MSDE

EDITORIAL

Cite this: Mol. Syst. Des. Eng., 2020, 5,900

Introduction to molecular engineering for water technologies

Seth B. Darling (1)*** and Hao-Cheng Yang (1)***

DOI: 10.1039/d0me90016h

rsc.li/molecular-engineering

Challenges are mounting globally with respect to both water quality and quantity, driven by unsustainable practices, aging infrastructure, climate change, urbanization, and other

^a Center for Molecular Engineering and Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA. E-mail: darling@anl.gov ^bAdvanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center, Argonne National Laboratory, Lemont, IL 60439, USA ^c School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai, 519082, China. E-mail: yanghch8@mail.sysu.edu.cn ^d Southern Marine Science and Engineering

Guangdong Laboratory (Zhuhai), Zhuhai, 519082, China

macrotrends. This collection presents recent studies such as material design for nanofiltration, electrodeionization, and water monitoring; experimental and computational studies of transport through membranes; and modeling of bulk water by using sparse training data sets. Research progress on membranes and solar evaporators is also reviewed from the perspective of molecular engineering.

Membrane technologies have been widely applied in desalination and wastewater treatment. Molecular engineering of membrane materials is highlighted in the article by Phillip et al. (DOI: 10.1039/C9ME00160C) and the mini-review by Yang, Darling et al. (DOI: 10.1039/C9ME00154A). Phillip et al. develop a hollow fiber nanofiltration membrane from the microphase separation of a designed copolymer followed by cross-linking. The membrane with nanopores delivers both high flux and rejection of divalent cations after surface functionalization positively charged with moieties, presenting a good example of how molecular and interfacial engineering can impart tailored separation performance. The mini-review by Yang, Darling and co-workers summarizes the

Hao-Cheng Yang is an Associate

Professor in the School of Chemical Engineering at Sun

Yat-Sen University. He received

his B.E. degree in polymer

materials and engineering from

Zhejiang University in 2012, and

received his Ph.D. degree in

polymer science from the same

university in 2017. He then

joined Dr. Darling's group at

Seth B. Darling

Seth B. Darling is the Director of the Center for Molecular Engineering and a Senior Scientist in the Chemical Sciences & Engineering Division at Argonne National Laboratory. He also serves as the Director of the Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center. He received his PhD in physical chemistry from the University of Chicago. His group's research centers around molecular engineering with а current

emphasis on advanced materials for cleaning water, having made previous contributions in fields ranging from self-assembly to advanced lithography to solar energy. He has published over 125 scientific articles, holds a dozen patents, is a co-author of popular books on water and on debunking climate skeptic myths, and lectures widely on topics related to energy, water, and climate.

Argonne National Laboratory as a postdoctoral researcher and Hao-Cheng Yang became an Associate Professor at Sun Yat-Sen University in 2018. His group focuses on the surface and interface engineering of macroscopic two-dimensional materials such as separation membranes, functional coatings and films. He has published over 60 scientific papers on the topic of membrane science and technology.

View Article Online

Solar steam generation by an interfacial photothermal evaporator is an emerging technique to acquire freshwater from brine or to concentrate wastewater. Cao and co-workers (DOI: 10.1039/ C9ME00166B) highlight the appealing applications of solar-driven evaporators from the view of structure design. Both molecular architecture and macrostructure design can promote the photothermal efficiency of these systems.

Electrodeionization (EDI) is another promising separation process for water purification—particularly in applications of moderate salinity or where selective ion separation or recovery is desirable. To further improve the energy efficiency, Lin, Arges *et al.* (DOI: 10.1039/C9ME00179D) develop a Janus bipolar resin wafer incorporated with a water dissociation catalyst, $Al(OH)_3$ nanoparticles, to promote water-splitting. The Janus bipolar resin wafers can augment the diluate chamber ionic conductivity in EDI setups and overcome the limitations of large electrolyte feed concentration requirements in conventional biopolar membrane electrodialysis.

Any treatment strategy will hinge on knowledge of the feed water chemistry. Sensitive detection of harmful ions in water, for example, is important for residential water security, and enriched phosphate or other nutrient ions in waterways may lead to eutrophication. Chen et al. (DOI: 10.1039/C9ME00156E) demonstrate a real-time phosphate ion sensor based on ferritin probes with ultra-high sensitivity. Reduced graphene oxide nanosheets serve as the sensing channels, followed by the atomic layer deposition of Al₂O₃ as a passivation layer to separate the sensing channels from the sample solution. The sensor achieves a lower detection limit of 10 µg L^{-1} .

Water systems remarkably are complex, and often it is essential to apply theory, modelling, and simulation methods to interpret guide or efforts. Molecular experimental dynamics simulation, in particular, is a powerful tool to reveal the molecular-to-

evolution material microscale of systems. Sankaranarayanan and coworkers (DOI: 10.1039/C9ME00184K) present an active learning approach that can achieve accurate force-fields by using extremely sparse training data sets. They train a neural network to reproduce thermodynamic, structural, and transport properties of bulk liquid water by sampling fewer than 300 configurations and their energies, which hints at tremendous promise in a range of other systems.

Coupling modelling and experiment, Hassanali, Chiavazzo *et al.* (DOI: 10.1039/C9ME00186G) present interesting work on gas transport through soap-film membranes, a special aqueous system. Their molecular model is validated against experimental data from purposely designed experiments. The results reveal that CO₂ tends to get trapped within the hydrophobic tail of the surfactant molecules.

We acknowledge the valuable contributions from all the authors in this themed collection and hope that readers will draw inspiration from these articles and continue to push the frontiers of molecular engineering for water.