9 input
parameters including content of cement, fly ash, water, fine
aggregate, coarse aggregate, superplasticizer, air entraining
agent, age of concrete, and time of testing to predict the depth
of wear as an output using a model with topology 9-18-1. This
study successfully demonstrated the use of ANN in CMCs
design by predicting wear with linear coefficient R2 value or
0.998 and 0.997 for training and testing w.r.t. experimental
results.169 Another successful work has been reported by
Bucholz et al. for design of CMCs.170 Since their work includes
the integration of other ML methods (DT and principal com-
ponent analysis) with ANN, it is discussed in Section 3.7.

3.1.1 Analysis of variance (ANOVA) based ANN. ANOVA,
initially introduced by Fischer, is a widely used statistical test to
evaluate the differences among the means of population of two
samples by measuring the variation within them.171 ANOVA has
been used to describe the complex relations among variables as
well as to investigate the impact of independent variables on
the dependent variables. Ongoing recent studies have reported
the use of ANOVA to aid in determining the process variables,
which are unique and have a significant impact on the results.
Subsequently, the number of experiments have reduced
and the data on which ML models are trained is efficiently

pre-processed. The following sections guide through the use of
ANOVA in generating data for ML models for diverse applications.
Table S5 (ESI†) tabulates the research work that involves ANN
approach assisted by ANOVA statistical analysis for all composite
investigations.

(a) PMC. Siddhartha and Singh exercised ANN and ANOVA
to formulate and fabricate polyester composites and their
functionally graded materials (FGMs) reinforced with SGF.
Taguchi DOE was employed to design the POD process para-
meters like applied load, sliding velocities, sliding distances,
and the fiber content in composite. ANOVA results suggested
that applied normal load (p = 34.54%) significantly affected
both SWR and CoF, followed by the SCF content, and others.
ANN model with 4-10-1 topology showed errors o14% for SWR
and o10% for CoF. They concluded their study of PMC design
with a finding of 6% SCF reinforced polyester exhibited lowest
SWR. Moreover, SCFs show incisive effect on Ts and Fs on FGMs
than their homogenous counterparts.172

Egala et al. attempted the work of the composites of epoxy
resins blended with castor oil fibers (Ricinus communis).173

Additionally, they also employed an ANOVA model to investi-
gate the effect of these individual parameters on the output.
ANOVA predicted that the applied load followed by fiber length
and sliding distance were highly influential on gravimetric
wear, CoF, and interfacial temperature. In this study, a regres-
sion model, single hidden layer ANN model and multiple
hidden layer ANN models were developed and compared. These
models were trained with input parameters viz. fiber length,
normal applied load, and sliding distance of the POD experi-
ments designed through a full-factorial approach to predict
outputs. They reported that multiple hidden layer ANN per-
formed best followed by single hidden layer ANN and regres-
sion analysis. Uniquely, this study utilized 73 different ANN
models with varying algorithms, including cascade forward
BPNN, feed-forward BPNN, and layer recurrent algorithm.
Additionally, they conducted a study on varying hidden layers
and number of neurons, and different transfer functions like
Logsig and Purelin with constant LM training function.174–176

Here, the predictions by cascades forward BPNN and feed-
forward BPNN (errors �5% and �4.5%) were efficient and
reliable compared to linear regression models (errors �8%).
They predicted epoxy reinforcement with 40% unidirectional
short five mm-fiber length castor oil fiber improved wear by
65% to 70%, CoF by 31% to 40%, and interfacial temperature
by 19% to 24%.173

(b) MMC. The study by Vettivel et al. exhibited the numerical
modeling approach of ANOVA to predict the SWR and CoF with
a 99% confidence level for the copper–tungsten (Cu–W) powder
composites.177 In their follow up study, Vettivel et al. employed
ANN to predict the hardness, CoF, and SWR for Cu–W compo-
site powder. A total of 4 inputs i.e. sliding distance, applied
load, sintering temperature, and weight content of tungsten
was employed to train the model. In particular, 10 different
ANN architectures with LM training algorithms were designed.
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Specifically, an architecture 4-7-4-3 yielded best train-test-
validation performance with a total MSE values o0.05, and
R2 values of 1, 0.99624, and 0.99046 for hardness, CoF, and
SWR, respectively.178 Furthermore, Leema et al. investigated
the copper–tungsten composites using a radial basis function
neural network (RBFNN) to predict hardness, CoF and SWR.
An architecture of 4-140-3 was employed such that tungsten
weight content, applied load, sliding distance, and sintering
temperature (while preparing samples) were used as inputs.
The accuracy in terms of R-value of B0.97 (SWR) and B0.99
(CoF) for training, while B0.976 and B0.965 in testing was
achieved. This validated a good agreement of experiments with
RBFNN predictions.179 Moreover, Arif et al. exercised the power-
ful approach of feed-forward BPNN integrated with statistics
(ANOVA) to investigate the tribological performance of alumi-
num hybrid composites reinforced with SiC and zirconia. It was
determined that the most influential parameters were sliding
speed, zirconia content, and applied load based on the full
factorial analysis. However, the effect of each parameter in the
exact amount of percentage i.e. sliding distance (79.47%),
zirconia wt% (10.35%), and applied load (6.7%) on the wear
loss performance of each composite was reported through
ANOVA. The ANN model with the aforementioned three variables
in addition to sliding speed was developed with a topology of
4-10-1, to accurately predict the wear loss as compared to
experiments.180

Thankachan et al. demonstrated the use of ANOVA com-
bined with BPNN to predict the tribological behavior of copper
surface strengthened by a mixture of aluminum nitride and
boron nitride particles. The experimental set of parameters was
designed by L27 Taguchi’s orthogonal array with varying volu-
metric fractions of particles, sliding speed, applied load, and
sliding distances as the input parameters.181 Stojanovic et al.
investigated the aluminum hybrid composites mixed with A356
alloy, which was further reinforced with SiC and graphite. In
this study, the L27 orthogonal array of experimental parameters
was generated using the Taguchi method to design experi-
ments. ANOVA technique was performed to determine that
GR composites with 3 wt% exhibited the lowest wear and
friction. Additionally, an ANN model was trained with 3-20-
30-2 architecture trained on LM function and logarithmic
sigmoid and linear transfer functions. The comparison of
predictions by ANN with ANOVA illustrated that ML algorithms
perform precisely better than statistical methods. An ANN
model with one hidden layer of 7 neurons and LM training
function successfully predicted the optimized SWR with higher
accuracy compared to the referenced regression model.182

Agarwal et al. investigated the effect of powder-chip reinfor-
cement for LM6 aluminum alloy to reduce SWRs using BPNN.
While maintaining the sliding speed at 300 rpm at an applied
load of 15 N, only sliding distances (varied from 125 m to
750 m) and reinforcement content (10 to 25%) were used as
input for training the ANN model. With an architecture of 2-5-1,
the total mean squared error (MSE) of 1.11% was reported.
In addition, ANOVA was used to determine the interaction
effects between the input parameters. Particularly, reinforcement

incorporation (adjusted sum of squares (Adj SS) = 11.225)
showed a dominant effect on the wear rate compared to sliding
distance (Adj SS = 8.475).183 Ritapure and Kharde developed an
ANN model to examine and predict the SWR for Al–25Zn alloy
based MMCs blended with SiC. Taguchi’s L16 orthogonal array
was determined and accordingly experiments were performed
on POD setup. With sliding speed, temperature, applied load
and filler (SiC) content as input, ANOVA, regression and ANN
models were developed to calculate SWR. Through ANOVA, the
dominance of testing temperature was evident followed by
applied load, SiC content and sliding velocity. An ANN model
with R2 = B0.99 outperformed the regression model with R2 =
B0.98 by a fine margin, while both models showed reasonable
agreement with experimental validation. Their results sug-
gested that highest wear resistance and hardness was observed
for 15 wt% SiC reinforcement with an increase in its Ts.

184

Prakash et al. investigated the copper MMCs reinforced with
MWCNTs with POD experiments. The obtained results were
analyzed through statistical (ANOVA) and ML (ANN) algorithms
to determine the wear loss. Taguchi’s DOE was used to obtain
an L16 orthogonal array to optimize the experimental para-
meters such as volume fraction of MWCNTs, applied load and
sliding distance. In the ANOVA, MWCNT content (76.48%) was
found to be the most influential factor, followed by the applied
load (12.18%) and the sliding distance (9.91%). The ANN model
was constructed with these 3 inputs and 1 hidden layer with
7 neurons and 1 output i.e. wear loss. This model with R2 value
of 99.5% was in excellent agreement with experiments and
exhibited superior predictability than ANOVA predictions.185

Kavimani and Prakash employed ANN and ANOVA to study
and analyze the magnesium (AZ31 alloy) MMCs with varying
reinforcements of reduced graphene oxide (r-GO). Four input
parameters, namely, applied load, r-GO weight content, sliding
distance, and sliding velocity were determined to be influential
in training of the ANN model. Using the Taguchi method of
DOE, an L27 orthogonal array with three levels of variation of
input parameters was determined. The mean-effective plot
describing the signal-to-noise ratio of each individual parameter
is shown Fig. 5(a). Their ANN model development involved study-
ing the variation of the number of neurons in the hidden layer.
The corresponding MAE results are shown in Fig. 5(b). An archi-
tecture of 4-7-1 yielded 98.4% accuracy (R2 = 0.984) for the
prediction of SWR as shown in Fig. 5(c). ANOVA results suggested
that applied load (38.85%) is the most influential parameter
determining MMC’s SWR, while sliding distance was the least
(12.33%).186 In their follow-up study, Kavimani et al. investigated
the wear and friction behavior of Mg MMC reinforced with r-GO
now doped with SiC. Similar to their previous study, the L27

orthogonal array for varying the applied load, sliding distance,
sliding speed, and the weight contents of r-GO and SiC were
determined through the Taguchi DOE method. The ANN model
with an R2-value of 0.998 was shown for an architecture 5-8-1, while
ANOVA predicted that the weight content of r-GO and applied load
were the most influential parameters determining the SWR.187

3.1.2 ML/optimization assisted ANN and ANN assisted
optimization. An attribute-property relation of any multivariate
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system of ANN can be developed, however at the cost of
appropriate choice of hyperparameters. Studies have developed
some interesting strategies to tailor these multiple variables,
but may be focused on that specific dataset. To that rescue,
some studies have incorporated optimization algorithms like
monte-carlo (MC),188 improved bat algorithm (IBA)189 or other
ML techniques to develop ANN models. These optimization
techniques have enabled researchers to overcome drawbacks of
slower convergence and compromised accuracy in development
of traditional BPNN. In the case of ANN assisted optimization,
an ANN model is used as a surrogate where optimization
algorithms use ANN as an objective function. These include
evolution algorithms like non-sorting genetic algorithm (NSGA-
II)190 and genetic algorithm (GA)191–193 to optimize the input
variables. As a result, multi-objective optimization can be
conducted with a high degree of efficiency. Table S6 (ESI†)
tabulates applications of ANN combined with other ML/opti-
mization algorithms to investigate tribological properties of
composite materials.

(i) Monte-Carlo-based ANN. In Monte Carlo simulations,
stochastic processes are modeled and their outcomes are
estimated using probabilistic numerical techniques.194 In
regards to any mathematical problem, repeated sampling of
the parameter space can enable equilibrium to be reached
faster than analytical deterministic methods, depending on
the complexity of the problem. Monte-Carlo’s theory has exhib-
ited proficiency in modeling a variety of real-world probabilistic
processes.194 Compared to this traditional deterministic
method, a probabilistic approach of the Monte-Carlo (MC)
method, which can generate random scenarios (variables),
may help in developing/modeling ANN faster with efficient
computational usage.

A few studies have demonstrated the successful use of MC in
sensitivity analysis, uncertainty quantification, and so on.195,196

An appropriate choice of hyperparameters and as such deter-
mining the weights of neurons remains challenging. Therefore,
MC-ANN, introduced by Li et al. exercises the MC approach
to estimate the weights of each neuron in a probabilistic
manner.188 A faster and more accurate MC-ANN aids in better

non-linear mapping ability and improved fitting effect of sam-
ples. The comparison of the workflow of MC-ANN that is featured
in the work of Li et al. is shown in Fig. 6(a) and (b). They trained
and compared MC-based ANN (MC-ANN) and BPNN, exhibiting a
better accuracy of MC-ANN (RMSE 0.97 and 0.007) compared to
BPNN (RMSE 2.08 and 0.019) for SWR and CoF, respectively as
shown in Fig. 6(c) and (d). This study investigated the tribological
behavior of PTFE resin composites reinforced with aramid pulp,
mica, copper (Cu), nano-SiO2, and potassium titanate whisker
(PTW). 18 different compositions were formulated using ortho-
gonal table L18 (37), and the experimental data conducted in
triplicate on a quasi-static test rig were used to train the ANN
model. The gray relational analysis (GRA) was employed to
optimize formulation design and determine weight factors and
non-linear dependency of the ingredients. In the context of
variation and volatility of the data, MC-ANN performs better than
conventional ANN because it uses repeated random sampling and
a variety of transfer functions like sigmoid, polynomial, tanh, and
Gauss functions.188

(ii) Improved bat algorithm (IBA). A meta-heuristic global
optimization algorithm, improved bat algorithm (IBA) is based
on the echolocation characteristics of the bat.197,198 With the
improved exploration and local search capability, IBA exhibits
superior performance compared to the original bat algorithm
(BA). In search of prey, bats (explorers) fly randomly with
certain velocity and emitting (adjustable) frequency, depending
on the distance from the target.

A novel work by Gangwar and Pathak integrating an IBA
optimization with ANN that overwhelms the challenges of the
training process of complex and non-linear ANN models.189

This work exemplifies the efficient and effective training of
ANN models to evaluate and predict the wear characteristics
of ZA-27 alloy reinforced with marble dust particles (MDp).
Taguchi design of the experiment was utilized to generate an
L25 orthogonal array for unique parameters (applied normal
load, sliding distance, velocity, marble dust composition, etc.)
for POD setup. Compared to other training algorithms like
backpropagation, genetic algorithms, particle swarm optimiza-
tion, and so on, the flexibility and stability in the tuning of IBA

Fig. 5 (a) The mean-effective plots show the signal-to-noise ratio of each individual parameter. (b) The variation of MAE with the changing number of
neurons in the hidden layer. Highlighted point with 7 neurons shows the lowest MAE error. (c) The results for the predictions of ANN validated against
experiments for wear rate. Reproduced from ref. 186 with permission from Elsevier, copyright 2017.
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allow us to attain convergence faster by introducing a new
velocity, position search equation, and Sugeno inertia weights.199,200

As a result, the local optima stagnation was overcome, and
prediction accuracy for SWR of 97% with a mean squared error
of 0.26 was obtained for this study. Employing optimization-
assisted ANN, one can save the tedious task of brute-force
training a complex NN model, and accelerate the process of
optimization and prediction.189

(iii) Non-dominated sorting genetic algorithm (NSGA-II). One
of the most popular multi-objective optimization evolutionary
algorithms, NSGA-II, exhibits three main features: (i) a fast
nondominated sorting process, (ii) a fast crowded distance
estimation procedure, and (iii) a simple crowded comparison
procedure.201,202 As a part of multi-objective optimization
(MoGA), NSGA-II has shown its reliability in optimizing
machining process parameters. Compared to the Pareto-
archived evolution strategy (PAES) and the Strength Pareto EA
(SPEA), NSGA-II is able to maintain a better spread of solutions
and convergence on the Pareto-optimal front.

A recent work by Vinoth and Datta also exemplifies the usage
of ANN to predict the mechanical properties of UHMWPE
composites reinforced with CNT and GR.190 ANN model was

trained on previously reported 153 experimental data with
varying composition within composites, particle size, and
mechanical properties as input (7 no.). Here, two ANN models
were trained to determine Young’s modulus (Y) and Ts, with
3 and 5 hidden layers, respectively. A feed-forward ANN with
scaled conjugate gradient backpropagation with hyperbolic
tangent transfer function assisted in achieving correlation
coefficients of 0.93 and 0.97 for Y and Ts, respectively.
A multi-objective function to attain optimum values of Y and
Ts were executed by employing a non-dominated sorting
genetic algorithm (NSGA) based on Pareto-optimality
theory.201,203 The optimized composites were further experi-
mentally subjected to tribological and mechanical characteriza-
tion. This process successfully demonstrated the use of ML
integrated with optimization to improve the properties, speci-
fically the excellent wear rate of the predicted composites
compared to the literature available 153 datasets.190

(iv) Genetic algorithm (GA). In the theory of Darwin’s natural
selection, GAs are iterative processes that evaluate the fit between
data over multiple generations in an iterative manner.204 There
have been successful applications of GAs for material develop-
ment in recent years, including metal–organic frameworks,

Fig. 6 The schematic representation of the workflow of (a) BPNN and (b) MC-ANN. The results for (c) SWR and (d) CoF are also shown in bar graphs.
Reproduced from ref. 188 with permission from Wiley Online Library, copyright 2019.
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metals, and their oxides, and composites, to optimize large and
complex design spaces to develop materials that are tailored for
specific applications.205 They are developed by following a set of
rational design principles that produce material structures that
can be synthesized for various applications.206–208

Given the large design space spanning through varying
content of different vegetable oils and nano friction modifiers
(FMs), Bhaumik et al. successfully employed GA assisted by
ANN.191 They successfully trained an ANN model with 80 and
120 data available on four-ball tester and POD experiments,
respectively. Their study aimed to design an optimal blend of
different vegetable oils (viz. coconut oil, castor oil, and palm oil)
with nano FMs, including MWCNT and GR. Two three-layered
ANN models were trained, each for POD and four-ball tester
experiments, with CoF as the output parameter. Particularly,
the data on the amounts of three vegetable oils, dimensions,
and amounts of nano FMs, in addition to their respective
experimental setup parameters, were used. Further, these two
ANN models integrated with a GA were operated to optimize the
output constraint CoF and design two lubricants: Lube A: 40%
castor oil, 40% palm oil, and 20% coconut oil with 0.7%
MWCNT and 0% GR and Lube B: 33.3% castor oil, 33.3% palm
oil and 33.3% coconut oil with 1% MWCNT and 1% GR for
four-ball tester and POD setup, respectively. Contrary to the
work by Li et al. where an MC optimization algorithm was used
to tune the weights of neurons, here, the ANN surrogate model
is used as an objective function to optimize input variables.188

This study showed a fair agreement of ANN predictions with
their experimental results. This study was further extended
in developing a quintessential combination of multiple FMs
including GR, graphite, MWCNT, and ZnO nanoparticles

blended with castor oil.192 The data generated from POD
experiments performed on lubricants designed by varying
above components were used to train the ANN model. The GA
optimization with ANN models as an objective function was
employed to successfully predict a novel lubricant that com-
prised 0.66 wt% each of graphite, MWCNTs, and ZnO in castor
oil. This lubricant yielded a reduction of 50% and 87% in the
CoF and WSD, respectively. Their study highlights the contri-
butions of different FMs on CoF, as illustrated in Fig. 7(a),
particularly the surface plots (Fig. 7(b)) for the CoF shed
the light on varying concentrations of FMs. Moreover, the
lubrication mechanism emphasizes the use of FMs in reducing
friction as shown in Fig. 7(c).192

Mahapatra et al. developed polyester composites reinforced
with e-glass fiber and ceramic particulates including cement
by-pass dust (CBPD), Al2O3, and SiC. An L27 orthogonal array
from Taguchi DOE was utilized to determine the initial input
parameters, namely, impact velocity, filler content, stand-off
distance, impingement angle and erodent size in an air jet type
erosion test rig. An architecture of 5-12-1 yielded errors less
than 14% for the ANN predictions compared to experimental
results. In addition, an ANOVA indicated that CBPD exhibited
superior filler properties compared to alumina and SiC fillers.
Subsequently, GA was employed to determine and report the
optimal test factors for all three fillers.193

Table S7 (ESI†) tabulates applications of other ML algo-
rithms to investigate the process variables or tribological beha-
vior. These other ML algorithms include RNN, PCA, ART-2 ANN,
ELM, ANFIS, DT, RF, SVM, regression, KNN, GBM, and so
on. Detailed information on these models, including their
development and advantages, follows the table.

Fig. 7 (a) The schematic representation of ANN used in this study. (b) The surface plots for the variation of CoF with varying (i) ZnO and GR, (ii) MWCNT
and graphite content. (c) Representation of the nano-fillers aiding the lubrication regime. Reproduced from ref. 192 with permission from Elsevier,
copyright 2019.
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3.2 Recurrent NN (RNN) and principal component analysis
(PCA) based ANN

PCA is a dimensionality reduction technique, transforming
such a large set of variables into a total lower number of
dimensions, representing the information from a larger
set.209,210 A study by Kolodziejczyk delineated the dynamical
frictional behavior using the model on wear resulting from dry
fretting.70 Specifically they trained two ANN models i.e. static
ANN and dynamic RNN for solving static and dynamic pro-
blems, respectively. (i) Static ANN: Firstly, their study utilized
the PCA to exhibit the dimensional reductionality employed in
high dimensional and complex models, which could further be
used in training an ANN model. Taking 6 input factors, PCA
successfully identified only four parameters, viz. number of
cycles (NoC), the amplitude of displacement, pressure, and
roughness, had the least correlation factor to be utilized for
ANN model training. Therefore, a static ANN model with 4-3-1
architecture was trained on tansig transfer functions for input
and hidden layers. In contrast, the purelin transfer function
was applied for the output layer to achieve a 1.8% mean relative
error. Comparing the results of the ANN model with their
multiple regression analyses (MRA), they concluded that ANN
successfully mapped the non-linear region of the data – parti-
cularly, the physical interpretation of input mechanical proper-
ties and their response in their ANN model. (ii) Dynamic RNN:
The preprocessing of this real-time data involved normalization
and bisection, and therefore, one extra input i.e. CoF was added
to train the model. An algorithm similar to static ANN was used
to train RNN with an architecture of 5-12-1. Despite 95.9%
accuracy, the authors concluded this work by reporting more
data was required for better modeling.70

3.3 Adaptive resonance theory (ART-2) based neural network
and BPNN

An adaptive resonance model is an unsupervised learning
approach that mimics the brain’s ability to recognize patterns
in environments that are constantly changing.211 This algo-
rithm relies on a recurrence (feedback) approach in order to
regulate learning ability, so that the neurons’ weights converge
faster. ART-2 model not only solves the problem of pattern and
situation recognition but also can be used to study and predict
the structure and values of time series.212 An ART-2 model was
employed by Subrahmanyam and Sujatha, which was further
compared with conventional multilayered feed-forward ANN
with error backpropagation (EBP).213 These ML models were
trained for the diagnosis/detection of localized defects in ball
bearings. The experimental data of vibration acceleration sig-
nals for normal bearing and two different defective bearings
was used to train models. Compared to BPNN, the learning of
the ART-2 algorithm was found to be about 100 times faster,
with a 100% reliability in detection of faulty bearing in com-
parison to the normal bearing. However, ART-2 was inefficient
in distinguishing localized defects in different ball bearing
states. Moreover, BPNN was capable of diagnosing localized
defects with 95% success rate. However, while BPNN showed

100% success in identifying defective ball bearings, it exhibited
a slower learning rate.213

3.4 Extreme learning machine (ELM)

ELM is an ML model with a single hidden feedforward NN.214

However, unlike gradient-based back propagation, it uses
Moore–Penrose generalized inverse method to estimate the
output weights. Consequently, they converge faster than con-
ventional methods and produce promising results.215 Mujtaba
et al. recently utilized ELM as well as integrated the Cuckoo
search optimization process with response surface methodo-
logy (RSM) (Box–Behnken DOE).216 The tribological behavior of
biodiesel produced from optimizing process variables of
ultrasound-assisted transesterification of palm-sesame oil was
examined. The process variables such as time, catalyst amount,
methanol to oil ratio, and duty cycle were optimized to improve
the cold flow characteristics and average CoF of produced
biodiesel. This study also highlighted that CoF prediction using
ELM model is computationally less intensive and more accu-
rate as compared to DOE model. The predicted average CoF for
P50S50 biodiesel was lower than palm biodiesel and B10
commercial diesel by 2.29% and 12.37%, respectively.

3.5 Adaptive neuro fuzzy inference system (ANFIS)

A hybrid predictive model that uses both NNs and Takagi-Sugeno
fuzzy inference system217 logic to provide mapping relation-
ships between input and output is called ANFIS. This approach
allows us to train the non-linear models with rapid learning
and adaptive capability.218 Babajanzade Roshan et al. exercised
ANFIS modeling and optimization approach to maximize
mechanical properties of friction stir welding (FSW).219 ANFIS
model with generalized bell type of membership function was
developed to map relationships between inputs (welding speed,
pin profile and rotary speed of tool) and outputs (Ts, yield
strength, and hardness of welded joints). By the virtue of both
single response and multi-response problems, the highest
mechanical properties were observed at a welding speed of
1.75 mm s�1, and square pin tool with the rotary speed of 1400
rotations per minute (RPM), axial force of 7.5 kN, which were
further validated in their experiments. They mentioned that the
axial force plays a critical role in determining CoF due to the
frictional heat generation between the tool shoulder and plate
surface. A subsequent increase in axial force from 5 kN to
7.5 kN saw a rise in hardness due to improved joint efficiency
and increased tensile properties, which saw defects and tunnels
if the force was further increased. Moreover, the effects of rotary
speed and welding speed emphasize their significant role due
to heat generation, cooling rates, and/or welding efficiency.219

Dewan et al. investigated the effects of process variables
including, spindle speed, plunge force, and welding speed for
the FSW process through ANFIS and ANN.218 A small data set of
73 welds were used to train models to predict the ultimate
tensile strength (UTS) of FSW joints. Overall, 1200 ANFIS
models were generated by varying the number and types
of membership functions (MFs), a combination of above men-
tioned three input variables and empirical force index (EFI)
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derived from three process parameters. A schematic of the ANFIS
structure with 5 layers is shown in Fig. 8(a), where the number of
nodes in the input layer is determined by the number of inputs
and membership functions, while hidden layers are given by the
number of fuzzy rules.218 The prediction based on the ANFIS
model developed on three input variables (V, Fz, and EFI) com-
pared to experimental UTS is plotted in Fig. 8(b). In addition, the
surface plot for predicted UTS values from the ANFIS model with
two input variables V and EFI is presented in Fig. 8(c). In general,
their study highlighted that ANFIS models performed better than
ANN due to their lower prediction errors. Their analysis indicated
a strong relationship between EFI and UTS, as well as a non-linear
correlation of EFI with the other three inputs N, V, and Fz. Their
ANFIS model is proficient to estimate appropriate weld process
parameters to achieve desired joint strength.220

3.6 Decision trees (DT)

DT is a supervised learning algorithm used for classification or
regression, based on the simple decision control rules (decision

nodes) and predicted actions (branches).221 In addition to the
simplicity in understanding and interpretability, DTs require
minimal preprocessing irrespective of hard or soft data.
Bucholz et al. have illustrated the use of DTs in designing ceramic
pairings by using data from dry sliding POD experiments.170

A total of 24 ceramic samples spanning through 15 variables were
generated using POD tribometer experiments. However, a multi-
variate problem necessitates a dimensionality reduction step,
which would result in efficient recursive partitioning through
DT. Initial exploration through PCA suggested that the first two
principal components (PCs) captured B65.8% variation, which
could be sufficient for higher information gain. Fig. 9(a) shows
an evident grouping among oxides, chalcogenides, halides, and
pnictides, and Fig. 9(b) illustrates the corresponding property
relation. PCA suggested that the key material properties such as
cation electronegativity, melting temperature, and Madelung con-
stant were critical in determining the data-driven friction model.
A regressive DT was developed with these attributes as well as Rij

distance, cation radius, and charge, as the decision nodes as

Fig. 8 (a) The schematic representation of ANFIS used in this study. (b) Comparison of ANFIS predictions of UTS w.r.t. experimental values. (c) The
surface plots for the variation of UTS with varying (i) EFI, and (ii) welding speed. Reproduced from ref. 220 with permission from Elsevier, copyright 2016.

Fig. 9 (a and b) Representation of PCA analysis for grouping oxides, chalcogenides, halides, and pnictides and their respective property relationships.
(c) The schematic representation of the DT constructed on the basis of PCA results. Reproduced from ref. 170 with permission from Springer Nature,
copyright 2012.
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shown in Fig. 9(c). The trained DT model with R2 accuracy of
B0.89 in the prediction of CoF, was in excellent agreement with
the experimental validation.170

3.7 Random forests (RF)

A RF is an ensemble learned technique constructed from many
independent DT.221 Specifically, the RF model is trained via
bagging and bootstrap aggregating techniques to overcome
DT’s missing data and overfitting problems. Prost et al. utilized
the RF classifier to predict the states of operation for tribo-
logical sliding experiments in oscillating and translatory
motion.53 The tedious and time-consuming task of labeling
states of operating conditions was overcome by a semi-
automated process based on dimensionality reduction, PCA,
and clustering algorithms, k-means. This study emphasized on
the flexibility of the labeling approach since it is a critical step
and may require the expert knowledge of tribologists. Particu-
larly, with four operating states (steady-1, steady-2, precritical,
and critical), their RF model with a training accuracy of B0.94
on the high-resolution force signals, was validated against the
labeled dataset of another experiment.53

3.8 Support vector machines (SVM)

Support vector machines are based on statistical learning.222

One of the most robust prediction methods, SVM is efficient
for non-linear classification specifically for high-dimensional
feature space. Yin et al. investigated the acoustic emissions (AE)
from the experiments conducted under varying operating con-
ditions of the gas face seal test rig.223 SVM regression model
was trained and validated through leave-one-out (LOO) cross-
validation on the data obtained from experiments to predict the
eccentric load on the stator of the seal. This study primarily
highlights the use of vectorization and SVR to estimate the load
in gas face seal test rig experiments.223

The work conducted by Das et al. sheds light on the internal
defect identification in the FSW process using real-time torque
signals.224 Discrete wavelet transforms and statistical features
including dispersion, asymmetry, and excess were computed
to analyze these experimentally obtained signals. Moreover,
general regression models, ANN, and support vector regression
(SVR) models were trained on these signals to predict the UTS.
Particularly, the SVR model’s prediction performance with the
error of 0.5% was better than even ANN with 3-5-1 architecture
with the error of 3.1% and regression models with 13.6%.224

3.9 Multiple ML models

Despite the extensive efforts, the relevance of different ML for
appropriate applications has not been fully explored. In some
cases, black-box ML algorithms have proven useful in identi-
fying correlations in data and developing characterization
models with a minimal cost and effort. In such manner, Perĉic
et al. employed various ML and AI techniques to model and
predict the dependencies of synthesizing process parameters
on nanoscale friction of Al2O3, TiO2, molybdenum disulphide
(MoS2), and aluminum (Al) thin films.225 The lateral force
microscopy (LFM) within a centroidal Voronoi tessellation

(CVT) process included normal forces, sliding velocities, and
temperature as input parameters. This study employed ML
algorithms like MLP ANN, random DT and RF, SVR, age-
layered population structure, grammatical evolution, and sym-
bolic regression multi-gene programming (SRMG). The numer-
ical evaluation of prediction performances of these models
through RMSE, MAE, and R2-value suggested that SRGM model
exhibited highest accuracy (R2-value: 0.72–0.91). By using this
approach, simple functional descriptions influencing nano-
scale friction for variable parameters in study were derived.225

Moreover, tribological operators like a brake or clutch which
are an essential safety component of any automobile regardless
of the conditions, modeling the wear phenomena and CoF
remains a time-consuming and challenging task. Data driven
approaches to model brake linens can be exercised through a
number of ML approaches. To that extent, Timur and Aydin
evaluated the CoF of brakes through the application of 7
different ML regression models.226 This includes linear, SVM,
Gaussian process, pace, simple linear, least median square, and
isotonic on 1050 experimental data points, with a 10-fold-cross
validation. The models were trained on data that was generated
by varying the speed, pressure, and heat, which had a signifi-
cant impact on the CoF. Out of 7 different models, isotonic
regression showed lowest RMSE of 0.0014 and highest correla-
tion coefficient (0.99). An isotonic regression model, which
is suitable in multidimensional scaling problems, can be
described as a flexible linear model that can be fitted in order
to predict data in series, which resulted in the best performance
by this model. Moreover, in general, the models showed the
RMSE values o0.01 and correlation coefficient with test experi-
ments of 40.99.226

A recent study by Hasan et al. successfully incorporated and
compared different ML algorithms in the tribological behavior
of aluminum-based alloys and aluminum–graphite MMCs,
including ANN, RF, SVM, k-nearest neighbors (KNN), and
gradient boosting machines (GBM).227,228 The experimental
data obtained from the literature, including seven material
variables (hardness, Ts, yield strength, ductility, heat treatment,
processing procedure, and SiC content) and three tribological
test variables (sliding distance, sliding velocity, and applied
load from POD experiments) was used to train these supervised
ML models to predict the CoF and SWR. They found that the
RF model performed better compared to other models in
predicting wear behavior, which can be traced to its bagging
mechanism. The RF algorithm can handle high levels of
variability and fluctuations in the dataset. GBM and KNN,
however, showed excellent prediction performance for alumi-
num base alloys and Al/Gr MMCs, respectively.227,228

In their critical review, Marian et al. highlighted that numer-
ical design and optimization of surface micro-texturing in EHL
lubricated contacts to control friction and wear.229 In their
subsequent study, Marian et al. investigated EHL contacts’ fluid
film parameters by employing ML and AI approaches, specifi-
cally, SVM, GPR, and ANN. Their work demonstrated better
flexibility and higher accuracy in the predicting film’s thick-
ness compared to analytical counterparts of EHL simulations.
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The data available from finite-element method (FEM) simulations
and Latin hypercube sampling, comprising 12 input parameters
including sliding surfaces mechanical and elastic properties,
applied load, sliding velocities, and lubricant properties, with
minimum and central lubricant gap as output were used to train
the ML model. An ANN architecture of 12-12-12-2 was implemen-
ted to achieve an accuracy of 1.0. In addition, the study of effect of
variation of number of neurons, hidden layers, different activation
functions, and varying number of input data was also conducted.
Similar to ANN, SVM (R2 = 0.997) and GPR (R2 = 1.0) showed
excellent prediction accuracy. Moreover, the comparison of com-
putational time for ANN prediction was B26 times faster than
FEM-based simulation.230

4. Molecular simulations in tribology

To complement the aforementioned experimental methods
that provide macroscopic information, molecular simulations
providing insights on tribological processes at the nanoscale,
have emerged as a powerful tool. This study of tribological
systems, termed as nanotribology, is associated with the study
of micro- to nano-scale friction and wear phenomena such as
adhesion, scratch, friction, and wear rate properties at the
atomic level, as well as the interfacial properties between two
surfaces.23,231,232 While the experimental exploration of nano-
tribology necessitates the use of costly specialized equipment
and is subject to high probabilities of error, computer simula-
tions like MD simulations not only lower the expense of
experimentation but also allow for more experiments with little
risk to the environment.233,234 Additionally, MD simulations
provide insight into molecular-level interactions and the inter-
facial structural characteristics that are challenging to examine
through experiments.235,236 Besides, MD simulations also aid
in the determination of a material’s chemical, mechanical, and
structural properties, as well as the validation of experimental
data at the molecular-level.233 Because quantum mechanical
ab initio calculations are confined to systems of hundreds of
atoms, atomistic tribology MD simulations have historically
been approached using empirical classical models of atomic
interactions. These models are, however, developed to fit both
experimental data and ab initio calculation results.237 Below
we have highlighted a number of studies that have used
different types of MD simulations to gain fundamental insights
on different tribological systems.

4.1 Molecular dynamics (MD)

MD simulations have been applied to tribological studies
involving crystal growth, drying, and wetting at solid–liquid
interfaces,238,239 structural-property examinations to under-
stand the layering of molecules,240,241 nanotribological proper-
ties of hard materials due to sliding, rolling, vibrations,
etc.13,242 Researchers have also utilized MD approaches to
visualize the material removal rate during rolling machining
and the influence of the indenter on the workpiece in the
previous decade.243 Besides studying the surface of materials,

MD simulations have also been utilized to study friction
between two sliding surfaces and the structure of these inter-
faces at the atomic-level. The introduction of nanoparticles for
improving tribological characteristics has sparked interest in
interfacial layer studies.244–246 The fluid molecule layer on the
solid–liquid contact is known as the interfacial layer. When
compared to a bulk fluid, it has a thickness of 1–3 nm and a
more organized molecular structure.246

Researchers are increasingly interested in exploring the
interfacial layer of nanoparticles in various tribological systems
using computational approaches. The interaction between
water and the talc mineral surface, as well as the adsorption
of the cationic surfactant DTAB (dodecyl trimethyl ammonium
bromide) was studied using an MD simulation approach by Du
and Miller.247 Talc, a significant magnesium silicate mineral, is
made up of three layers held together only by van der Waals
forces, which can slide over one another – making it an
interesting lubricant.248 The goal of the research was to look
at the interfacial structure of water as well as the configuration
of adsorbed molecules at the talc basal plane and edge surfaces.
The study revealed that the distribution of water normal to
certain surfaces was significantly influenced by the substrate’s
crystal structure. The lack of hydrogen binding sites at the
surface resulted in weak binding between water and the talc
surface leading to the formation of voids around the substrate
as shown in Fig. 10(a)(i) and (ii). It was also found that exposed
oxygen and silicon groups at the edges helped strengthen the
interactions between talc and water. Similarly, stronger inter-
actions were observed between the hydrophobic basal plane of
talc and the tails of surfactant DTAB. All these factors can have
a significant effect on the performance of talc as a lubricant in
different conditions.247 MD simulations have also been used to
identify the lubrication mechanism of carbon nano-onions.
This study by Bucholz et al. identified and simulated two
mechanisms of rolling and sliding responsible for reducing
the CoF between two diamond like carbon (DLC) substrates.249

The ability of the nano-onions to roll between the substrates
was found to be inhibited by higher pressures and by the
presence of a diamond core within the nano-onion, resulting
in interfacial bonds. It was also reported that as the nano-
onions transitioned from rolling to sliding, the CoF signifi-
cantly increased.249

Another form of classical MD involves the use of coarser
beads to represent groups of atoms in atomistic simulations.250

Known as coarse-graining, this approach has been instrumen-
tal in studying larger systems that require longer time scales
and computational efficiency.251,252 Traditionally, CG MD
simulations have been used to study much larger tribological
systems like polymer architectures, self-assembled particles,
etc.252–254 A study by Albina et al. investigated the properties
of lubricants enclosed between nanostructured metal (Fe)
surfaces by obtaining a relationship between normal stress
and the shear stress exerted on the lubricant molecules using
CG MD simulations. The slope of shear stress vs. normal stress
was used to calculate the CoF at different conditions. It was
observed that the lubricant molecules preferentially adsorbed
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to Fe atoms due to strong Fe-COOH interactions as shown
in Fig. 10(b)(i). It also was reported that while the strength of
the interactions between Fe and the lubricant molecules had
little effect on the CoF below the crucial normal stress, as the
stress value exceeded, delamination of oil from the metal
surfaces occurred resulting in a rapid lateral motion as shown
in Fig. 10(b)(ii).255 Similarly, in a recent study by Kobayashi
et al., the authors developed CG bead-spring models for polar
PFPE to generate nanometer-thick films sheared between solid
surfaces.256 These systems were simulated to investigate the
lubricant dynamic behavior when two types of substrate surface
roughnesses were used. More information pertaining to the use
of classical MD in tribological systems can be found in a recent
review by Srivastava et al.233 as well as several other review
articles.232,257,258

4.2 Reactive molecular dynamics (RMD)

Following the classical MD simulations, reactive molecular
dynamics (RMD) simulations have also been utilized to study
tribological applications as they can capture the ‘making’ and
‘breaking’ of chemical bonds in order to mimic tribochemical
reactions.259–261 Specifically, their ability to model chemical
bonding/debonding has enabled their widespread use in stu-
dies aimed at understanding the relevant tribochemical pro-
cesses that determine friction and wear in sliding contacts.
Surface characterization and observation, an essential tool for
understanding tribochemical processes and correlating tribo-
film composition with friction and wear behavior, still remains
a major experimental problem. Experimental research has thus

been supplemented with RMD that helps us ‘‘see’’ into a
tribological interface, somewhat tackling this difficulty.26 The
accuracy of these RMD simulations is a direct result of their
underlying force fields. These force fields are based on Abell’s
notion of bond order, in which the strength of a bond is
determined by the nearby chemical environment.262 Abell,
Tersoff, and Brenner’s bond order concept began as an esti-
mated chemical pseudopotential theory, in which the intricate
core electron movements are smoothed using an effective
potential.262–264 Bond angles and a symmetry notion account
for radical production and investigating the relationship
between contacts and local atomic coordination numbers. This
resulted in the first- and second-generation reactive empirical
bond order (REBO) potentials, which were optimized for
carbon-based materials, as well as the adaptive intermolecular
REBO (AIREBO) potential, which more realistically treats
graphite interlayer repulsion by introducing non-bonded inter-
actions and torsional parameters.265,266 This family of poten-
tials has been found to be extremely successful in describing
carbon-based compounds essential to tribology such as hydro-
carbons, diamond, and GR.267–269 To circumvent the restric-
tions of fixed-charge bond order formalisms, recent reactive
potentials adopt a variable charge method. The charge-
optimized many-body (COMB) potential and reactive force field
(ReaxFF) are two of the most well-known instances of this in
tribochemistry.270–272

RMD simulations have been employed for studying
chemical reactions that take place between solid substances
and their interfaces, within the lubricating substances, or

Fig. 10 (a) Snapshots of equilibrated DTAB/water/talc basal plane surface for different simulation times. The color representations are as follows: red-
oxygen, white-hydrogen, yellow-silicon, green-magnesium, light blue-carbon, dark blue-nitrogen, and purple-bromide. Reproduced from ref. 247 with
permission from Elsevier, copyright 2007. (b) (i) Top view of metal surface (green) with adsorbed lubricant (red COOH group) molecules as well as a
schematic illustrating their spatial arrangement, (ii) Shear stress as a function of the compressive normal stress under shear flow for a fixed Fe–COOH
interaction strength. The schematics (insets) indicate behaviors of the molecular flow in two characteristic regimes: uniform shear flow (left) and
stick–slip motion (right). Reproduced from ref. 255 with permission from Springer Nature, copyright 2020.
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between the lubricant and solid surfaces. The REBO potential
was used by Harrison and Brenner and was utilized to investi-
gate the tribochemistry and wear between diamond surfaces
ending with hydrogen and ethyl groups.273 Hydrogen atoms
sheared off ethyl groups were found to either recombine with
radical sites or abstract another H to form H2 molecules at
the interface. The formation and breaking of bonds between
radical sites on opposing surfaces was discovered as the pro-
cess of molecular wear debris formation.273 A further study by
Harrison and co-workers focused on tribochemical explana-
tions for the friction performance of H-terminated diamond
and H-free amorphous carbon tribopairs using REBO
potential.274 Due to increased adhesion via tribochemical pro-
cesses, films with a larger fraction of surface sp2-hybridized
carbon were found to display higher levels of friction (relative to
sp3).275 In another path-breaking study by Berman et al., using
AIREBO potentials, assisted in discovering the mechanism of
macroscale superlubricity that was achieved using GR in
combination with crystalline diamond nanoparticles and amor-
phous DLC. Simulations, alongside experimental observations,
revealed that sliding GR patches over nanodiamond particles
resulted in nanoscrolls with a smaller contact area that
slid smoothly against the amorphous diamond-like carbon
surface.13 Studies on hydrogenated DLC coatings using a
screening potential based on REBO showed that the passivation
caused by the migration of methylene groups from one surface
to another led to a reduction in friction.276–278 These studies
have also revealed the formation of an amorphous adsorbed
layer due to the mechanical dissociation of bonds when
polished diamond experiences an sp3 to sp2 order–disorder
transition, the catastrophic interface failure between self-mated
diamond and the amorphous C surfaces due to the formation
of hybridized carbon chains, the formation of soft sp2 + sp
amorphous C with interspersed nanodiamond grits upon
repeated collisions between diamond asphericities, etc.279

RMD simulations have also been used for studying the dry
friction between tungsten and silica-based surfaces.278,280

Studying the sliding behavior of rough tungsten upon tungsten
carbide, grain refinement was observed at the surface of
the tungsten substrate using a modified Tersoff potential.281

However, the carbide surface displayed a mixed amorphous
layer owing to discrete atomic events at the tungsten-carbide
sliding surface. When the carbide counter-body was replaced
with DLC, hydrogen diffusion into the tungsten surface was
observed into the distorted tungsten surface. Similarly, tung-
sten transfer was also observed in case of non-hydrogenated
DLC counter bodies. However, significantly lower transfer
was observed when the system was lubricated as shown in
Fig. 11(a).278,280 Similar studies on silica-based surfaces, employing
the Tersoff potential, showed that shear created denser amorphous
surfaces in diamond-cubic silicon and silicon.282 Studies have also
explored the shear-driven chemical reactions between lubricants
and solids such as water and silica.283 Yue et al. showed that
submonolayer water aided wear in silicon oxide by supplying oxygen
for the formation of Si–O–Si bonds across the sliding contact, thus
increasing the interfacial mixing rates. However, when the amount

of water was sufficient to form a full monolayer, the degree of atom
transfer, and thus wear, reduced dramatically since the silicon
atoms could no longer make Si–O–Si bonds as shown in
Fig. 11(b).284 Similarly, another study by Wen et al. showed
that aqueous H2O2 oxidized the Si substrate faster than H2O,
resulting in faster Si atom loss.284–286 A few studies have
investigated solid–liquid reactions between hexadecane with
sliding surfaces of W, WC, or DLC with a screened REBO
potential.287 Similarly, a considerable amount of work has been
carried out by Martini and collaborators using reactive FFs to
study interactions between solid and liquid lubricants, nano-
scale contact and sliding, etc.288–291 Comprehensive details
regarding the use of RMD simulations in tribological applica-
tions can also be further accessed in a detailed review article by
Martini et al.26

4.3 Non-equilibrium molecular dynamics (NEMD)

Non-equilibrium molecular dynamics (NEMD) simulations are
used to model the flow of atoms or a group of atoms. The
perturbation of equilibrium may be necessitated by external
environmental factors like force, temperature or pressure gra-
dient, etc.292 In the context of tribology, NEMD simulations,
which involve applying a shear force to the simulated system,
have also led to a better understanding of both dry friction,
where the sliding surfaces are in close contact, and wet friction,

Fig. 11 (a) Atomistic state of ta-C/W sliding couples at 300 K for both dry
and lubricated conditions after the two bodies have been pulled apart. The
color representations are as follows: green-tungsten, purple-DLC, yellow-
hexadecane lubricant. For the dry sliding conditions, significant transfer
from the tungsten surface onto the DLC is observed, while in the
lubricated case almost no transfer occurs. Reproduced from ref. 278 with
permission from Elsevier, copyright 2014. (b) Snapshot views of the vertical
separation at a 20 m s�1 speed for 100 ps after sliding two amorphous SiO2

slabs for 1 ns in the presence of 100 water molecules at 500 K. The
separation time is shown in each frame. Water molecules are enough to
create a full monolayer and thus prevent wear in the sliding surfaces. The
color representations are as follows: green-hydrogen, purple-Si of lower
slab, yellow-Si of upper slab, blue-O of lower slab, red-O of upper
slab, gray-O of water. Reproduced from ref. 284 with permission from
American Chemical Society, copyright 2016.
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where the surfaces are separated by a liquid lubricant.293–295

A number of factors must be considered in order to perform
NEMD simulations, including the inherent limitations of the
time and length scales that can be modeled, as well as the
accuracy of the representation of intramolecular and intermo-
lecular interactions, similar to classical MD. The fundamental
consequence of the short accessible timescales in NEMD
simulations is that relatively high shear rates are required to
ensure that the parameters of interest (most typically the
viscosity) achieve a stable state.296 Simulating lower shear
rates has long been a goal of NEMD simulations in order to
permit direct overlap with experiments and real-world com-
ponents. With this goal, over the last three decades, numerous
improvements to the original NEMD techniques have been
suggested to increase their signal-to-noise ratio, simplify their
implementation, and extend them to different experimental
circumstances.25,297,298

NEMD simulations have been carried out to study free and
confined liquid lubricants. For several linear (C16, C22, and
C28) and branched (5,12-dipropyl hexadecane) alkanes, Khare
et al. were able to replicate lower shear rates and thereby
reproduce the Newtonian plateau.299 The NEMD simulations
of n-Newtonian decane’s viscosity were in good accord with
experiments. Using a united atom (UA) force field which
included repulsive and attractive interactions through a Lennard
Jones (LJ) potential, they were able to predict the viscosity and
thus, the rheological behavior of these lubricant-sized alkanes.299

The shear-thinning behavior of lubricant-sized molecules has
also been studied using NEMD simulations. From 1996 to 2022,
several studies have investigated the different shear-thinning
behaviors of a number of small molecules using the ever-
evolving techniques of NEMD simulations.293,300–305 Dini and
collaborators have used NEMD simulations to study nano-
tribology,306–312 including, to investigate the mechanochemis-
try of phosphate esters confined within sliding iron surfaces,313

and to derive the transient-time correlation function (TTCF)
expression for the computation of shear stress and slip
velocity.314 More details regarding the use of NEMD simula-
tions in tribological applications can be found in several
articles available in the literature.25,310

5. Applications of ML integrated with
computational modeling techniques

The theoretical modeling techniques have demonstrated the
ability to simulate the experiments at nano- and macro scale.
However, despite the fact that computational researchers have
provided many remarkable insights through MD, CG MD,
NEMD, RMD, and so on, the immense data generated through
MD approach from every time step still remains underexplored.
To that extent only few studies have shown the potential
to explore this data wisely and efficiently in the field of
tribology.315–318 Table S8 (ESI†) tabulates these four articles
describing their tribological investigations on different materi-
als using ML algorithms in MD and DFT.

Quach et al.315 applied a Python-based Molecular Simulation
and Design Framework (MOSDeF)319 with a signac data and
workflow management framework320,321 to perform high-
throughput screening of CoF and adhesion force for about
10 000 monolayer films.321 These two properties are then used
as the expected labels for the ML model using the RF algorithm.
The 32–42 input physical and chemical features were taken
from the RDKit cheminformatics library.321 The high-throughput
screening NEMD simulation results first suggested 22 monolayer
designs with target tribological properties which are low CoF and
low adhesion force. According to the MD results, the shape and
size of the terminal groups play a significant role in determining
the CoF of the monolayer. The charge distribution polarity and
hydrogen bonding had a strong effect on increasing the adhesion
force. The RF models’ performance indicates a positive correlation
with the size of the datasets, and a training dataset of 1000 points
is sufficient. Besides, the RF models trained on a limited dataset
could still give meaningful predictions for monolayer designs
outside the training set, which suggested a good transferability.315

Kadupitiya et al. conducted NEMD simulations and applied
PCA on the data obtained from these simulations.316 Specifi-
cally, a study was conducted to investigate the rheological
properties of squalane under elastohydrodynamic lubrication
(EHL) conditions, the lubricant under large pressure of more
than 500 MPa and strain rate greater than 105 s�1, which is
difficult to achieve in an experiment at the same time.316

Orientation tensors for all-atom pairs were collected from the
NEMD simulation trajectories to examine the relationship
between rheological properties and the molecular order change
of squalane, which in total resulted in 6� 435 dimensions data.
Then, PCA was applied to reduce the 6 dimensions to 2 for
visualization and analysis. It has been demonstrated that the
dimension reduction methods successfully group the atom
pairs for small rates and pressures systems which show a
significant change in the flow behavior. Besides, it also indi-
cated the ability to describe the shear flow of small-molecular
liquids.

The statistical model of Bayesian analysis estimates the
uncertainty of an event using the probabilistic interpretation.
Using the Bayes theorem, probabilities are calculated and
updated based on the prior data.322,323 A posterior distribution
is determined by combining knowledge from existing data in
terms of prior distributions and the observations in the form of
likelihood function.324 A complex data sets can be modeled
with extreme flexibility and certainty through monte carlo
sampling techniques.325,326 Baboukani et al. exercised the
Bayesian learning approach and transfer learning technique
integrated with DFT and MD simulations approach.317 Particu-
larly, the data generated from DFT and MD simulations
included descriptors like structural, electronic, thermal, elec-
tron–phonon coupling, mechanical and chemical results,
which were used as input for ML models. Using the ML model
and the above inputs, a potential energy surface of maximum
energy barrier (MEB) was estimated. In their study, they
explored various 2D materials including GR and transition
metal dichalcogenides (TMDCs) families as lubrication additives,
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as they are known to reduce the friction and wear. Based on the
fact that Bayesian models are excellent models in the case of
missing data, sparse data or noisy data, the prediction of potential
energy surface (PES) through ML models was simplified. The
most accurate model for a single-layer 2D material against a
similar layer in an inert environment, with the MSE o 0.25 was
developed and validated against MD simulations in this study.
This combinatorial approach of statistical learning and molecular
simulations aided in developing, predicting, and validating the
robustness of the MEB–PES successfully.317

The Bayesian approach can be also extended through integra-
tion with the NN algorithm. Zaidan et al. applied a Bayesian neural
network (BNN) to model the fluid-friction relation of lubricant.318

To solve the difficulty of statistical imbalance of data for lubrication
performance, the Gaussian mixture model was introduced, and the
data was grouped into four clusters for analysis. The data for
frictional behavior was obtained from MD simulations using a
toy model. The inputs for the BNN was a 25-dimensional array
describing the structure information for a system, which is suffi-
cient to capture the fluid characteristics in MD, the output is the
shear response. The BNN model was good to deal with uncertainty
and prevent overfitting; it could successfully predict the shear with
the error around its mean prediction, which can clearly figure out
the poorly sampled regions in the dataset.

5.1 ML in MD: our perspective

It should be noted that although the use of ML has been
extensively examined in experimental tribological studies, only
four papers,315–318 to the best of our knowledge, have imple-
mented ML in computational modeling studies. The combina-
torial approach of ML with MD simulations demonstrated the
efficient exploration of MD-obtained data. Through data-driven
approaches in MD, it is possible to develop models around the
simulation trajectories including positions, velocities, forces as
well as the energetics of the system. In addition, the human
brain may not be able to extract definitive conclusions
from various descriptive modeling analyses. Therefore, to identify
the structure–property relationships in complex multi-dimensional
problems, ML can be effective in extracting and analyzing hidden
features. A ML algorithm learned from these input-output relation-
ships can serve as a surrogate model for the tribological simula-
tions or experiments. This surrogate model as an objective function
in the optimization techniques like PSO, GA, etc. remain a much
efficient approach to design novel materials.

A deep-learning approach called convolutional neural net-
works (CNN) has proven highly effective in image classification,
segmentation and object detection, due to its ability to extract
high-level features.327–329 Few studies have reviewed the
advancements of CNN and summarized their exemplary appli-
cations through various architectures.330 Moreover, classical
CNN models like LeNet, GoogleNet, RestNet, U-Net, and so on,
eliminate the need to tune hyperparameters. A recent study
in our group demonstrated a proof-of-concept study of CNN
to map 3-dimensional structure of bottlebrush polymers and
analyze shapes of complex structures.331 CNNs, either in 1D,
2D, or 3D, which have shown significant potential to extract

structural/imaging features to build their relationship with
output in various research fields may prove valuable to assist
these MD applications in tribology.332–336

Researchers may find it challenging to train ML models at
present since they may be unable to identify a combination of
features that are appropriate for their learning objectives.
Therefore, other deep learning (DL) methods like restricted
self-organizing maps (SOMs), restricted Boltzmann machine
(RBM), and autoencoders (both stacked and denoising) may
assist researchers for feature map generation. In addition, the
lack of data in experiments may also contribute to the chal-
lenges encountered when using ML. Consequently, deep gen-
erative models such as generative adversarial networks (GAN),
variational autoencoders (VAE), and deep belief networks (DBN)
have been useful in developing models in the absence of large
quantities of data.337–340 A VAE that encodes or decodes sequences
of inputs to and from a continuous latent space, with a much
lower computational budget, is called syntax-directed VAE
(SDVAE) was integrated with Gaussian process regression (GPR)
to design novel polymer with high glass transition temperature
(Tg) and bandgap by Batra et al.62 The approach can be applied to
the development of new polymer lubricants as a classification
model could be trained using the data with the known polymers
and their tribological properties such as CoF, wear resistance etc.
Although a couple of studies have shown applications of deep
learning models like RNN and radial basis function neural
networks (RBFNN), the promising prospects of these algorithms
are still underexplored. Specifically, these models may allow one
to identify new lubricants with enhanced performances (i.e.,
reducing CoF and improving wear resistances). Therefore, in
general, through the use of these deep learning methods, tradi-
tional challenges associated with handling big data, lack of
flexibility and multi-task learning in simpler machine learning
methods, as well as high computational costs can be overcome.
Moreover, surrogate ML or DL models for experiments and
simulations both offer an efficient and accelerated method to
explore a large design space in material discovery.

6. Emerging materials

Even though our review focuses on the application of different
ML algorithms in tribology, the materials used in this study
remain largely unrecognized. Only a handful of materials
including soft polymers, oils, alloys, etc. have been explored.
Here, we shed light on other unexplored or less explored classes
of materials such as glycomaterials and MXenes.341–345 Follow-
ing sections discuss recent advances of these materials in
tribological investigations. Although ML has shown the ability
to explore composites and lubricants, we believe these new
classes of materials are capable of advancing tribological
performances through integration with ML.

6.1 Glyco-materials

Matrix composites cater to the needs of automobiles and
several other types of industries including mining, construction
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and manufacturing. Despite these diverse applications, their
heavy usage can lead to damage of the environment as they are
extracted from conventional sources of energy and are toxic in
nature.346 These composites, unfortunately, are not environ-
ment friendly and researchers have been venturing to identify
greener alternatives to petroleum-based lubricants.347 In light of
this issue, bio-lubricants are viewed as a potential replacement for
petroleum-based and matrix composite lubricants.76,346,348–350

Bio-lubricants, are generally extracted from renewable sources
of energy and their greatest advantage is that they are envir-
onmentally friendly.349,350 Bio-lubricants possess desirable
characteristics including high lubricity, good temperature-
viscosity relationship, biodegradability and low volatility and
lower costs.346,348 However, bio-lubricants suffer from a draw-
back, which is low oxidation stability.351 This drawback can be
circumvented by several chemical processes including
esterification,352 acetylation353 and epoxidation.354,355 Thermal
stability and antioxidant properties of castor oil, which is a bio-
lubricant were found to be enhanced by the addition of lignin-
based compounds.356 Bio-lubricants derived by epoxidation of
waste cooking oil similarly showed improved low temperature
performance and oxidation stability compared to waste cooking
oil.357 The enhancement of thermal and oxidation stability of
vegetable oils was made possible by genetically modifying the
organisms from which they are extracted.346,358,359 Most com-
monly used genetically modified oils are sunflower, canola and
soybean oils. Gene modification of the organisms is done by
DNA transcription in a way that increases the oleic acid content
and decreases the linoleic acid content of the vegetable oils.360

The pour point of vegetable oils can also be improved by
increasing the unsaturated long chain or saturated short chain
fatty acid content of the oil.360 Non-conventional hydrocarbons
derived by electrochemical decarboxylation, hydro-deoxy-
genation and ketonic decarboxylation of fatty acids are also
available as bio-lubricants.361 These hydrocarbon-based bio-
lubricants can potentially be the replacement for synthetic
lubricants. Glycomaterials, are carbohydrate based materials
that comprise of complex chains of sugars, called glycans. They
have the potential to be developed as a new generation bio-
compatible lubricants as they are available from renewable
energy resources, in addition to being environmentally friendly.
For instance, starch when suspended in water has the capabil-
ity to act as a lubricant.362 However, the dissolution of starch in
water is challenging because of the formation of intermolecular
hydrogen bonds between the hydroxyl groups of starch.
Solubility of starch in water can be improved by reacting starch
with a cyclic dicarboxylic acid anhydrate or by heating it at high
temperature and pressure.362–364 This reaction leads to break-
age of strong hydrogen bonded intermolecular structure which
reduces the crystalline nature of starch and thereby enhances
its solubility in water. Loss of crystalline structure of starch
leads to the formation of free hydroxyl groups of glucose which
interact with ester groups of triglycerides present in fatty
acids forming starch-oil composites which are used as lubri-
cants.362,365 Starch-oil lubricants are completely derived from
renewable sources of energy and are also environmentally

friendly. Chemically modified starch contains free hydroxyl
groups which increases the polarity of the surface and thereby
its CoF.366 Addition of canola oil to chemically modified starch
interacts with the free hydroxyl groups of starch and thereby
decreases the CoF.366,367 Overall applications of glycomaterials
are yet to be fully explored and glycomaterials, in general, show
a lot of promise of becoming the lubricants of the next genera-
tion due to their abundant availability and bio-degradability.
Thus, it is necessary to focus in this direction as heavy use of
environmentally hazardous materials is a threat to nature.

6.2 MXenes

MXenes are emerging two dimensional (2D) materials, which are
synthesized by chemical delamination of ternary or quaternary
layered carbides or nitrides of metals.343,368,369 These materials
have wide range of applications including electrochemical storage,
lubrication, light emitting diodes (LED), thermal heaters, sensors
and optoelectronics.368,369 Ti3C2 coated on copper disk was able to
reduce the CoF and wear rate by 4 times and 10 times, respectively,
as compared to uncoated copper disks.370 Enhanced lubricative
properties of Ti3C2 arise from the creation of a carbon-rich lubricat-
ing transferred film by the friction induced graphitization.370 TiO2/
Ti3C2Tx nanocomposites when mixed with base oil lubricant were
able to reduce the CoF between the steel surfaces by 2.5 times.371

This reduction in the CoF value was due to the formation of
uniform tribofilm on the steel surface which thereby reduces the
scratching of the steel surface.371 The tribological performance of
PAO8 base oil was enhanced by the addition of Ti3C2Tx

nanosheets.372 The maximum decrease in the CoF and wear
volume were observed when the Ti3C2Tx concentration was
0.8 wt% and this improved tribological performance is attrib-
uted to the adherence of Ti3C2Tx nanosheets to the surfaces
and thereby preventing the direct contact between them.372

Addition of Mo2CTx to lithium hexafluorophosphate-based
ionic liquid leads to reduction in the value of CoF between
Si3N4–sapphire interfaces at pressures (1.42 GPa) exceeding the
superlubricity regime.373 Enhanced lubricity and anti-wear
performance of the IL was improved due to the tribochemical
reaction between the IL and Mo2CTx.373 Ti3C2Tx-nanoparticles
when used as a solid lubricant were able to reduce the CoF by
300% as compared to the value of CoF between bare steel
surfaces.374 A theoretical DFT study on MXenes has provided a
detailed perspective on the effect of surface terminations on
tribological properties of MXenes. –F and –O terminated
MXenes exhibit low adhesion which leads to enhancement in
their tribological performance as compared to –OH terminated
MXenes. The presence of higher amounts of –F and –O groups
on MXenes demonstrates weaker adhesion to ferrous sub-
strates which helps in lubricant deportation under sliding
conditions.375

7. Overall challenges and conclusion

Overall, researchers have magnificently exemplified the power-
ful approach of ML and AI, primarily using experimental data.
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Specifically, numerous studies have incorporated the use of
ANN in studying non-linear relationships between input vari-
ables (operating conditions and material composition) and
output (wear and friction). However, only few studies have
demonstrated the applicability of other ML models, which
may be attributed primarily to their inability of mapping
existing non-linear data. Moreover, the proficiency exhibited
by ANN on a smaller data set is unparalleled compared to other
ML models. Unfortunately, the lack of data, guidance regarding
how to use data, and uncertainty regarding learning objectives
have resulted in a limited number of publications pertaining
to the use of machine learning across a wide range of fields.
This task has been assisted in part by deep learning models
such as CNN, SOMs, RBM, and autoencoders as they can
construct a feature map. It is possible to use these models as
surrogates where the user lacks knowledge about the use of
input features. Moreover, these models can be implemented for
classification as well as regression analysis. Beginners in the
field should consider the classic inbuilt models (such as LeNet,
GoogleNet, U-Net, etc.) as a resource.

The interpretability of big data through ANN, given they are
often encountered, remains challenging. For example, in the
development of BPNN, the challenges include a large number
of samples, slow simulation speed, choice of appropriate
hyperparameters like number of hidden layers and neurons
comprising it, a choice of training functions and transfer
functions and so on. According to the available data, a choice
of a desired number of neurons and number of hidden layers
can be estimated. Moreover, statistical analysis like ANOVA has
proven helpful in interpreting data and associated important
input parameters. In order to develop ML models efficiently, it
is necessary not only to select the most appropriate algorithms
for the desired applications, but also to possess a thorough
understanding of their workings. Moreover, ML combined with
optimization algorithms like Monte Carlo methods, and improved
bat algorithms have indicated that hyperparameter tuning can be
performed with a high degree of efficiency. Another aspect of
using ML as an objective function by evolutionary-based optimi-
zation algorithms has also been discussed.

It has been demonstrated that computational modeling
techniques are capable of simulating tribological experiments at
microscopic level. To that intent, remarkable insights through
MD (including MD, RMD, and NEMD), exemplary properties
using DFT are exhibited. These computational approaches
generate enormous amounts of data at every time step, however,
only a few researchers have exploited molecular simulations data
with ML methods. This can be attributed to the lack of tools to
processing tools as well as clear paths to integrate this data with
ML models. We believe that in the coming years, with more
widespread applicability of ML methods and innovations, they
will be integrated more frequently with molecular simulations to
perform analysis on simulations trajectories. This, in turn, will
enable us to discover hidden patterns, structures, and mechan-
isms at the nanoscale that may not be captured with traditional
analysis methods, thus assisting the discovery of new lubricants
for various tribological applications.

We also review current trends of ML in tribological applica-
tions and encourage the exploration of other classes of materials
like glycomaterials and MXenes. Overall, with these emerging
materials efforts to develop and implement ML models that can
potentially assist experiments and simulations are needed.

Abbreviation list

AE Acoustic emissions
AIREBO Adaptive intermolecular reactive empirical bond

order
GDX Adaptive learning rate
ANFIS Adaptive neuro-fuzzy inference system
ART-2 Adaptive resonance theory
Adj SS Adjusted sum of squares
ASTM American society for testing and materials
ANOVA Analysis of variance
ANN Artificial neural network
BPNN Back propagation neural network
BA Bat algorithm
BNN Bayesian neural network
BFS Blast furnace slag
BFGS Broyden–Fletcher–Goldfarb–Shanno
CF Carbon fiber
CNT Carbon nanotube
CNSL Cashew nut shell liquid
CBPD Cement by-pass dust
CVT Centroidal Voronoi tessellation
CMC Ceramic matrix composite
CG MD Coarse grained molecular dynamics
CoF Coefficient of friction
CMO Commercial mineral oil
CNN Convolutional neural network
CC Correlation coefficient
CFPC Cotton fiber polyester composite
DT Decision trees
DFT Density functional theory
DBSCAN Density-based spatial clustering of applications

with noise
DOE Design of experiments
DLC Diamondlike carbon
DTAB Dodecyl trimethyl ammonium bromide
EHL Elastohydrodynamic lubrication
EFI Empirical force index
EBP Error back propagation
ELM Extreme learning machine
FEM Finite element method
FF Force field
FM Friction modifier
FSW Friction stir welding
FGM Functionally graded materials
GA Genetic algorithm
Tg Glass transition temperature
GBM Gradient boosting machine
GR Graphene
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GO Graphene oxide
GRA Gray relational analysis
HA Hydroxyapatite
IBA Improved bat algorithm
KNN K nearest neighnours
LFM Lateral force microscopy
LOO Leave one out
LJ Lennard Jones
LM Levenberg–Marquardt
LED Light emitting diodes
ML Machine Learning
MDp Marble dust particles
MEB Maximum energy barrier
MAE Mean absolute error
MRE Mean relative error
MSE Mean squared error
MF Membership function
MMC Metal matrix composite
MNN Modular neural network
MD Molecular dynamics
MOSDeF Molecular simulation and design framework
MC Monte carlo
MWCNT Multi walled carbon nanotube
MoGA Multi-objectives genetic algorithm
MRA Multiple regression analyses
NCO Neutralized castor oil
NFSS Nickel-free stainless steel composites
NN Neural network
NEMD Non-equilibrium molecular dynamics
NSGA Non-sorting genetic algorithm
PAES Pareto-archived evolution strategy
PFPE Perfluoropolyether
POD Pin-on-disk
PWD Pine wood dust
PEEK Poly ether ether ketone
PA Polyamide
PEK Polyetherketone
PE Polyethylene
PMC Polymer matrix composite
PPS Polyphenylene sulfide
PTFE Polytetrafluoroethylene
EP-PUR Polyurethane
PTW Potassium titanate whisker
PES Potential energy surface
CGB Powell–Beale conjugate gradient algorithm
PC Principal component
PCA Principal component analysis
QSTR Quantitative structure tribo-ability relationship
RBFNN Radial basis function neural network
RF Random forests
REBO Reactive empirical bond order
ReaxFF Reactive force field
RMD Reactive molecular dynamics
RNN Recurrent neural networks
r-GO Reduced graphene oxide
RSM Response surface methodology

RH Rice husk
RHA Rice husk ash
RMSE Root mean squared error
RPM Rotations per minute
SCG Scaled conjugate gradient
SCF Short carbon fiber
SGF Short glass fiber
SWR Specific wear rate
SPEA Strength pareto evolutionary algorithm
SVM Support vector machine
SVR Support vector regression
SRGM Symbolic regression multi-gene programming
Ts Tensile strength
TTCF Transient-time correlation function
TMDC Transition metal dichalcogenide
T-BFRP Treated betelnut fiber polyster
UTS Ultimate tensile strength
UHMWPE Ultra high molecular weight polyethylene
UA United atom
WMD Waste marble dust
WSD Wear scar diameter
Y Young’s modulus
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Experimental investigation and prediction of wear proper-
ties of Al/SiC metal matrix composites produced by thix-
omoulding method using Artificial Neural Networks,
Mater. Des., 2014, 63, 270–277.

156 M. O. Shabani and A. Mazahery, Prediction of wear proper-
ties in A356 matrix composite reinforced with B4C particu-
lates, Synth. Met., 2011, 161, 1226–1231.

157 F. S. Rashed and T. S. Mahmoud, Prediction of wear
behaviour of A356/SiCp MMCs using neural networks,
Tribol. Int., 2009, 42, 642–648.

158 R. Pramod, G. B. Veeresh Kumar, P. S. S. Gouda and
A. T. Mathew, A Study on the Al2O3 reinforced Al7075
Metal Matrix Composites Wear behavior using Artificial
Neural Networks, Mater. Today: Proc., 2018, 5, 11376–11385.

159 D. Mehra, S. V. Sujith, M. M. Mahapatra and S. P. Harsha,
Modeling of wear process parameters of in-situ RZ5–
10wt%TiC Composite using artificial neural network,
Mater. Today: Proc., 2018, 5, 24124–24132.

160 M. Younesi, M. E. Bahrololoom and M. Ahmadzadeh,
Prediction of wear behaviors of nickel free stainless
steel–hydroxyapatite bio-composites using artificial neural
network, Comput. Mater. Sci., 2010, 47, 645–654.

161 C. Zhang, Understanding the wear and tribological proper-
ties of ceramic matrix composites, in Advances in Ceramic
Matrix Composites, ed. I. M. Low, Woodhead Publishing,
2014, pp. 312–339.

162 W. Krenkel and N. Langhof, Ceramic Matrix Composites
for High Performance Friction Applications, Proceedings of
the IV Advanced Ceramics and Applications Conference, 2017,
pp. 13–28.

163 I. W. Donald and P. W. McMillan, Ceramic-matrix compo-
sites, J. Mater. Sci., 1976, 11, 949–972.

164 K. Friedrich, Advances in Composite Tribology, Elsevier, 2012.
165 S. T. Buljan and V. K. Sarin, Silicon nitride-based compo-

sites, Composites, 1987, 18, 99–106.
166 P. F. Becher and G. C. Wei, Toughening behavior in SiC-

whisker-reinforced alumina, J. Am. Ceram. Soc., 1984, 67,
C–267.

167 C. Sun, Y. Huang, Q. Shen, W. Wang, W. Pan, P. Zong,
L. Yang, Y. Xing and C. Wan, Embedding two-dimensional
graphene array in ceramic matrix, Sci. Adv., 2020,
6, eabb1338.

168 X. Gao, H. Yue, E. Guo, S. Zhang, B. Wang, E. Guan, S. Song
and H. Zhang, Preparation and tribological properties of
homogeneously dispersed graphene-reinforced alumi-
nium matrix composites, Mater. Sci. Technol., 2018, 34,
1316–1322.

169 S. Malazdrewicz and Ł. Sadowski, An intelligent model for
the prediction of the depth of the wear of cementitious
composite modified with high-calcium fly ash, Compos.
Struct., 2021, 259, 113234.

170 E. W. Bucholz, C. S. Kong, K. R. Marchman, W. G. Sawyer,
S. R. Phillpot, S. B. Sinnott and K. Rajan, Data-Driven
Model for Estimation of Friction Coefficient Via Infor-
matics Methods, Tribol. Lett., 2012, 47, 211–221.

171 S. R. A. Fisher, The correlation between relatives on the
supposition of Mendelian inheritance, Royal Society of
Edinburgh, 1918.

172 Siddhartha and A. K. Singh, Mechanical and dry sliding
wear characterization of short glass fiber reinforced

Perspective PCCP

Pu
bl

is
he

d 
on

 2
6 

Z
en

âr
 2

02
3.

 D
ow

nl
oa

de
d 

on
 0

1/
11

/2
02

5 
02

:4
9:

21
. 

View Article Online

https://doi.org/10.1039/d2cp03692d


4438 |  Phys. Chem. Chem. Phys., 2023, 25, 4408–4443 This journal is © the Owner Societies 2023

polyester-based homogeneous and their functionally
graded composite materials, Proc. Inst. Mech. Eng., Part J,
2015, 229, 274–298.

173 R. Egala, G. V. Jagadeesh and S. G. Setti, Experimental
investigation and prediction of tribological behavior of
unidirectional short castor oil fiber reinforced epoxy com-
posites, Friction, 2021, 9, 250–272.

174 J. Schmidhuber, Deep learning in neural networks: an
overview, Neural Network, 2015, 61, 85–117.

175 K. Levenberg, A method for the solution of certain non-
linear problems in least squares, Quart. Appl. Math., 1944,
2, 164–168.

176 D. W. Marquardt, An Algorithm for Least-Squares Estima-
tion of Nonlinear Parameters, J. Soc. Ind. Appl. Math., 1963,
11, 431–441.

177 S. C. Vettivel, N. Selvakumar, R. Narayanasamy and
N. Leema, Numerical modelling, prediction of Cu–W nano
powder composite in dry sliding wear condition using
response surface methodology, Mater. Des., 2013, 50,
977–996.

178 S. C. Vettivel, N. Selvakumar and N. Leema, Experimental
and prediction of sintered Cu–W composite by using
artificial neural networks, Mater. Des., 2013, 45, 323–335.

179 N. Leema, P. Radha, S. C. Vettivel and H. Khanna Nehe-
miah, Characterization, pore size measurement and wear
model of a sintered Cu–W nano composite using radial
basis functional neural network, Mater. Des., 2015, 68,
195–206.

180 S. Arif, M. T. Alam, A. H. Ansari, M. B. N. Shaikh and
M. Arif Siddiqui, Analysis of tribological behaviour of
zirconia reinforced Al-SiC hybrid composites using statis-
tical and artificial neural network technique, Mater. Res.
Express, 2018, 5, 056506.

181 T. Thankachan, K. Soorya Prakash and M. Kamarthin,
Optimizing the Tribological Behavior of Hybrid Copper
Surface Composites Using Statistical and Machine
Learning Techniques, J. Tribol., 2018, 140, DOI: 10.1115/
1.4038688.
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Henriksson, K. Nordlund, E. Salonen and K. Albe,

Analytical interatomic potential for modeling nonequili-
brium processes in the W–C–H system, J. Appl. Phys., 2005,
98, 123520.

282 G. Moras, A. Klemenz, T. Reichenbach, A. Gola,
H. Uetsuka, M. Moseler and L. Pastewka, Shear melting
of silicon and diamond and the disappearance of the
polyamorphic transition under shear, Phys. Rev. Mater.,
2018, 2, 083601.

283 J. Wen, T. Ma, W. Zhang, A. C. T. van Duin, D. M. van Duin,
Y. Hu and X. Lu, J. Phys. Chem. C, 2019, 123, 26467–26474.

284 J. Yeon, A. C. T. van Duin and S. H. Kim, Langmuir, 2016,
32, 1018–1026.

285 D.-C. Yue, T.-B. Ma, Y.-Z. Hu, J. Yeon, A. C. T. van Duin,
H. Wang and J. Luo, Langmuir, 2015, 31, 1429–1436.

286 J. Wen, T. Ma, W. Zhang, A. C. T. van Duin and X. Lu,
Comput. Mater. Sci., 2017, 131, 230–238.

287 P. A. Romero, L. Mayrhofer, P. Stoyanov, R. Merz,
M. Kopnarski, M. Dienwiebel and M. Moseler, Atomistic
Insights Into Lubricated Tungsten/Diamond Sliding Con-
tacts, Front. Mech. Eng., 2019, 5, 6.

288 A. Rosenkranz, H. L. Costa, M. Z. Baykara and A. Martini,
Tribol. Int., 2021, 155, 106792.

289 K. R. Hasz, M. R. Vazirisereshk, A. Martini and R. W.
Carpick, Bifurcation of nanoscale thermolubric friction
behavior for sliding on MoS2, Phys. Rev. Mater., 2021,
5, 083607.

290 Z. Chen, A. Khajeh, A. Martini and S. H. Kim, Origin of
High Friction at Graphene Step Edges on Graphite, ACS
Appl. Mater. Interfaces, 2021, 13, 1895–1902.

291 R. Chen, A. Jusufi, A. Schilowitz and A. Martini, J. Vac. Sci.
Technol., A, 2020, 38, 022201.

292 F. Wang, A. T. Sose, S. K. Singh and S. A. Deshmukh,
Dual-Force Zone Nonequilibrium Molecular Dynamics
Simulations on Nanoporous Metal–Organic Framework
Membranes for Separation of H2/CH4 Mixtures, ACS Appl.
Nano Mater., 2022, 5, 4048–4061.

293 V. Jadhao and M. O. Robbins, Proc. Natl. Acad. Sci. U. S. A.,
2017, 114, 7952–7957.

294 T. Kuwahara, P. A. Romero, S. Makowski, V. Weihnacht,
G. Moras and M. Moseler, Mechano-chemical decomposi-
tion of organic friction modifiers with multiple reactive
centres induces superlubricity of ta-C, Nat. Commun., 2019,
10, 151.
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