Optimized fabrication of a Y-doped Ti/TiO2 macroporous membrane electrode and its application in the electrosynthesis of succinic acid
Abstract
In recent years, “green synthesis” technology has emerged at the research forefront of the chemical industry as an environmentally friendly approach. As a new and effective chemical synthesis method, organic electrochemical synthesis technology has attracted increasing attention. In this paper, the sol–gel method is used to fabricate a Y-doped Ti/TiO2 electrode. By adding different concentrations of Y ions, the macropore morphology of the film becomes more obvious, and substrate cracks are improved to a certain extent. EIS tests show that a 0.006-Y electrode exhibits lower charge-transfer resistance. Furthermore, linear voltammetry (LSV) analysis showed that the hydrogen evolution potential of the Y-doped Ti/TiO2 film electrode was improved. At the optimal Y/Ti molar ratio of 0.006, hydrogen evolution potential reached −1.22 V, showing a −0.19 V shift compared with the undoped electrode, and the hydrogen evolution side reaction was effectively inhibited. Cyclic voltammetry (CV) tests show that the reduction peak current density in maleic acid solution is as high as 210 mA cm−2, which is 1.7 times that of the undoped electrode, indicating that the addition of Y at trace concentrations improves the electrocatalytic reduction performance of the electrode. Considering that the cathode can reduce maleic acid at lower potential and has higher catalytic activity, cathode potential is controlled within the range of −0.6–1.2 V for the electrosynthesis of succinic acid. When the optimized reaction temperature is 50 °C, the electrosynthesis yield for succinic acid reaches 91%, and the current efficiency reaches 96.3%.