Open Access Article
This Open Access Article is licensed under a
Creative Commons Attribution 3.0 Unported Licence

Correction: Ga[OSi(OtBu)3]3·THF, a thermolytic molecular precursor for high surface area gallium-containing silica materials of controlled dispersion and stoichiometry

James P. Dombrowski ac, Gregory R. Johnson b, Alexis T. Bell *bc and T. Don Tilley *ac
aDepartment of Chemistry, University of California, Berkeley, Berkeley, California 94720-1460, USA. E-mail: tdtilley@berkeley.edu
bDepartment of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720-1460, USA
cChemical Sciences Division, Lawrence Berkeley Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA

Received 2nd November 2016 , Accepted 2nd November 2016

First published on 11th November 2016


Abstract

Correction for ‘Ga[OSi(OtBu)3]3·THF, a thermolytic molecular precursor for high surface area gallium-containing silica materials of controlled dispersion and stoichiometry’ by James P. Dombrowski et al., Dalton Trans., 2016, 45, 11025–11034.


The authors would like to amend the original text, which misinforms regarding the status of related molecular gallium siloxide chemistry, and in the correction this is clarified by the new wording and by citations 1–8. References 10–12 describe important details on previous work using gallium siloxide molecules as precursors to gallium oxide and gallium-containing silica materials which were excluded from the original text. These are critical issues since some gallium siloxide precursors are known to give only gallium oxide and the precursor described here generates gallium-containing silica by a low-temperature thermolysis. The nature of the precursor and the conditions for conversion to the material make a critical difference that is not conveyed in the original wording.

(1) On page 11025, the second sentence of the second paragraph should be:

“However, while complexes containing a Ga–O–Si linkage are well known,1–12 few molecular precursors have been used to generate gallium-containing materials by thermolysis.9–12

(2) On page 11028, in the third full paragraph, the third sentence should be:

“As described above, there are few reports on the use of gallium siloxide complexes as thermolytic molecular precursors,9–12 and, to the authors’ knowledge, only Wada et al. describe the generation of gallium-silica materials by thermolysis of gallium siloxide molecular precursors (gallium silsesquioxane complexes), but this requires high temperatures for complete elimination of organics.11–12

(3) On page 11028, in the third full paragraph, the last sentence should read:

“Therefore, development of a well-defined precursor for the low-temperature thermolytic formation of gallium-containing silicas has remained an unrealized goal.”

The following references should be added as included above:

Additional references

  1. (a) H. Schmidbaur, Angew. Chem., Int. Ed. Engl., 1965, 4, 152 Search PubMed; (b) H. Schmidbaur and F. Schindler, Chem., Ber., 1966, 99, 2178 CrossRef CAS; (c) H. Schmidbaur, B. Armer and M. Bergfeld, Z. Anorg. Allg. Chem., 1968, 8, 254 CAS; (d) H. Schmidbaur, G. Kuhr and U. Krüger, Angew. Chem., 1965, 77(19), 866 CrossRef CAS; (e) H. Schmidbaur, Chem. Ber., 1963, 96, 2696 CrossRef CAS.
  2. R. Murugavel, A. Voigt, M. G. Walawalkar and H. W. Roesky, Chem. Rev., 1996, 96, 2205 CrossRef CAS PubMed.
  3. (a) G. Gerritsen, R. Duchateau, R. A. van Santen and G. P. A. Yap, Organometallics, 2003, 22, 100 CrossRef CAS; (b) V. Lorenz and F. T. Edelmann, Adv. Organomet. Chem., 2005, 53, 101 CrossRef CAS; (c) F. J. Feher, T. A. Budzichowski and J. W. Ziller, Inorg. Chem., 1997, 36, 4082 CrossRef CAS; (d) R. Duchateau, T. W. Dijkstra, R. A. van Santen and G. P. A. Yap, Chem. – Eur. J., 2004, 10, 3979 CrossRef CAS PubMed.
  4. F. Schindler and H. Schmidbaur, Chem. Ber., 1968, 101, 1656 CrossRef CAS.
  5. (a) D. Solis-Ibarra, M. de J. Velásquez-Hernández, R. Huerta-Lavorie and V. Jancik, Inorg. Chem., 2011, 50, 8907 CrossRef CAS PubMed; (b) R. Huerta-Lavorie, D. Solis-Ibarra, D. V. Báez-Rodríguez, M. Reyes-Lezama, M. de las Nieves Zavala-Segovia and V. Jancik, Inorg. Chem., 2013, 52, 6934 CrossRef CAS PubMed.
  6. (a) A. Voigt, R. Murugavel, E. Parisini and H. W. Roesky, Angew. Chem., Int. Ed. Engl., 1996, 35, 748 CrossRef CAS; (b) R. Murugavel, M. G. Walawalkar, G. Prabusankar and P. Davis, Organometallics, 2001, 20, 2639 CrossRef CAS; (c) M. Veith, H. Vogelgesang and V. Huch, Organometallics, 2002, 21, 380 CrossRef CAS; (d) C. N. McMahon, S. J. Obrey, A. Keys, S. G. Bott and A. R. Barron, J. Chem. Soc., Dalton Trans., 2000, 2151 RSC.
  7. (a) H. Schmidbaur and M. Schmidt, Angew. Chem., 1962, 74, 589 CrossRef CAS; (b) H. Schmidbaur, Chem. Ber., 1964, 97, 459 CrossRef CAS.
  8. (a) M. H. Chisholm, D. Navarro-Llobet and J. Gallucci, Inorg. Chem., 2001, 40, 6506 CrossRef CAS PubMed; (b) E. Herappe-Mejía, K. Trujillo-Hernández, J. C. Garduño-Jiménez, F. Cortés-Guzmán, D. Martínez-Otero and V. Jancik, Dalton Trans., 2015, 44, 16894 RSC.
  9. K. Samedov, Y. Aksu and M. Driess, ChemPlusChem, 2012, 77, 663 CrossRef CAS.
  10. I. E. Medina-Ramírez, C. Floyd, J. T. Mague and M. J. Fink, Cent. Eur. J. Chem., 2013, 11, 1225 Search PubMed.
  11. K. Wada, K. Yamada, T. Kondo and T. Mitsudo, J. Jpn. Pet. Inst., 2002, 45, 15 CrossRef CAS.
  12. K. Wada, K. Yamada, T. Kondo and T. Mitsudo, Chem. Lett., 2001, 30, 12 CrossRef.
 

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.


This journal is © The Royal Society of Chemistry 2016
Click here to see how this site uses Cookies. View our privacy policy here.