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osites of alginate, cellulose, and
Moringa oleifera for heavy metal removal in water
purification: a comprehensive and critical review of
mechanisms, fabrication, and performance

Abimbola Oluwatayo Orisawayi, *ab Krzysztof K. Koziola and Sameer S. Rahatekara

The escalating prevalence of heavy metal contamination in aquatic ecosystems, driven by industrialisation,

urbanisation, and population growth, has necessitated the development of sustainable and efficient water

purification technologies. This review critically evaluates recent advances in developing and applying bio-

based composites comprising sodium alginate, cellulose, andMoringa oleifera (M. oleifera) to remove heavy

metals from aqueous systems. The review examines the physicochemical characteristics, adsorption

mechanisms, and synergistic properties of these biopolymers, emphasising the role of the active

compounds in each. The deduction from the comparative study of this review reveals cellulose-based

composites demonstrating the highest overall adsorption performance, with several systems exceeding

1000 mg g−1 across different heavy metals. Although alginate composites achieve the highest single

reported capacity, 1742 mg g−1 for Pb2+, their performance is more dependent on chemical or

nanoparticle functionalisation. M. oleifera biosorbents show moderate adsorption capacities, with

improvements mainly observed after chemical modification. Overall, cellulose composites exhibit the

most consistent and versatile adsorption behaviour among the three materials. This review identifies

potential applications, highlights key research gaps, and outlines future directions for advancing bio-

based composite materials as viable solutions for sustainable water treatment.
Environmental signicance

This review highlights the potential of bio-based composites comprising alginate, cellulose, and Moringa oleifera as sustainable alternatives to conventional
water treatment materials. These biopolymers, derived from renewable resources, offer low toxicity, biodegradability, and effective adsorption of toxic heavy
metals from aqueous environments. Their application not only mitigates environmental pollution but also reduces dependency on synthetic, non-biodegradable
materials that contribute to secondary waste generation. By valorising agricultural by-products and natural resources, such composites support circular
economy principles and promote greener technologies for water purication, aligning with global efforts to address environmental sustainability and resource
conservation.
1 Introduction

The rapid growth of the global population has signicantly
increased industrial activities, reducing the availability of clean
water.1–3 Water is one of the most pressing environmental
concerns, making obtaining safe and affordable clean water
increasingly challenging. Heavy metal contamination in water
is also a major concern, arising from both natural and human
activities.4–6 Both industrial processes and natural phenomena,
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such as the weathering of metal-rich rocks and geothermal
activities, contribute to heavy metal pollution in water bodies.7–9

Drinking water is an invaluable resource for life, and ensuring
access to water and sanitation by 2030 is a key objective outlined
by the United Nations Sustainable Development Goals
(UNSDGs).10

Water is an essential resource, and numerous statistics have
been collected to assess various aspects of its usage, availability,
and quality. Several international organisations actively gather
and analyse water-related data, including the United Nations
Educational, Scientic and Cultural Organisation (UNESCO),11

the United Nations Children's Fund (UNICEF), and many
others.12 According to data from 57 countries in 2015, approxi-
mately 84 Litres of wastewater per capita were generated, yet
only 29 Litres underwent treatment. By 2021, global household
wastewater production had reached 271 billion cubic meters,
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with treatment rates improving to 55.5% based on data
collected from 234 countries.13,14 Furthermore, studies indicate
that approximately 70% of the Earth's surface is covered by
water, of which only 2.5% consists of freshwater. A mere 1% of
this freshwater is readily accessible for human use.15 The
current global population of 7.6 billion people must share this
limited resource. The United Nations projects that by 2050, the
global population will reach 9.8 billion, with approximately 4
billion people expected to experience water scarcity. This will
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exacerbate the existing crisis, as over two billion individuals
already lack access to clean water.16 To address this challenge,
efficient water treatment strategies must be developed to treat
wastewater and natural water sources while ensuring sustain-
ability through renewable energy sources.17–19

Various methods and materials have been proposed for
tackling water contamination, with a growing emphasis on
biopolymer-based solutions. Biopolymers, derived from natural
sources such as cellulose, alginate (from brown algae), and
chitosan (from crustacean shells), have gained considerable
attention for water purication due to their biodegradability,
eco-friendliness, and high adsorption capacity for heavy
metals.20–22 Their properties, such as high adsorption capacity
and eco-friendliness, make them suitable materials for water
purication applications and have been widely explored in
recent studies.23

Among these, cellulose is recognised as one of the most
abundant polysaccharides on earth, characterised by its high
mechanical strength, hydrophilicity, and ability to form stable
composites.24,25 Alginate, extracted primarily from brown algae,
is also rapidly gaining traction as a versatile biopolymer in
different elds due to its unique gel-forming capabilities and
non-toxic nature.26,27 The growing market for alginate reects its
increasing utilisation in water treatment, where it serves as an
efficient medium for adsorbing heavy metal ions. Combining
cellulose and alginate in composite forms presents a promising
approach for enhancing adsorption efficiency and mechanical
properties, making these biopolymers valuable for sustainable
water treatment applications.21,24,28

In addition to biopolymers, M. oleifera has been extensively
investigated as a cost-effective, eco-friendly biosorbent for
removing heavy metal ions from water.29–32 These seeds contain
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natural cationic proteins and bioactive compounds that facili-
tate ion exchange and metal binding, improving water puri-
cation efficiency.33 Studies have also demonstrated that M.
oleifera seed pods can effectively remove mixtures of metals in
wastewater, achieving optimal removal efficiency under specic
conditions, such as a 60-minute contact time and a 1.0 gram
sorbent dose.34 The ability of M. oleifera to function as both
a coagulant and an adsorbent positions it as a dual-function
material for water treatment, enhancing its potential for inte-
gration with biopolymers like cellulose and alginate to develop
advanced composite materials aimed at heavy metal ion
contamination.27,35

Although biopolymers and M. oleifera seed powders benet
water treatment, few studies have examined their hybrid
composites. This presents a signicant research gap in devel-
oping and characterising hybrid composites.36 Few studies have
been reported. Development of hybrid electrospun alginate-
pulverised M. oleifera composites was done by Orisawayi
et al.37 In their studies, pulverised M. oleifera at a minimum
dose suspension was incorporated into sodium alginate bre
using the electrospinning techniques.

Another study reported the development of effective bi-
osorbents made from combining M. oleifera and alginate beads
for uranium removal from aqueous solutions. Orisawayi et al.32

further developed sodium alginate bres through wet-spinning.
In contrast, more recent investigations have combined sodium
alginate with polyethyleneimine and M. oleifera leaves–seed
beads for uranium adsorption, including isotherm and kinetic
analyses.38 These composite systems have demonstrated
improved adsorption capacity and favourable structural
characteristics.

The selection of alginate, cellulose, and M. oleifera in this
study stems from their complementary physicochemical and
functional properties relevant to heavy-metal removal. Alginate
offers a biocompatible, carboxyl-rich matrix with strong ion-
binding capacity and efficient gel-forming behaviour, making
it highly suitable for capturing multivalent metal ions.39–41

Cellulose, the most abundant natural polysaccharide, provides
mechanical stability, a high surface area, and additional
hydroxyl groups that boost adsorption.39,42–47 In contrast, M.
oleifera seeds supply bioactive, cationic proteins and coagulant
molecules capable of binding and aggregating dissolved metal
ions.34,48,49 Although other biopolymers such as pectin, starch,
and chitosan have been widely studied, they do not collectively
offer this combination of mechanical robustness, adsorption
efficiency, natural coagulation activity, and environmental
sustainability.50–52

Therefore, the novelty of this review arises from its focus on
evaluating alginate, cellulose, and M. oleifera as distinct mate-
rials for heavy-metal removal, combined with an assessment of
how their complementary traits could be strategically melded to
improve adsorptive performance. While many studies and
reviews have examined these materials separately or with other
biopolymers, none have explored their combined potential
within a single analytical framework, offering a new perspective
for designingmore effective and sustainable adsorbent systems.
© 2026 The Author(s). Published by the Royal Society of Chemistry
The study rst outlines heavy metal contamination as
a signicant environmental concern, summarising key pollut-
ants and regulatory limits set by the United States Environ-
mental Protection Agency (EPA), World Health Organisation
(WHO) and European Union (EU), including the origin or
sources of the heavy metals. It then evaluates the limitations of
conventional treatment methods, such as chemical precipita-
tion, ion exchange, and membrane ltration, emphasising the
need for sustainable alternatives. The focus then shis to
biopolymers, particularly sodium alginate and cellulose,
exploring their adsorption mechanisms, composite formula-
tions, and integration with M. oleifera to enhance performance.
Fabrication techniques such as electrospinning and wet spin-
ning are also reviewed for their role in optimising material
properties. Having established the urgency of water pollution
and the potential of biopolymer-based solutions, it is crucial
rst to understand the nature, sources, and health implications
of the primary contaminants and heavy metals that threaten
aquatic systems.

2 Background on heavy metals

Heavy metal ions such as lead (Pb2+), cadmium (Cd2+), cobalt
(Co2+), nickel (Ni2+), barium (Ba2+), copper (Cu2+), chromium in
both trivalent and hexavalent states (Cr3+/Cr6+), zinc (Zn2+),
mercury (Hg2+), and arsenic in trivalent and pentavalent forms
(As3+, As5+) constitute major contaminants in aquatic ecosys-
tems. Their elevated toxicity and persistence in natural waters-
make them a signicant environmental concern.53,54 There are
several primary sources of heavymetal ions. Fig. 1 illustrates the
different sources of environmental pollution caused by heavy
metals and the adverse effects of the metals on pollution by
heavy metal ions.50,55,56 Fig. 1a shows the primary industrial
sources, such as the mining industries,57 textile industries,58,59

thermal and nuclear plants associated with the cement
industry,60 the manufacturing and conservation of wood, dye
production,61 metal plating and those associated with the steel
manufacturing industries,62 energy and water cooling
processes,30 the production of photographic materials,63 the
manufacturing of various corrosive paints,64 and other indus-
trial activities in the global oil and gas industries.65–67

However, heavy metal contamination is not limited to
industrial activities alone. Fig. 1b shows a broader perspective,
incorporating additional sources such as urban solid waste,
wastewater effluents, e-waste, biosolids, fertilisers, pesticides,
corrosion, pharmaceutical products, and natural occurrences,
including volcanic eruptions. These diverse contamination
sources contribute signicantly to environmental pollution,
making the development of sustainable remediation strategies
imperative. Heavy metal ions are oen described as metallic
forms of elements that are mostly denser than water and have
a large atomic radius.68 Heavy metal ions are dangerous and
more prevalent, resulting from the persistent half-life.69,70 The
common organic compounds found in most water bodies can
be degraded over time. Still, when polluted into water bodies,
the heavy metals remain an environmental issue as most of
them are difficult to decompose in the water.
Environ. Sci.: Adv.
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Fig. 1 (a and b) are the different sources of environmental pollution caused by heavy metals, and (c) the adverse effects of commonly
encountered heavy metals on other human organs (all figures are adapted and (c) was modified with permission, Licensed under Elsevier's
terms).50,55,56

Environ. Sci.: Adv. © 2026 The Author(s). Published by the Royal Society of Chemistry
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The United States Environmental Protection Agency (EPA) with
Maximum Contaminant Levels (MCLs),71,72 The World Health
Organisation (WHO), and the European Union (EU), with the
maximum permissible level,73,74 have established regulatory
limits for these contaminants to protect water quality and
public health.68,75 Lead has been extensively studied as one of
the metals causing environmental pollution, resulting from its
high level of toxicity and oen widespread presence.76,77

Contamination from lead is common and is primarily due to its
use in many plumbing infrastructures, resulting from the
erosion of natural deposits and its presence in most automobile
batteries.78 The presence of lead, even at low blood concentra-
tions of 1–2 mg dL−1, lead exposure may lead to severe health
effects, including neurodevelopmental, cardiovascular, renal,
and reproductive issues, and in children, could show slight
decits in attention span.79 The EPA MCL is 0.01 mg L−1, with
WHO and EU also maintaining a 0.01 mg L−1 limit.

In addition, metal ions such as cadmium are another
frequently encountered heavy metal pollutant because they are
primarily released in most industrial processes. The EPAMCL is
0.005 mg L−1, while WHO and EU enforce limits of 0.003 mg
(ref. 80) chromium is well-documented as an environmental
contaminant and primarily originates from most industrial
activities and processes, such as electroplating, textile
manufacturing, and the stainless steel industry. In most
research, this metal has been highlighted as it's toxic and
carcinogenic, therefore causing concern. The EPA sets an MCL
of 0.1 mg L−1, whereas the WHO and the EU impose stricter
limits of 0.05 mg L−1.81

Mercury is also a highly toxic heavymetal introduced into the
environment through various industrial activities, and pro-
cessed are oen contain mercury and waste in water bodies and
can cause challenges for aquatic ecosystems; reports show that
mercury can transform into methylmercury, known as
a bioavailable form, that is accumulated in marine bodies and
therefore affecting the aquatics organisms. This poses a serious
Neurotoxin, as kidney damage bioaccumulates in aquatic
organisms and is a health threat to humans consuming
contaminated seafood. The EPA enforces an MCL of
0.002 mg L−1, the WHO sets 0.006 mg L−1, while the EU has
a more stringent limit of 0.001 mg L−1.82,83

Arsenic, a naturally occurring metalloid, poses serious
health risks. Arsenic can cause severe health conditions in the
skin, causing skin damage or problems with the circulatory
system, cancer, and cardiovascular diseases.7,84 It is a signicant
contaminant in the groundwater; due to its high toxicity, the
EPA, WHO, and EU all impose a maximum limit of 0.01 mg L−1,
particularly in regions where mainly agricultural activities have
historically involved arsenic-based pesticides.82,84

Other metals, such as nickel, barium, copper, and zinc, pose
signicant environmental and health risks due to their persis-
tence in water bodies. These metals also enter aquatic ecosys-
tems through industrial discharge, mining, and improper waste
disposal, contaminating drinking water sources and affecting
marine life. Nickel exposure can lead to allergic reactions,
respiratory issues, and carcinogenic effects, disrupting aquatic
microbial activity. Nickel is commonly found in metal alloys,
© 2026 The Author(s). Published by the Royal Society of Chemistry
including mining waste and industrial effluents. Barium
contamination originates from the oil drilling, glass, and paint
industries. Soluble barium compounds pose health risks,
causing hypertension, muscle weakness, and neurological
disorders.84–86

Copper and zinc are essential metals but become toxic in
excess, leaching from plumbing, mining, and fertilisers. Copper
bioaccumulates in sh and amphibians, disruptingmetabolism
and causing liver, kidney, and neurological issues in humans.
Zinc pollution can lead to immune suppression, developmental
problems, and metabolic disorders, ultimately affecting sh
growth and disrupting the balance of phytoplankton. The
presence of these metals in water demands effective pollution
control, water treatment, and stricter regulations to mitigate
their toxic effects on human health and ecosystems.87–89

Table 1 provides a comparative overview of major heavy
metal contaminants, their potential health risks, and their
regulatory limits established by the EPA, WHO, and EU. Fig. 1c
shows a retrieved study from a previous study retrieved from the
literature, which shows the adverse effects of commonly
encountered heavy metals on different human organs.56

Furthermore, these standards are crucial for maintaining water
safety, and exposure to heavy metals can have severe biological
consequences, affecting multiple human organs. This illustra-
tion complements the regulatory data presented in Table 1 by
emphasising the physiological risks associated with prolonged
exposure to heavy metals.

The legally enforceable Maximum Contaminant Levels
(MCLs) ensure the safety of drinking water. The World Health
Organisation (WHO) provides guidelines, values, andMaximum
Permissible Levels (MPLs) based on health risk assessments.
The European Union (EU) sets strict regulatory limits on
drinking water quality that are mandatory for all EU member
states.69–72

Several treatment technologies have been developed to
address the environmental challenge posed by heavy metal
contamination due to their hazardous effects and regulatory
signicance in water systems. The following section critically
examines these technologies for the removal of heavy metals
from water.
3 Water treatment technologies for
removing heavy metals
3.1 Chemical precipitation

Chemical precipitation has been used and described as an
effective method for removing heavy metals, primarily from
wastewater. Chemical precipitation is widely used in industrial
wastewater treatment due to its simplicity, cost-effectiveness,
and established technology.90,91 This method uses chemical
reagents that react with most metal ions to form an insoluble
precipitate.92 Studies show that the primary precipitation
mechanisms include hydroxide and sulphide precipitation,
which facilitate the removal of these metal ions during the
process. However, the main limitations of this method involve
difficulties in removing mixed metals due to pH levels that may
Environ. Sci.: Adv.
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Fig. 2 (a) Water treatment of remediation methods, including electrochemical, physicochemical, and adsorption-based processes (modified
with permission, Licensed under Wiley's terms) (b), (modified with permission, Licensed under Elsevier's terms) and (c) heavy metal removal
technologies, comparing conventional and advanced techniques, (adapted with permission, Licensed under ACS publication's terms).90,91,114
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be difficult to control when hydroxide precipitation is used.93,94

In addition, there is also a risk of secondary contamination,
particularly from sulphide precipitation, which can sometimes
lead to the formation of toxic hydrogen sulphide (H2S) gas, as
reported.95
3.2 Ion exchange

Another widely used method is ion exchange, which is oen
applied in water purication technologies, as this method relies
on ion exchange to remove metal ions. During the process, ion
exchange media include zeolite resins and synthetic organic
Environ. Sci.: Adv.
polymers.96 These methods have been proven effective for
eliminating cations and anions from freshwater, ensuring high
removal efficiency. However, this method has several draw-
backs, including the requirement for pretreatment and chem-
ical regeneration, which can lead to secondary pollution due to
the materials used. Therefore, ion exchange leaves some
secondary pollution aer water treatment.97 Studies suggest
that this method is less effective for highly concentrated mixed-
metal wastewater, making it more suitable for applications
involving mixed heavy-metal solutions from aqueous
solutions.97,98
© 2026 The Author(s). Published by the Royal Society of Chemistry
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3.3 Membrane separation

Membrane separation technologies are emerging methods
employed for pressure-driven processes such as ultraltration,
nanoltration, reverse osmosis, concentration, and removing
some heavy metal ions.99,100 This method is advantageous due to
its simple operation, low energy consumption, and absence of
signicant phase changes, making it an environmentally
friendly alternative. However, challenges associated with this
method include the high cost of membrane materials and their
susceptibility to fouling and degradation, which may reduce the
long-term efficiency of the process.101 Despite these limitations,
membrane separation remains a valuable technology for water
treatment, particularly in removing low-concentration contam-
inants or pollutants from water.101,102
3.4 Electrochemical technologies

Electrochemical methods, including electrocoagulation, elec-
trodeposition, electrooxidation, and electrolocation, have been
extensively explored for heavy metal removal. These techniques
involve the application of electrical currents to induce coagu-
lation, charge neutralisation, and precipitation of heavy metal
ions.103 Electrochemical processes are known for their high
removal efficiency, ease of operation, and minimal sludge
production, reducing the need for additional conditioning
treatments. However, their applicability is oen limited by
energy consumption, electrode material degradation, and the
potential formation of secondary contaminants.104,105
3.5 Bioremediation

The bioremediation technique is another method that utilises
biological processes for water treatment. This approach
includes microbial remediation and phytoremediation, which
involve usingmicroorganisms or plants to degrade, immobilise,
or remove heavy metals from water bodies.106 Studies have
shown that this method has been proven to be an environ-
mentally sustainable method. It is also cost-effective and has
been successfully applied for the restoration of the most
polluted sites. However, bioremediation has signicant limita-
tions, including overdependence on low metal concentrations
and long remediation cycles, making it challenging to scale up
the process for industrial applications.107–109
3.6 Adsorption

Over the decades, adsorption has emerged as one of the most
efficient and widely used methods for removing heavy metals
from contaminated water.55 The process has emerged as
a promising alternative for water treatment. Adsorption is the
process in which ions, atoms, or molecules adhere to the
surface of a solid material. It differs from absorption, which
involves the penetration of molecules into the interior of
a solid.110,111 Based on the forces governing this phenomenon,
adsorption is categorised as physisorption or chemisorption.112

This method relies on interfacial interactions between metal
ions (adsorbate) and the materials used for their removal
(adsorbent). Various media can be utilised to facilitate
© 2026 The Author(s). Published by the Royal Society of Chemistry
contaminant removal through mechanisms such as pore lling,
surface binding, and chemical interactions.113 Some of the
materials reported for use include activated carbon, carbon
nanotubes, wood sawdust, alginate, cellulose, M. oleifera, chi-
tosan, polymeric hydrogels, ion-exchange resins, and their
composites. As illustrated in Fig. 2a, wastewater treatment
methods are categorised into electrochemical treatments,
physicochemical processes, and adsorption-based processes,
highlighting their applications in contaminant removal.90,91

Fig. 2(b and c) provide a comparative overview of heavy metal
removal technologies, distinguishing between conventional
methods, such as chemical precipitation, ion exchange, and
electrochemical processes, and advanced techniques, including
nanotechnology, membrane ltration, and photocatalysis. The
inset in Fig. 2a further illustrates the physical and chemical
adsorption mechanisms of different adsorbate–adsorbent
interactions, demonstrating their effectiveness in pollutant
removal.91 Unfortunately, most reported methods or techniques
are associated with high costs, operational complications, low
efficiency, excessive chemical use, and secondary pollutants,
which restrict their applications. With the development of
highly exible, easy-to-operate, and efficient adsorbent designs,
adsorption has emerged as a promising alternative for water
treatment. Adsorption is highly advantageous due to its
simplicity, cost-effectiveness, high selectivity, and ability to
treat dilute wastewater. The ability to recycle adsorbents has
been reported to minimise secondary pollution, making
adsorption a preferred choice for water treatment applications.

While conventional technologies demonstrate varying
degrees of effectiveness, many are limited by high costs,
secondary pollution, or low selectivity. These limitations have
spurred the exploration of sustainable alternatives, particularly
those derived from bio-based materials, as discussed in the next
section.
4 Bio-based biodegradable
composites and blends for water
purification
4.1 Overview of sustainable biopolymer composites

Biopolymers are naturally occurring polymers produced by
living organisms. Biological resources, including plants,
animals, agricultural residues, and microorganisms, are viable
feedstocks for synthesising biopolymers. Fig. 3 shows a typical
classication and characteristics of biopolymers that have been
reported.29 Among the primary sources derived from agriculture
and plants are corn stalks, maize, wheat, potatoes, and barley.

Biopolymers consist of monomeric units such as nucleo-
tides, saccharides, or amino acids that form nucleic acids,
carbohydrates, and proteins.112–114 Biopolymers are known to be
renewable and eco-friendly alternatives to most synthetic poly-
mers derived from fossil fuels.115–120 Biopolymers have gained
signicant attention due to their biodegradability and potential
to address environmental challenges.121–124 The projections
indicate that global plastic production is expected to surpass
1800 million metric tons annually by 2050. The focus on
Environ. Sci.: Adv.
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Fig. 3 Classification and properties of biopolymers (adapted with permission, Licensed under Elsevier's terms).29
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biopolymers, primarily cellulose and alginate, for water treat-
ment is well-justied due to their abundant functional groups,
which facilitate the efficient adsorption of heavy metal ions and
other pollutants. Over the decades, several studies have high-
lighted the environmental issues associated with synthetic
polymers, emphasising the need for biodegradable alternatives.
Kogje et al.125 found that biopolymers derived from natural
sources minimise plastic waste and have higher biodegrad-
ability than standard plastics. Similarly, Emre et al.126 also
demonstrated the potential of polysaccharide-based biopoly-
mers to reduce environmental pollution through improved
adsorption. Researchers have documented the efficiency of
biopolymers such as cellulose, alginate, and chitosan in
adsorbing heavy metals from aqueous solutions.82,83,127,128

Moreover, alginate has emerged as a promising biopolymer,
which also contains carboxyl groups that play a crucial role in
the ion exchange process, making it an effective adsorbent for
heavy metals like cadmium, chromium, and other metal
ions.129,130 Several studies have also demonstrated the effec-
tiveness of cellulose–alginate hydrogels in contaminant
removal. In particular, the hydrogels have been shown to
substantially enhance the adsorption efficiency of both dyes
and heavy metal ions, achieving up to approximately 85%
removal of methylene blue, which is associated with metal
ions.131,132 The tensile strength and durability of cellulose,
combined with the gel-forming ability of alginate, ensure the
formation of stable and effective adsorbent composites. The
environmental sustainability and cost-effectiveness of cellulose
and alginate instead of synthetic polymers align with the
increasing demand for eco-friendly water treatment materials.
The interaction between the hydroxyl groups in cellulose and
Environ. Sci.: Adv.
the carboxyl groups in alginate enhances the ion-exchange
interactions and adsorption capacity of these hydrogels,
making them practical for water purication.133,134 Fig. 4 pres-
ents a detailed schematic representation of the sources and
structures of cellulose and alginate, along with their physical
and chemical modication methods to enhance their perfor-
mance in water purication applications. Additionally, it cate-
gorises the signicant approaches for modifying these
biopolymers to improve their functionality. These modica-
tions, categorised into physical and chemical, encompass
blending, ultrasonic treatment, cross-linking, focusing on the
use of crosslinking agents such as Ethylenediaminetetraacetic
Acid (EDTA), Gamma-Linolenic Acid (GLA), Ethylene Glycol
Monobutyl Ether (EGBE), Epichlorohydrin (ECH), and Poly-
ethylene Glycol (PEG), including graing to enhance the mate-
rial's adsorption efficiency, mechanical stability, and chemical
resistance in water remediation applications. These modica-
tion techniques are essential in tailoring cellulose–alginate
composites for optimised performance in environmental
applications.

The adsorption and regeneration mechanisms of bi-
opolymeric composites are very crucial. These have been
extensively studied for their effectiveness in removing heavy
metals. Understanding these mechanisms is essential for opti-
mising their performance in water treatment applications.
Fig. 5(a) presents a reported adsorption mechanism illustrating
the interaction of metal ions (M+) with active functional groups
in biopolymeric composites. The process involves electrostatic
attraction, ion exchange, and surface complexation, facilitated
by hydroxyl (–OH), carboxyl (–COO−), and amine (–NH2)
groups.135 Adsorption efficiency is inuenced by pH, where ion
© 2026 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Schematic representation of the sources and structures of cellulose and alginate, along with their physical and chemical modification
methods aimed at enhancing their performance in water purification applications (modified with permission, Licensed under Elsevier's terms).21
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exchange dominates at lower pH levels. At the same time,
electrostatic and surface complexation mechanisms become
more prominent at higher pH values, as observed in several
studies.136,137 The adsorption performance of cellulose–alginate
composites has been well-documented, with removal efficien-
cies varying depending on the composite structure, porosity,
and availability of functional groups. Furthermore, Fig. 5(b)
highlights various regeneration strategies for restoring
adsorption capacity. These include chemical regeneration using
eluents such as Sodium hydroxide (NaOH), Hydrochloric acid
HCl, Ethylenediaminetetraacetic acid (EDTA), and Sulfuric acid
(H2SO4), as well as physical and biological treatments like
oxidation, ultrasound, and thermal degradation. Integrating
effective regeneration methods ensures the long-term usability
of biopolymeric adsorbents, making them viable options for
sustainable water purication.
Fig. 5 (a) Proposed adsorption mechanism of biopolymeric composites
used for biopolymeric composites during the adsorption–desorption pr

© 2026 The Author(s). Published by the Royal Society of Chemistry
4.2 Sodium alginate and its composites

4.2.1 Alginate extraction and structure. Alginates are
biopolymers derived from natural sources, widely recognised
for their versatility and diverse applications across various
elds.27,138 The abundance of algae in water bodies has been
estimated, with the production of industrial alginate amount-
ing to approximately 30 000 tons, representing less than 10% of
biosynthesised alginate. Therefore, there is considerable
potential for alginate to be utilised in the design of sustainable
composite materials. Primarily, alginate is extracted from
brown seaweed algae such as (Ascophyllum spp., Laminaria spp.,
Macrocystis pyrifera, Sargassum spp, Alario, Ecklonia, Eisenia,
Nercocystis, Sargassum, Cystoseira, Fucus, and several others).139

Studies show that seaweed-derived alginate is the most
commercially utilised form, as bacterial alginate presents an
for heavy metal removal, and (b) regeneration methods and chemicals
ocess (adapted with permission, Licensed under Elsevier's terms).21
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Fig. 6 (a) Extraction and preparation of alginate from the raw sources and their application toward heavy metal removal, (adapted with
permission, Licensed under Elsevier's terms) and (b) typical industrial process of sodium alginate extraction via calcium precipitation (Creative
Commons Attribution (CC BY 4.0) from MDPI).21,142
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alternative source with distinct advantages for several applica-
tions.140,141 Typically, alginate extracted from brown algae is
treated with various chemicals at different synthesis stages.
Briey, the production process of sodium alginate begins with
the harvesting and drying of seaweed, aer which it undergoes
mechanical processing to be converted into algal powder.142

This powder will be treated with hydrochloric acid (HCl) to
extract the alginic acid, which serves as the precursor for
sodium alginate including sodium carbonate (Na2CO3) as part
of the extraction process. The extracted alginic acid will be
washed, ltered, and treated with sodium hydroxide (NaOH) to
form a sodium alginate (SA) solution.143 The solution is then
further treated with HCl to enhance the purity and produce an
alginic acid gel. The samples will then be neutralised with alkali
agents such as sodium hydroxide and/or sodium carbonate,
converting them into sodium alginate, a water-soluble polymer
widely used across various industries.144 The purication of the
extracted alginate was conducted through a chemically assisted
process before ltration and drying. Specically, the crude
alginate was subjected to sequential treatments using calcium
chloride (CaCl2), sodium chloride (NaCl), or further treated with
ethanol to remove residual impurities, enhance polymer purity,
and improve the physicochemical characteristics of the nal
biopolymer. The extraction process of alginate is illustrated in
Fig. 6a, showing the key steps involved in alginate preparation
from raw seaweed sources and its subsequent transformation
into sodium alginate and its applications in the adsorption
process, retrieved from the literature. In contrast, other litera-
ture shown in Fig. 6b explains the Industry process of sodium
alginate extraction via calcium precipitation.

Alginate has been invaluable because it is helpful in water
purication applications due to the presence of hydroxyl (–OH)
and carboxyl (–COO−) functional groups present in its polymer
backbone.145 SA can effectively interact with heavy metal ions
and other pollutants in aqueous environments. SA can also
undergo an adsorption mechanism that allows contaminants to
bind to the polymer surface, facilitating the removal of
Environ. Sci.: Adv.
impurities and contributing to environmental remediation
efforts.146 This property has positioned alginate as a promising
material in sustainable water treatment technologies.

Structurally, alginates are linear block copolymer poly-
saccharides composed of two fundamental monomeric units: b-
D-mannuronic acid (M-block) and a-L-guluronic acid (G-block),
the latter being the C-5 epimer of the former.147 C-5 epimer of
the former.147 These monomers are linked through b-(1–4)
glycosidic bonds, forming an unbranched, water-soluble poly-
mer chain. Additionally, alginate polymers can exhibit various
sequential forms or arrangements of these monomeric units,
including homopolymer M- or G-blocks, alternating MG-blocks,
and more complex congurations such as GM-blocks and
interspersed MG/GM sequences of varying lengths, with
different interchangeable possibilities as shown in Fig. 7a–c,
allowing for structural versatility and structurally modied
model describing the interactions between alginate G-blocks
and divalent cations, primarily Ca2+ illustrates their strong
affinity for metal ions and other pollutants through ionic-
displacement mechanisms. These interactions facilitate effi-
cient regeneration via simple ltration and contribute to the
formation of stable ionic gels, thereby making alginate-based
systems excellent candidates for water-pollution remedia-
tion.147 A distinctive property of alginates is their ability to
undergo reversible sol–gel transitions upon interaction with
divalent and trivalent metal ions. Calcium chloride (CaCl2) is
commonly used to induce gelation, particularly through inter-
actions with the GG-block regions, facilitating the formation of
a rigid, three-dimensional network oen described using the
“egg-box” model.148 This structural transformation occurs as
calcium ions (Ca2+) form ionic cross-links between the G-block
residues, forming a hydrogel. The schematic representation of
this process, as depicted in Fig. 1c, is adapted from work.149

illustrates how calcium ions mediate the cross-linking of algi-
nate chains, resulting in a stable gel network. The binding
capacity with divalent metal cations reported is Pb2+ > Cu2+ >
Cd2+ > Ba2+ > Sr2+ > Ca2+ > Co2+, Ni2+, Zn2+ > Mn2+.150 Beyond
© 2026 The Author(s). Published by the Royal Society of Chemistry
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Fig. 7 Schematic of alginic acid structure: structure of alginate showing (a) chain conformation (b) block distribution, and (adapted with
permission, Licensed under Elsevier's terms) (c) a structurally modifiedmodel describing the interactions between alginate G-blocks and divalent
cations (Ca2+) (Creative Commons Attribution (CC BY 4.0) from MDPI).147,149
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their gelation properties, alginates are extensively studied for
their capacity to adsorb heavy metal ions from aqueous envi-
ronments. The presence of abundant hydroxyl and carboxyl
functional groups in the polymer backbone enables strong
interactions with metal ions, making alginates a promising
material for water purication and environmental remediation
applications.38,151

4.2.2 Functional modications in alginate-based adsor-
bents. Various functional modications have been explored to
enhance the adsorption performance of alginate-based mate-
rials for removing heavy metal ions from aqueous environ-
ments.134,152,153 These modications aim to improve key
parameters, including selectivity, mechanical stability, and
regeneration capacity. Fig. 8 illustrate an example of fabricating
alginate-based composites, as reported in a previous study.153

Studies have categorised alginate composite materials into
several groups, including polymeric blends and gra
© 2026 The Author(s). Published by the Royal Society of Chemistry
copolymers, biopolymer-based composites, alginate-inorganic
nanohybrids, magnetic nanocomposites, and structurally
engineered forms such as electrospun bres, wet-spun bres,
and 3D-printed structures. Each class offers distinct physico-
chemical advantages that contribute to improved efficiency in
heavy metal ion adsorption.27

4.2.2.1 Polymeric blends and gra copolymers. The formation
of alginate-based polymeric blends and gra copolymers has
been extensively employed to enhance adsorption selectivity
and reusability. Studies have shown that surface graing with
functional groups such as thiol (–SH) and amine (–NH2)
enhances the selective affinity for metal ions. Thiolates algi-
nates exhibit strong binding to metal ions, while aminated
variants demonstrate high adsorption of Cd2+.39,152 Cross-
linking alginate, particularly with calcium ions, yields
mechanically robust hydrogel beads that resist dissolution in
aqueous media and maintain stable adsorption capacities
Environ. Sci.: Adv.
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Fig. 8 Examples of (a) fabrication of alginate-based composites, (b) adsorption mechanisms of alginate composites (adapted with permission,
Licensed under Elsevier's terms), and (c) preparation of PANI@SA-SNM gel adsorbent using calcium alginate to encapsulate nZVI-rice straw
composite (CANRC) for Pb2+, Zn2+, and Cd2+ removal (adapted with permission, Licensed under Elsevier's terms).41,153,159
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across multiple use cycles.152,154 For instance, hydrogels are
oen based on ionic or covalent crosslinking without specic
llers or advanced frameworks. Calcium-cross-linked sodium
alginate beads have demonstrated capacities ranging from 54.9
to 82.8 and 135.5 mg g−1 for Cu2+, Ag+, Fe2+, and Fe3+, respec-
tively.154 The polyaniline–sodium alginate-MXene nanomaterial
composite (PANI@SA-SNM) integrates MXene nanosheets and
polyaniline within a sodium alginate hydrogel matrix, signi-
cantly enhancing the adsorption of Cu2+ and Hg2+ ions when
used for their removal from aqueous solution. The interaction
between polyaniline's redox-active nitrogen sites, MXene's
layered surface functionalities, and alginate's carboxyl groups
facilitates high metal uptake (up to 352.76 mg g−1), conrming
the efficacy of multifunctional polymeric blends in adsorptive
remediation.41 Modied alginate-based biocomposite hydrogel
microsphere, effectively adsorbing Pb2+and Cu2 ions, has
369.6 mg g−1 and 124.1 mg g−1, and some studies also reported
the potential cellulose–alginate sponges that exhibit high water
permeability and excellent reusability properties. Studies have
further demonstrated the effectiveness of alginate-based hybrid
materials. Notably, mesoporous alginate/b-cyclodextrin beads
exhibit remarkable adsorption capacities for Pb2+, Cu2+, Cd2+,
and Ni2+ 21.09, 15.54, 2.47, and 2.68 mg g−1, respectively,
highlighting the enhanced performance of alginate–polymer
Environ. Sci.: Adv.
composites for heavy-metal removal.46,142 Moreover, sodium
alginate-based carboxymethyl cellulose (CMC) hydrogel beads
Pb2+ uptake (>600 mg g−1), demonstrating the benets of
combining carboxyl-rich alginate matrices with amine-rich
copolymers. Similarly, the sodium alginate-g-poly(acrylic acid-
co-acrylamide) nanocomposite hydrogel absorbed Pb2+, Cd2+,
Ni2+, and Cu2+ at concentrations of 231.88, 235.62, 67.52, and
76.35 mg g−1, respectively.

4.2.2.2 Inorganic llers and nanomaterials. Incorporating
inorganic llers, such as metal oxides and salts, into alginate
matrices enhances ion exchange capabilities and structural
rigidity while increasing the surface area. These additives
interact physically or chemically with alginate to form func-
tional hybrid structures. For instance, alginate-caged magne-
sium sulphate nanoparticle microbeads demonstrated an
adsorption capacity of 84.7 mg g−1 for Pb2+.142 The inclusion of
magnesium sulfate (MgSO4) likely provides ionic sites for
selective lead interaction while boosting the mechanical
robustness of the hydrogel structure. The carbonised composite
manganese-crosslinked sodium alginate showed excellent
removal of As3+ (189.29 mg g−1), As5+ (193.29 mg g−1), and Cr6+

(104.5 mg g−1).143 Manganese enhances redox activity, reducing
toxic ions and subsequent immobilisation. This composite
benets from electrostatic and surface complexation
© 2026 The Author(s). Published by the Royal Society of Chemistry
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mechanisms enabled by the manganese–carbon interface. The
calcium alginate-nanoscale zero-valent iron (nZVI)-biochar
composite reportedly adsorbs Pb2+, Zn2+, and Cd2+ with capac-
ities of 47.99, 71.77, and 47.27 mg g−1, respectively,145 combining
the adsorptive nature of biochar with the magnetic and reduc-
tive properties of nanoscale zero-valent iron (nZVI). The cross-
linked alginate-rice husk ash-graphene oxide-chitosan nano-
particles (CL-ARCG-CNP) composite combines alginate with
silica-rich rice husk ash, reduced graphene oxide, and chitosan
nanoparticles, forming a cross-linked hybrid with a high Pb2+

adsorption capacity of 242.5 mg g−1. This multifunctional
system leverages the high surface area of GO, the amine-rich
functionality of chitosan, and the reactive silanol groups from
rice husk ash, collectively enhancing Pb2+ chelation and
stability in aqueous environments.40 The calcium carbonate on
alginate/chitosan biocomposite (CSAX_Ca) was also reported to
have an affinity for the pollutants Cu2+and Pb2+ at the adsorp-
tion capacities 429, 1742 mg g−1. This performance is attributed
to the ionic exchange properties of CaCO3, combined with the
carboxyl groups of alginates and the amine groups of chitosan,
respectively.155 Such materials serve dual functions: adsorbing
metal ions and reducing them to less toxic or immobilised
Table 2 Adsorption capacities of alginate-based composites for heavy m

S. no.
Alginate-based
adsorbents

Pollution/target h
metal ion(s)

1 Modied alginate-based
biocomposite hydrogel
microsphere

Pb2+ and Cu2+

2 Mesoporous alginate/b-
cyclodextrin polymeric
beads

Pb2+, Cu2+ and Cd

3 Alginate-caged magnesium
sulfate nanoparticle
microbeads

Pb2+

4 Carbonised composite
manganese crosslinked
sodium alginate

As3+, As5+ and Cr6

5 Amino-functionalised
sodium alginate aerogel

Cr6+ and Cd2+

6 Calcium alginate-nZVI-
biochar

Pb2+, Zn2+ and Cd

7 Sodium alginate-based
carboxymethyl cellulose
hydrogel beads

Pb2+

8 Sodium alginate-g-
poly(acrylic acid-co-
acrylamide) nanocomposite
hydrogel

Pb2+, Cd2+, Ni2+, C

9 Alginate/reduced graphene
double-network and single-
network hydrogel beads

Cu2+, Cr2O7
2−

10 Tetrasodium
thiacalixarenetetrasulfonate–sodium alginate nanocomposite hydrogelPb2

94.5, 74.9 (Co2+) and 79.2 (Cr3+)17011Sodium alginate hydrogel beads by p
15412Sodium alginate-functionalised M. oleifera seed wet-spinningCu2+, C
gelCu2+, Hg2+255.81 (Cu2+) and 352.76 (Hg2+)15214Orange peels/alginate
256.5 (Cr5+) – NAF17215Cross-linked alginate-rice husk ash-graphene oxid
carbonate on alginate/chitosan biocomposite (CSAX_Ca)Cu2+ and Pb2+429
Cu2+, Zn2+, and Mn2+5.8 (Co2+), 4.78 (Ni2+), 4.6 (Cu2+), 1.3 (Zn2+), and 1.02

© 2026 The Author(s). Published by the Royal Society of Chemistry
forms while being easily recoverable due to their magnetic
properties. These composites demonstrate the effectiveness of
hybrid materials that combine inorganic llers with alginate to
produce multifunctional adsorbents. Their efficacy is further
enhanced by the synergistic role of metal oxides in charge
exchange, redox transformations, and maintaining structural
integrity.156,157

4.2.2.3 Magnetic nanocomposites. Magnetic nanocomposites
offer the dual benets of effective heavy metal removal and
straightforward post-treatment separation utilising external
magnetic elds. These materials are essential in scalable water
treatment technologies.158 The calcium alginate-nZVI-biochar
composite for removing Pb, Zn, and Cd from water: insights
into governing mechanisms and performance. This category is
exemplied by calcium alginate-nZVI-biochar, as nZVI provides
magnetic properties and facilitates the reductive precipitation
of metal ions. The removal capacities for Pb2+, Zn2+, and Cd2

with absorption capacities of 47.99, 71.77, and 47.27.159

Demonstrate the synergistic role of nZVI with alginate's ion
exchange capability. While no other strictly magnetic compos-
ites are explicitly mentioned in the dataset, this entry empha-
sises a growing research interest in merging magnetic
etal removal

eavy Adsorption capacity
(mg g−1) References

369.6 (Pb2+) and 124.1 (Cu2+) 164

2+, Ni2+ 21.09 (Pb2+), 15.54 (Cu2+),
2.47 (Cd2+) and 2.68 (Ni2+)

46

84.7 for Pb2+ 165

+ 189.29 (As3+), 193.29 (As5+)
and 104.50 (Cr6+)

166

678.67 (Cr6+) and 464.23
(Cd2+)

167

2+ 47.99 (Pb2+), 71.77 (Zn2+) and
47.27 (Cd2+)

159

— 168

u2+ 231.88 (Pb2+), 235.62 (Cd2+),
67.52 (Ni2+) and 76.35 (Cu2+)

169

169.5 (Cu2+) and 72.5
(Cr2O7

2−)
154

+, Ni2+, Cu2+, Cd2+, Co2+ and Cr3+99.8 (Pb2+), 67.4 (Ni2+), 90.56 (Cu2+),
ost-crosslinkingCu2+, Ag+ and Fe3+54.9 (Cu2+), 82.8 (Ag+) and 135.5 (Fe3+)
d2+ and Ni—17113MXene/polyaniline/sodium alginate (PANI@SA-SNM)
(OAF) nectarine peels/alginate (NAF)Cr5+About 224.3 (Cr5+) – OAF and
e-chitosan nanoparticles (CL-ARCG-CNP)Pb2+242.5 (Pb2+)4016Calcium
(Cu2+) and 1742 (Pb2+)15517Alginate + encapsulatedM. oleiferaCo2+, Ni2+,
(Mn2+)48

Environ. Sci.: Adv.
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responsiveness with adsorption functionalities. The advance-
ment of magnetically recoverable alginate-based adsorbents
represents a practical approach for real-time and reusable water
purication applications.

4.2.2.4 Metal–organic frameworks (MOFS) and graphene-
based composites (GBC). Advanced nanostructures such as
reduced graphene oxide (rGO), thiacalixarene derivatives, and
metal–organic frameworks (MOFs) signicantly enhance algi-
nate performance due to their high surface areas, p–p inter-
actions, and diverse coordination environments.160–163 The
alginate/reduced graphene double-network hydrogel beads and
their single-network counterparts exhibited 169.5 and 72.5 mg
g−1 capacities for Cu2+ and Cr2O7

2, respectively.63,163 The double-
Table 3 Adsorption capacities of cellulose, regenerated cellulose and c

S. no. Cellulose-based composite
Polluti
heavy

1 Carboxymethyl cellulose/
gelatin composite hydrogel

Cd2+, H

2 CuMOF on sodium alginate/
chitosan/cellulose nanobril
composite hydrogel

Pb2+

3 Sodium alginate/
cellulose nanobre
composite hydrogel

Pb2+

4 Porous kappa-carrageenan/
cellulose hydrogels

Pb2+

5 Cellulose hydrogels (G50) UO2
2+

6 Carboxymethyl cellulose/chitosan/
alginic acid hydrogels

Cr6+, N

7 Chitosan/cellulose phosphonate
composite hydrogel

Pb2+ an

8 Cellulose (37%)–chitosan (63%) Cu2+

9 Cellulose/chitosan/PVA/nano-Fe2O3 Cu2+

10 Oxidised carboxymethyl cellulose
hydrogel

Ag+, Pb

11 Wheat straw cellulose-g-poly
(acrylic acid)/
poly(vinyl alcohol)

Cu2+

12 Carboxymethyl cellulose-based
cryogels

Pb2+, N

13 Cellulose graed with acrylonitrile
(CelEnEs)

Cr5+

14 Collagen/cellulose hydrogel beads
(M-CS/PVA/CCNFs)

Cu2+

15 Mercerized cellulose Cu2+, C

16 Cellulose/ZrO2 Ni2+

17 Cellulosic gra polymerisation of
glycidyl methacrylate-co-methacrylic

Co2+

18 Poly(ethylene imine)-modied cellulose Cu2+

19 Welan gum-modied cellulose Cd2+, P

20 Cellulose acetate (CA)/silica composite Cr5+

21 Oxidised cellulose-based materials Hg2+

22 Cellulose-based composite hydrogel
microsphere

Co2+ a

23 Cellulose-based hydrogel-modied
kaolin

Pb2+ an

24 Carboxymethyl cellulose
hydrogel-pectin-based

Cd2+, P

Environ. Sci.: Adv.
network structure offers improved mechanical stability and
a higher density of adsorption sites. Meanwhile, rGO sheets
promote p-electron-rich regions, facilitating cation-p interac-
tions and electrostatic attractions. The tetrasodium thiacalix-
arene tetra sulfonate–sodium alginate nanocomposite hydrogel
achieved broad-spectrum metal ion adsorption: Pb2+ (99.8 mg
g−1), Ni2+ (67.4 mg g−1), Cu2+ (90.56 mg g−1), Cd2+ (94.5 mg g−1),
Co2+ (74.9 mg g−1), and Cr3+ (79.2 mg g−1).144 As macrocyclic
ligands, thiacalixarene derivatives provide tailored cavities that
selectively complex metal ions. Their integration into alginate
matrices substantially enhances binding specicity and
capacity through host–guest chemistry. These advanced
composites demonstrate the potential of incorporating MOFs,
ellulose-based hydrogels

on/target
metal ion(s)

Adsorption
capacity (mg g−1) References

g2+ and Pb2+ 147.7 (Cd2+), 88.62 (Hg2+)
and 163.89 (Pb2+)

198

531.38 for Pb2+ 187

544.66 for Pb2+ 188

486 � 28.5 for Pb2+ 199

572.3 for UO2
2+ 193

i2+ and Cu2+ >750 for
(Cr6+, Ni2+ and Cu2+)

133

d Cu2+ 211.42 (Pb2+) and
74.29 (Cu2+)

51

94.3 for Cu2+ 52
15.95 for Cu2+ 200

2+, Cu2+ 407 (Ag+), 1250
(Pb2+) and 1111 (Cu2+)

201

142.7 for Cu2+ 201

i2+, Co2+ 550 (Pb2+), 620 (Ni2+)
and 760 (Co2+)

202

— 203

67.36 mg g−1 for
(Cu2+)

204

d2+ and Pb2+ 30.4 (Cu2+), 86.0 (Cd2+)
and 205.9 (Pb2+)

205

79.0 for Ni2+ 206
11.5 and 11 for Co2+ 207

102 208
b2+ and Cu2+ 83.6 (Cd2+), 77.0 (Pb2+)

and 67.4 (Cu2+)
43

19.46 for (Cr5+) 45
258.75 for (Hg2+) 182

nd Ni2+ 358 (Co2+) and 373 (Ni2+) 180

d Cu2+ 879.84 (Pb2+) and
543.50 (Cu2+)

209

b2+ and Cu2+ 84.4 (Cd2+), 159.4 (Pb2+),
and 125.6 (Cu2+)

210

© 2026 The Author(s). Published by the Royal Society of Chemistry
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graphene derivatives, and supramolecular chemistries into
alginate-based platforms to create highly selective and high-
capacity adsorbents. Their tunable architectures and multi-
functional binding sites facilitate the simultaneous removal of
various metal ions from aqueous environments.

4.2.2.5 Bio-based/biowaste-derived alginate composites. Bio-
based and biowaste materials are gaining popularity, as
studies have shown that alginate composites derived from
orange and nectarine peels (OAF and NAF) exhibit high
adsorption capacities for Cr5+ ions. These agro-waste materials
provide additional hydroxyl and phenolic functionalities that
enhance hexavalent chromium's chelation and electrostatic
attraction. Table 2 shows the adsorption capacities of alginate-
based composites for heavy metal removal. Integrating alginate
improves structural integrity and water dispersibility, demon-
strating a green valorisation strategy for effective Cr5+ removal,
with adsorption capacities of 224.3 and 256.5 mg g−1.64 A multi-
metal adsorption study usingM. oleifera extract encapsulated in
sodium alginate matrices reported modest adsorption capac-
ities for Co2+, Ni2+, Cu2+, Zn2+, manganese ion (Mn2+) and
sometimes uranyl ion (UO2

2+). Although the uptake values
(1.02–5.8 mg g−1) are relatively low, the system uses plant-
derived bioactives to introduce additional binding functional-
ities into alginate networks. The biosorption mechanism is
likely driven by phytochemical interactions combined with the
carboxyl groups of alginates. Pollutants: Co2+, Ni2+, Cu2+, Zn2+,
Mn2; adsorption capacities: 5.8, 4.78, 4.6, 1.3, 1.02 mg g−1.48 In
another study, Sodium alginate was functionalised with M.
oleifera seed powder and fabricated via wet spinning to explore
its use for removing heavy metals, particularly Cu2+, Cd2+, and
Ni2+, as investigated by Orisawayi et al.27 Although the adsorp-
tion capacity was not reported, future work was discussed to
investigate this further. The study primarily aimed to investi-
gate the natural bioactive compounds in M. oleifera that
enhance metal binding. At the same time, the alginate matrix
provides ionic carboxyl for additional sorption. This combina-
tion illustrates a sustainable approach for producing biode-
gradable, bre-based adsorbents with a selective affinity for the
metal. The electrospinning process fabricates a hybrid of pulv-
erised M. oleifera seed powder embedded within a sodium
alginate matrix, with polyethene oxide (PEO) as a co-spinning
agent.37 The process was successful, as investigated, aiming to
explore the feasibility of producing brous biosorbents that
harness the natural adsorptive capacity of M. oleifera, the ion-
exchange potential of alginate, and the bre-forming capa-
bility of PEO. While the complete adsorption properties of these
composites have not yet been evaluated, the conceptual inte-
gration of these materials through electrospinning could serve
as a baseline for a potential method for generating nano-
structured materials with improved surface area, porosity, and
enhanced alginate mechanical properties, thereby facilitating
improved interaction with heavy metal ions in aqueous
solutions.

In addition to alginate, cellulose, another abundant,
renewable, and functional biopolymer, has demonstrated
considerable promise in heavy metal ion adsorption, as detailed
in other sections.
© 2026 The Author(s). Published by the Royal Society of Chemistry
4.3 Cellulose-based adsorbents

Cellulose is the most abundant natural biopolymer on Earth,
consisting of a long-chain polysaccharide composed of b-D-
glucose units, which are oen covalently linked by acetal
functionalities between the equatorial (OH) groups on the
carbon atoms, known as (C4) and (C1), via b-1,4-glycosidic
bonds.173,174 Its unique molecular structure contributes to its
exceptional physicochemical stability, particularly its insolu-
bility in water, which arises from the extensive hydrogen
bonding and crystallinity imparted by its glycosidic
linkages.175–177 The long polymer chains are organised into two
distinct regions: highly ordered crystalline domains confer
mechanical strength and stability, and amorphous regions
enhance chemical reactivity and biological interactions.178–180

Cellulose is predominantly obtained from plant cell walls,
although microbial sources produce bacterial cellulose with
unique nanostructures.178,179,181 Increasingly, agricultural resi-
dues are being explored as low-cost, renewable sources of
cellulose for developing sustainable materials. Due to its
intrinsic properties, renewability, biodegradability, chemical
stability, non-toxicity, and the abundance of reactive hydroxyl
groups, cellulose is an excellent platform for fabricating
advanced functional materials. Among various cellulose-based
materials, cellulose hydrogels and their regenerated counter-
parts have emerged as a prominent class of water purication
media.45,176,182

4.3.1 Cellulose composite hydrogels. Cellulose composite
hydrogels are synthesised by blending native or modied
cellulose with other biopolymers, such as chitosan, gelatine,
alginate, nanomaterials, and other biosorbents.183,184 This
creates an interpenetrating network of several polymer
networks that enhances the surface area and activity for
adsorption.185 These composites offer promising results in
removing toxic heavy metals due to their high swelling capacity,
porous structure, and the synergistic effect of the combined
components.52,185–187 Several works have been developed to
incorporate different cellulose hydrogels into the composite;
however, only a few will be discussed in this section on cellulose
hydrogels for adsorption, as detailed in Table 3 comparing the
varying adsorption capacities of cellulose, regenerated cellu-
lose, and cellulose-based hydrogels for heavy metal removal.
Copper-based Metal–Organic Framework (CuMOF) immobi-
lised on sodium alginate/chitosan/cellulose nanobril hydrogel
composite was developed and demonstrated an adsorption
capacity of 531.38 mg g−1 for Pb2+.187 Similarly, the sodium
alginate/cellulose nanobre composite hydrogel achieved
a higher adsorption capacity of 544.66 mg g−1 for Pb2+.188 Multi-
ion removal was also demonstrated by carboxymethyl cellulose/
chitosan/alginic acid hydrogels, which exhibited exceptional
uptake (>750 mg g−1) for Cr6+, Ni2+, and Cu2+.130 Furthermore,
oxidised carboxymethyl cellulose hydrogels demonstrated
outstanding adsorption capacities of 1250 mg g−1 for Pb2+,
1111 mg g−1 for Cu2+, and 407 mg g−1 for Ag+, revealing the
critical role of oxidation in enhancing metal ion binding.189

4.3.2 Regenerated cellulose composites. In addition to
hydrogels, regenerated cellulose-based composites are another
Environ. Sci.: Adv.
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Fig. 9 Emerging nanocellulose-based modifications of cellulose for enhanced removal of heavy metal ions from water (modified with
permission, Licensed under ACS Publication's terms).114
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signicant category of adsorbents for removing heavy metal
ions from aqueous solutions.190,191 These materials are typically
produced by dissolving native cellulose in eco-friendly solvents
such as ionic liquids or alkali-urea systems, then reconstituting
them into lms, bres, or beads through controlled regenera-
tion.192 Although these structures do not exhibit the water-
swollen matrix typical of hydrogels, they retain high crystal-
linity and mechanical strength. Cellulose-based hydrogel
microspheres exhibited high removal capacities of 373 mg g−1

for Ni2+ and 358 mg g−1 for Co2+,180 facilitated by the increased
surface area and the formation of micro spherical morphol-
ogies, which provide rapid diffusion pathways and more active
sites for metal binding, carboxymethyl cellulose hydrogel–
pectin-based system demonstrated adsorption capacities of
84.4 mg g−1 for Cd2+, 159.4 mg g−1 for Pb2+, and 125.6 mg g−1

for Cu2+.193 Despite lower capacities in some systems, such as
mercerised cellulose with 30.4 mg g−1 for Cu2+, Cd2+ and Pb2+

adsorption capacity of 30.4 mg g−1, 86.0 and 205.9 mg per g
Pb2+, respectively and that of cellulose acetate/silica composite,
which was 19.46 mg g−1 for Cr5+. In addition, Regenerated
cellulose can also be blended with other biopolymers or inor-
ganic materials to improve surface reactivity and adsorption
capacity, and the applications have shown that regenerated
cellulose composites are suitable for dynamic ltration systems
and can be engineered for high reusability and targeted removal
of heavy metals.114,194,195 Together, cellulose hydrogels and reg-
enerated cellulose composites offer complementary pathways
for creating efficient and sustainable adsorbents.196 Table 3
presents the adsorption capacities of cellulose, regenerated
cellulose, and cellulose-based hydrogel composites for non-
targeted heavy metal ions, as reported in the literature. This
Environ. Sci.: Adv.
highlights the potential limitations of cellulose as a suitable
water treatment material. Their physicochemical diversity and
tunable surface functionality make cellulose-based systems
crucial in pursuing greener water treatment technologies.197

Recently, advancements in functional materials science have
positioned cellulose, particularly in its nanoform known as
nanocellulose.114,211 These materials are emerging sustainable
biopolymers for various water treatment applications. Fig. 9
illustrates the functionalisation of cellulose through chemical
modication.114 The abundant hydroxyl groups enable the
introduction of various reactive moieties, such as carboxyl,
amine, thiol, and sulfonate groups, as reported.212,213 This has
been studied to signicantly enhance the material's affinity for
heavy metal ions in aqueous solutions, with the functional
group transformations altering the surface charge, coordina-
tion capacity, and hydrophilicity.91,194 These nanocellulose-
based systems exhibit a high surface area, increased porosity,
enhanced mechanical strength, and aqueous stability, all of
which are desirable characteristics for adsorbents specically
targeting the removal of divalent heavy metal contaminants
such as Pb2+, Cd2+, Cr6+, and Cu2+ from wastewater.114,214

Furthermore, nanocellulose's high aspect ratio and tunable
functional surfaces facilitate efficient diffusion, rapid ion
exchange, and chelation processes, improving adsorption
kinetics and capacity.214,215 Consequently, modied cellulose
and its nanostructured derivatives serve as renewable, biode-
gradable, and highly effective materials for the adsorption and
removal of toxic metal ions in water purication systems.216,217

While alginate, cellulose derivatives, and their composites
have shown considerable promise as eco-friendly adsorbents in
water purication, their performance can be signicantly
© 2026 The Author(s). Published by the Royal Society of Chemistry
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Fig. 10 Photographs and modified images of the (a) unpeeled seeds (MOU), (b) shelled seeds (MOS), (c) seed powder (MoP), (d) husk (MOH), (e)
husk powder (MOHP), (f) dried leaves (MODL), (g) leaves powder (MODLP), (h) bark pieces (MP),(i) back powder (BPD).236
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enhanced through hybridisation with plant-derived materials
that offer active biosorption properties. One such material, M.
oleifera seed powder, has garnered attention for its rich bioac-
tive compounds and ability to adsorb heavy metal ions effec-
tively. The following section explores the potential ofM. oleifera
as a natural biosorbent in sustainable water treatment. Beyond
structural biopolymers like alginate and cellulose, plant-based
biosorbents such as M. oleifera offer complementary adsorp-
tion mechanisms and bioactive functionalities, enriching the
development of multifunctional composite systems for water
purication.
5 M. oleifera-based adsorbents

The M. oleifera tree thrives in tropical and subtropical regions
worldwide. It is oen called the “miracle tree” or “drumstick” in
© 2026 The Author(s). Published by the Royal Society of Chemistry
English. Nowadays, M. oleifera has naturalised throughout the
tropics, including regions in Africa, Central and South America,
and Southeast Asia. M. oleifera has been introduced and culti-
vated across Europe for research purposes, enhancing its
accessibility.218–220
5.1 Biosorption mechanisms and functional components of
M. oleifera

Research has shown thatM. oleifera seeds are primarily protein-
rich and exhibit active functions known for binding with
pollutants. The tree is also reported to have been a preferred
source of nutrition and second-generation biodiesel, and its
components can be used as drugs. They have reportedly
demonstrated an affinity for absorbing carbon dioxide from the
atmosphere.219,221 Fig. 10 displays the various M. oleifera
biomass samples used in this study, including M. oleifera
Environ. Sci.: Adv.
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Fig. 11 Illustration of the nature of M. oleifera seeds after 24 hours of the sorption process for heavy metal ions from an aqueous solution: (a)
Brilliant Green (BG) and (b) Crystal Violet (CV) sorption.237
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unpeeled seeds (MOU), M. oleifera shelled seeds (MOS), M.
oleifera seed powder (MoP), M. oleifera husk (MOH), M. oleifera
husk powder (MOHP), M. oleifera dried leaves (MODL), M.
oleifera dried Leaves powder (MODLP), M. oleifera bark pieces
(MOB),M. oleifera and bark powder (MOBP). These components
represent the diverse functional fractions of M. oleifera inves-
tigated for coagulant and adsorbent applications in water
purication. Studies suggest that each part contains a protein
that can be used as an antimicrobial occulant to remove
wastewater impurities through electrostatic interactions
between the cationic protein and colloids.222 Some studies have
also shown that M. oleifera, known for its high content of
bioactive compounds, shows promise in various water
Fig. 12 A typical illustration step of processing M. oleifera parts for wate

Environ. Sci.: Adv.
treatment applications due to its availability, biodegradability,
and non-toxicity. Therefore, the coagulating properties make
them a potential additive for alginate in water purication
applications, presenting a promising alternative to alginate, as
it has been previously used in the manufacture and function-
alisation of alginate.223 However, only a few studies have
explored the combination ofM. oleifera with most biopolymers,
such as alginate and cellulose. In the case of heavy metal ions,
M. oleifera has been reported to remove heavy metals such as
copper, cadmium, chromium, and lead at rates of 95%, 76%,
70%, and 93%, respectively.224,225 In a study on using M. oleifera
seed for water treatment, the nal concentration of copper was
below the desirable limit for drinking water (less than
r treatment application.

© 2026 The Author(s). Published by the Royal Society of Chemistry
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Fig. 13 Schematic illustration of the various mechanisms involved in M. oleifera biosorption for removing toxic contaminants from aqueous
solutions, such as Cr5+, V5+, and Pb2+. Probable mechanism ion-exchange mechanism between M. oleifera and metal ions (M2+) (Open
access).237
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1 mg L−1).226,227 However, the removal of cadmium, chromium,
and lead aer coagulation with M. oleifera seed cake coagulant
did not meet the limits of drinking water standards.

This inconsistency is closely related to the underlying
mechanisms governing its removal efficiency was also observed
in studies carried out by Orisawayi et al.,25 and study on the
purication of river water using M. oleifera seed for copper
removal for point-of-use household application discussed that
the cationic proteins and bioactive compounds present in M.
oleifera could function primarily as a natural coagulant.228

Several recent studies also discussed that the mechanisms
are highly effective for metal ions such as Cu2+, which exhibit
favourable interactions with the functional groups in the
extract.229–231 However, ions such as Cd2+, Pb2+, and Cr3+ and
Cr5+ possess lower charge densities, weaker binding affinities,
or distinct hydrolysis behaviours, which could result in less
efficient coagulation and adsorption. This possibly suggests
reason M. oleifera is an excellent coagulant; its capacity as
a high-affinity adsorbent is limited for specic metal species,
and therefore, its performance may require enhancement
through composite formulation or integration with other
biopolymers.232,233 Therefore, additional treatments may be
required to meet the standards of the EPA, WHO, EU, and some
indigenous bureau standards, such as those of the indigenous
peoples. The study's ndings indicate that M. oleifera seed cake
© 2026 The Author(s). Published by the Royal Society of Chemistry
is suitable as a coagulant and is effective for pre-treatment
applications for removing heavy metals from water systems.225

Fig. 11 presents an example of MOS biosorption comparison
before and aer 24 hours of brilliant green (BG) and biosorption
of crystal violet (CV) of typical M. oleifera seed obtained from
literature as when used, it was reported that adsorb heavy metal
ions, these functions provide selective and effective absorption
for various metal ions which belong to Class B, including Hg2+,
Ag3+, Pd2+, Pt5+, Pt3+, Au3+, and Cs+. For instance, Benettayeb
et al. observed an enhancement in sorption for the ions Pb2+,
Cd2+, and Cu2+.226 Nwagbara et al.225 also demonstrated that
adsorbents with amine groups possess unique properties,
enabling them to adsorb compounds with cationic or anionic
charges at different pH values, which are present in the M.
oleifera seed and capable of removing these heavy metals from
an aqueous solution.234 By using composite coagulants,
drinking water standards can be met, and in many cases, heavy
metals are not detected in the treated water. Polymers possess
numerous functional groups, including carboxylic, amine,
hydroxyl, and sulfonic. They can be used as complexing agents
for the adsorptive removal of metal ions from aqueous
solutions.40,235

5.1.1 Processing pathways and fabrication. The schematic
ow illustrated in Fig. 12 provides a comprehensive overview of
the sequential processing stages and functional applications of
Environ. Sci.: Adv.
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Table 4 Biosorbents for heavy metal adsorption of various toxic heavy metal pollutants (M. oleifera parts used for heavy metal adsorption)

S. no.
Biosorbent part of M. oleifera
with or without modication

Pollution/target
heavy metal ion(s)

Adsorption capacity
(mg g−1) References

1 Pure seed/leaves Pb2+, Cd2+, Co2+

and Ni2+
Seed 13.29 (Pb2+),
4.97 (Cd2+),
5.80 (Co2+)
and 3.61(Ni2+)

Leaves 49.50 (Pb2+),
16.13(Cd2+), 10.94 (Co2+)
and 10.16 (Ni2+)

30

3 Pods modied HNO3

0.3 M
Pb2+ and Cd2+ 35.97 (Pb2+) and

18.24 (Cd2+)
256

4 Pure seed Pb2+ For 5.6 (Pb2+) 257
5 Leaves modied

diethylamine
functionalisation

Cr5+ 60.6061 for (Cr5+) 258

6 Pure leaves Pb2+ 45.83 for (Pb2+) 222
7 Pure seed Cd2+ 357.14 for (Cd2+) 259
9 Gum-modied

acryloylation
reaction

Hg2+ 840.34 for (Hg2+) 260

10 Pure seed pods Cr5+ 119.02 for (Cr5+) 261
11 Pure seed and pure husk Cu2+ and Cd2+ 13.089 (Cu2+) and

13.123 (Cd2+)
262

12 Seed modied with oil
extraction
to obtain M. oleifera cake
(byproduct)

Pb2+ 12.24 (Pb2+) 263

13 Leaves modied with
activated carbon

As5+ 6.23 (As5+) 264

14 Pure seed-modied oil
extraction to obtain
M. oleifera cake
(byproduct)

Cd2+ 7.864 (Cd2+) 265

15 Seed oil extraction to obtain
M. oleifera cake
(byproduct)

Cr3+ 3.191 (Cr3+) 266

16 Leaves esterication with
NaOH followed by citric
acid treatment

Cd2+, Cu2+

and Ni2+
171.37 (Cd2+),
167.90 (Cu2+)
and 163.88 (Ni2+)

267

17 M. oleifera bark (MOB) Cd2+ and Cu2+

on to MOB
39.41 (Cd2+)
and 36.59 (Cu2+)

236

18 M. oleifera bark (MOB) Ni2+ 30.38 for (Ni2+) 268
19 Wood Cu2+, Ni 2+

and Zn2+
11.53 (Cu2+),
19.08 (Ni2+)
and 17.67(Zn2+)

269

20 Leaves citric acid treatment Pb2+ 209.54 for (Pb2+) 269
21 Bark Pb2+ 34.6 for (Pb2+) 270
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various M. oleifera seed components, including whole seeds,
shelled seeds, unshelled seeds, husk, bark, and gum, for
preparing natural coagulants and bio-adsorbents intended for
heavy metal ion removal in water purication systems.238 M.
oleifera is a multipurpose tree whose biomass contains several
valuable fractions.239 The whole seed comprises both the kernel
and the seed coat. In contrast, shelled seeds specically refer to
the kernel, which is the nutrient-rich part, and the unshelled
seeds and husks are more brous. The bark contains lignocel-
lulosic compounds suitable for thermal activation.240 Addi-
tionally, M. oleifera gum, a natural exudate from the bark, is
a polysaccharide-based biopolymer with potential occulant
and stabilising properties. Each part possesses distinct physi-
cochemical features that dictate its suitability for either coag-
ulation or adsorption applications.240–242
Environ. Sci.: Adv.
The initial processing step involves mechanical disintegra-
tion using grinders, blenders, or a traditional mortar and pestle.
This process reduces particle size, increases surface area, and
facilitates further downstream applications. A sieving stage
follows to ensure particle homogeneity for consistent applica-
tion. The protein-rich shelled seeds and gum exudates undergo
aqueous or solvent-based extraction. The cationic proteins from
the kernel interact with negatively charged colloids in water,
promoting coagulation and occulation.M. oleifera gum, due to
its polysaccharide backbone and high molecular weight,
enhances coagulation through bridging mechanisms and aids
in viscosity control during composite synthesis.243,244 This
process is particularly relevant in systems where organic
turbidity or microbial contamination is a concern. The brous
seed husks, bark, and other lignocellulosic fractions are
© 2026 The Author(s). Published by the Royal Society of Chemistry
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subjected to pyrolysis or chemical activation to produce biochar
or activated carbon. These materials exhibit a high surface area
and porosity, essential for effective adsorption of heavy metal
ions.245,246

Surface functional groups such as hydroxyl, carboxyl, and
phenolic moieties facilitate metal binding through ion
exchange, surface complexation, and electrostatic attraction.
The performance of bio-based composites derived from M.
oleifera, alginate, and cellulose is subsequently enhanced
through systematic material modication techniques to
improve structural integrity, processability, and adsorption
efficiency in water purication systems.246–248 These modica-
tions typically begin by mixing the primary biopolymers with
binders or cross-linking agents, such as poly(vinyl alcohol)
(PVA), starch, or modied cellulose derivatives, and the process
seeks to strengthen the network structure, enhance the
dispersion of M. oleifera components, and improve compati-
bility within the matrix materials.242,249,250

The modied blends can be fabricated into functional
forms, such as beads, lms, bres, or pellets, each offering
distinct surface area and porosity advantages for water treat-
ment.249 Depending on the desired morphology and end-use
application, various fabrication techniques, including casting,
extrusion, wet spinning, electrospinning, and freeze-drying, are
utilised.37,242,251
5.2 Heavy metal biosorption mechanism of M. oleifera in
aqueous systems

Fig. 13. Schematic illustration of the various mechanisms
involved in the biosorption of M. oleifera for removing toxic
contaminants, such as Cr5+, V5+, and Pb2+; this was explained by
Benettayeb et al.236 In a critical review of the emphasis, recent
pieces of evidence studyM. oleifera as a biosorbent for water and
Fig. 14 Comparison of adsorption capacities of alginate-based compos

© 2026 The Author(s). Published by the Royal Society of Chemistry
wastewater treatment. The primary biosorption mechanisms by
whichM. oleifera interacts with toxic heavy metal ions. The ion-
exchange mechanism is central, whereby native ions (e.g., Na+,
H+, Ca2+) present on the biosorbent surface are replaced by
heavy metal ions (M2+), such as Pb2+, Cr5+, and V5+. The func-
tional groups that facilitate this process reported that are
peculiar to M. oleifera include hydroxyl (–OH), carboxyl (–
COOH), carbonyl (C]O), and amine (–NH2) that are present in
M. oleifera.151,252,253 The adsorption mechanisms encompass
electrostatic attraction between negatively charged functional
groups and metal cations, surface complexation, chemisorp-
tion, and intraparticle diffusion within the porous matrix. The
overall biosorption performance is further inuenced by the
solution pH, the surface charge of the adsorbent, and the
specic interaction modes governing metal–ligand binding.
These interactive mechanisms collectively highlight M. olei-
fera's efficiency as a multifunctional biosorbent for remediating
metal-contaminated water.254,255 Table 4 also presents the bi-
osorbents for heavy metal biosorption of various toxic heavy
metal pollutants (main M. oleifera parts used for heavy metal
adsorption).

An evaluation of the biosorption capacities reported from the
table reveals clear differences in performance among variousM.
oleifera plant parts. The gum-derived materials, particularly
those modied via acryloylation, exhibit exceptionally high
adsorption capacities, reaching 840.34 mg g−1 for Hg2+, indi-
cating a high density of reactive functional groups. Modied
leaves consistently show superior performance, achieving
values above 150 mg g−1 for Cd2+, Cu2+, and Ni2+, especially
when treated with NaOH–citric acid or activated carbon, sug-
gesting that surface functionalisation signicantly enhances
metal-binding affinity. Seed-based materials, including seed
cake by-products, also demonstrate promising performance,
with adsorption capacities up to 357.14 mg g−1 for Cd2+,
ites.

Environ. Sci.: Adv.
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Fig. 15 Comparison of adsorption capacities of cellulose-based composites.
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reecting their favourable protein and lipid composition. By
contrast, bark, wood, and unmodied seed or pod materials
tend to exhibit lower uptake values. Based on these ndings,
there is a clear indication that leaves, gums, and chemically
modied seed-derived materials are the most promising bi-
osorbent components for heavy-metal remediation.

Various fabrication techniques have been employed to
enhance bio-based composites' adsorption efficiency and
stability, including electrospinning, wet spinning, hydrogel
formation, and hybrid processing. These methods enable the
formation of bres or gels with high surface area, tunable
porosity, and enhanced stability, all of which are critical for
water treatment applications. While numerous studies have
demonstrated the promising capabilities ofM. oleifera, alginate,
Fig. 16 Comparison of the adsorption capacities of parts of M. oleifera

Environ. Sci.: Adv.
and cellulose, signicant research gaps remain in integrating
these materials effectively for real-world applications. The
following section identies these gaps and proposes future
research pathways.
6 Comparative evaluation of sodium
alginate, cellulose composited and the
M. oleifera parts biosorbent

A systematic comparison of sodium alginate, cellulose, and M.
oleifera composites is essential to establish their relative
adsorption performance and identify the most efficient bio-
based materials for heavy metal removal.114,271 Although each
of these biopolymers exhibits distinctive structural features and
with or without modifications.

© 2026 The Author(s). Published by the Royal Society of Chemistry
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Table 5 Comparative findings from the study on electrospun and wet-spun fibre processing and properties

S. no. Parameter
Electrospinning
(alginate-based)

Wet-spinning
(alginate-based)

Wet-spinning
(cellulose-based) References

(1) Processing comparison
1 Solubility Water-soluble,

requires
blending with
polyethene
oxide (PEO) for
electrospinning and
crosslinking for
stability

Water-soluble, requires
ionic crosslinking for
stability

Water-insoluble
retains
stability in water

36

2 Processing
method

Electrospinning via
high
voltage application
onto a
collector plate

Water-soluble, requires
ionic crosslinking for
stability

Wet-spinning
using ionic
liquid (EMIM
DEP),
then water
coagulation

32 and 276

3 Crosslinking
mechanism

Post-processing
electrospinning
crosslinking
using CaCl2

Ionic crosslinking via
divalent Ca2+

(egg-box model)

Hydrogen
bonding-based
structural
regeneration

27 and 36

4 Fibre
morphology

Nanobrous
structure
with a high surface
area
aer spinning

So polymeric network
bres

Dense, well-
packed bres
with strong
interchain
interactions

27 and 36

5 Spinnability Requires precise
control
of viscosity and
voltage

Easier to spin but
prone to swelling

Challenging to
spin
due to high
viscosity

27, 32 and 36

(2) Mechanical properties
comparison
1 Tensile strength Not reported With different

concentrations
of M. oleifera seed,
but best at 1% MoP
(lower)

With different
concentrations
of
M. oleifera seed,
but best at 2%
MoP
(higher)

27 and 32

2 Young's
modulus

Not reported Lower dependent on
hydration state

Higher improved
stiffness due to
dense
hydrogen
bonding

27 and 32

3 Elongation at
break

Not reported Moderate, decreases with
M. oleifera seed due to
embrittlement

Higher retains
exibility
at higher M.
oleifera content

27, 32 and 36

4 Structural
rigidity

Not reported So and exible, but
weaker than cellulose-based
bres

Rigid and
mechanically
stable

277

5 Fracture
behavior

Not reported So and exible, but
weaker than cellulose-based
bres

Ductile failure
can elongate
before breaking

27, 32 and 36

(3) Microstructure and porosity
1 Microstructure

morphology
Highly porous
nanostructure

Open pore structure,
good for ion diffusion

Dense, compact
structure

27, 32 and 36

2 Pore
interconnectivity

Excellent, ideal for
diffusion-based
applications

Moderate, interconnected
pores improve diffusion

Lower
interconnectivity
reduces
diffusion
efficiency

27, 32 and 36

© 2026 The Author(s). Published by the Royal Society of Chemistry Environ. Sci.: Adv.
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Table 5 (Contd. )

S. no. Parameter
Electrospinning
(alginate-based)

Wet-spinning
(alginate-based)

Wet-spinning
(cellulose-based) References

Water interaction
& adsorption properties
3 Water

interaction
Moderate
hydrophilicity,
tunable via
crosslinking

Highly hydrophilic,
swells in aqueous
conditions

Water-stable,
resistant to
degradation

27, 32 and 36

4 Possible
resistance to
ion leaching

Less prone to ion
leaching
with possible Ca2+

ion
compared to wet-
spun alginate

Prone to Ca2+ ion leaching,
impacting stability

Highly resistant
to leaching

27, 32 and 36

5 Adsorption
efficiency

Potential is higher
due to
nanobre
morphology,
but adsorption was
not
conducted for these
studies

Potential high, suitable
for multiple metal ions

Moderate,
selective for Cu2+

27, 32 and 36

6 Heavy metal
selectivity
(based on the
SEM-EDX
characterisation)

Expected more
selective
adsorption due to
surface
functionalisation
(recommended for
future studies)

Broad-spectrum adsorption
(Cu2+, Ni2+, Cd2+)

Selective
adsorption,
primarily Cu2+

27, 32
and 36

(4) Industrial suitability and
economic perspectives
1 Industrial

suitability
Best for high surface
area applications
(e.g., nanoltration)

Best for ltration
membranes requiring
mechanical strength

Best for water
treatment
systems

27, 32
and 36

2 Recyclability
potential

Moderate
recyclability:
crosslinking affects
reusability

Possible limited
recyclability due to
ionic crosslinking

Possibility of
more
recyclable
materials
due to hydrogen
bonding
regeneration

27, 32
and 36

3 Cost-
effectiveness

Higher cost due to
high-voltage
equipment
and polymer
additives

Low-cost, simple
processing, widely
available materials

Moderate cost,
ionic
liquid
processing is
expensive

27, 32
and 36

4 Sustainability
factor

Sustainable but
requires
additional
processing for
stability due to the
addition
of PEO

Highly sustainable,
from seaweed and
plant-based sources

Sustainable, but
depends
on ionic liquid
recycling

278 and
279

5 Processing
challenges

Requires strict
control
(voltage, viscosity,
humidity)

Crosslinking control
is essential for stability

Complex ionic
liquid
handling limits
the
feasibility during
the
dissolution and
wet-spinning
process

280 and
281

6

Environ. Sci.: Adv. © 2026 The Author(s). Published by the Royal Society of Chemistry
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Table 5 (Contd. )

S. no. Parameter
Electrospinning
(alginate-based)

Wet-spinning
(alginate-based)

Wet-spinning
(cellulose-based) References

Scalability for
mass
production

Scalable but
requires
advanced
electrospinning
setups

Scalable but requires
precise crosslinking
control

Scalable but
ionic
liquid recycling
is a
challenge

32, 36
and 282

(5) Industrial suitability and
economic perspectives
1 Industrial

suitability
Best for high surface
area
applications
(e.g., nanoltration)

Best for ltration
membranes requiring
mechanical strength

Best for water
treatment
systems

27, 32, 36 and
283

2 Recyclability
potential

Moderate
recyclability:
crosslinking affects
reusability

Possible limited
recyclability due
to ionic crosslinking

Possibility of
more recyclable
materials due to
hydrogen
bonding
regeneration

27, 32, 36 and
283

3 Cost-
effectiveness

Higher cost due to
high-voltage
equipment
and polymer
additives

Low-cost, simple
processing, widely
available materials

Moderate cost,
ionic liquid
processing is
expensive

27, 32, 36 and
284

4 Sustainability
factor

Sustainable but
requires
additional
processing
for stability due to
the
addition of PEO

Highly sustainable,
from seaweed and
plant-based sources

Sustainable, but
depends
on ionic liquid
recycling

27, 32
and 36

5 Processing
challenges

Requires strict
control
(voltage, viscosity,
humidity)

Crosslinking control
is essential for stability

Complex ionic
liquid
handling limits
the
feasibility during
the
dissolution and
wet-spinning
process

27, 32
and 36

6 Scalability for
mass
production

Scalable but
requires
advanced
electrospinning
setups

Scalable but requires
precise crosslinking
control

Scalable but
ionic
liquid recycling
is a
challenge

27, 32, 36 and
280–282
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functional groups that support metal ion binding, their
adsorption efficiencies differ considerably depending on the
degree of chemical modication, composite formulation, and
the physicochemical characteristics of the target ions.185 This
systematic comparison is based on the data retrieved from
Tables 2–4 of this study. Fig. 14 shows the comparison of the
adsorption capacities of alginate-based composites. Alginate
composites show very high adsorption efficiencies, particularly
when hybridised with metal oxides, nano-additives, or func-
tional groups. Notable peak capacities include all metal ions
Pb2+ at 1742 mg g−1 for CaCO3-alginate/chitosan composite,155

Cr6+ with 678.67 mg per g amino-functionalised alginate aerogel
© 2026 The Author(s). Published by the Royal Society of Chemistry
and Cd2+ with 464.23 mg g−1.272 The deduction from these
ndings shows an extraordinary adsorption capacity aer
chemical/nano-based functionalisation.

In addition, Fig. 15 presents the comparison of adsorption
capacities of cellulose-based composites extracted the study
shows the peak values of capacities retrieved from the cellulose-
based composites for metal ions with the highest adsorption are
Pb2+ at 1250 mg g−1, with an oxidised CMC hydrogel with
affinity with for Cu2+ at 1111 mg g−1, Co2+ with 760 mg g−1 and
the CMC cryogel Ni2+ at 620 mg g−1.201,202 The ndings show the
strength of sustained high adsorption across multiple metal
ions, broad selectivity, and stability in aqueous environments.
Environ. Sci.: Adv.
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Furthermore, Fig. 14 also shows the comparison of the
adsorption capacities of parts of M. oleifera with or without
modication. TheM. oleifera-based adsorbent study was limited
to pure M. oleifera parts and modied treatment. Our ndings
show high adsorption capacities, particularly when chemically
modied. Peak capacities include Hg2+ 840.34 mg g−1 for
acryloylated M. oleifera gum,260 Cd2+ with 357.14 mg g−1 of the
pure seed, and Pb2+ with capacities of 209.54 mg g−1 for citric-
acid-modied leaves.259,269 Overall, the key ndings from the
comparative evaluation indicate a clear performance hierarchy
among the three biopolymer systems. Cellulose-based
composites show the highest overall efficiency, with several
materials achieving capacities above 1000 mg g−1 for metals
such as Pb2+ and Cu2+. Alginate composites display very high
peak capacities, including the highest value reported (1742 mg
g−1 for Pb2+), but this performance is strongly dependent on
functionalisation. In contrast, M. oleifera biosorbents generally
exhibit moderate adsorption, with higher capacities achieved
only aer chemical modication. Overall, cellulose demon-
strates the most stable and versatile adsorption behaviour
(Fig. 16).
7 Consolidated comparative
discussion of electrospinning and wet
spinning

Building upon the comparative evaluation presented in the
preceding section, it is essential to examine how the choice of
fabrication technique further shapes the structural and func-
tional attributes of these biopolymer-based adsorbents using
the specic biopolymers and the biosorbent M. oleifera
composites. The following discussion, therefore, consolidates
the key features of electrospinning and wet spinning, high-
lighting how each method distinctly inuences bre
morphology, active-site accessibility, and overall adsorption
performance.

Electrospinning and wet spinning have been identied as
the key fabrication techniques for biopolymer-based and
absorbent materials. However, consolidated information on the
comparison of these techniques for these specic biopolymers
on how these methods distinctly inuence the nal adsorbent's
properties of the materials, such as general processing param-
eters, mechanical properties, microstructure and porosity,
water interaction and adsorption properties and industrial
suitability and economic perspectives. This section combines
the ndings of this study with relevant literature on biopolymer-
based bres for wastewater purication. The results align with
previous studies on electrospinning wet-spinning alginate,
cellulose and M. oleifera. The development of bio-based bre
materials for water treatment addressed in this research is very
crucial in addressing the increasing contamination of both
domestic and industrial wastewater, such as oil and gas,
mining, chemical processing, and textile wastewater, among
others, with heavy metal ions such as Cu2+, Ni2+, Pb2+, Cr6+, and
Cd2+. These contaminants, common in effluents from the oil
and gas, mining, chemical processing, and textile sectors, pose
Environ. Sci.: Adv.
critical risks to human health and ecological integrity and
several metals which could pose serious risks to human health,
aquatic ecosystems, and environmental sustainability.273

This comparative analysis could serve as a guideline for
researchers and industries currently working in water treat-
ment, particularly those related to wastewater treatment and
management.274 Table 5 shows several comparisons, like the
selected fabrication technique, which might be tailored to
specic treatment goals, whether for heavy metal adsorption,
mechanical durability, or large-scale industrial ltration.

The comparative assessment demonstrates that each bre
system offers distinct strengths relevant to water purication.
Electrospun alginate bres offer the highest porosity and
surface area, making them theoretically ideal for adsorption-
based applications; however, experimental data on their
mechanical and adsorption performance remain limited. Wet-
spun bre, specically those fabricated from alginate bres, is
the most cost-effective and sustainable; yet, their tendency to
swell and leach Ca2+ compromises long-term structural
stability. Wet-spun cellulose bres deliver superior mechanical
strength and water stability due to dense hydrogen bonding
when ionic liquid was used,285 but their compact microstructure
restricts diffusion and adsorption efficiency.

Overall, no single fabrication method is universally optimal.
Instead, the results suggest that hybrid structures integrating
the high surface area of electrospun alginate with the
mechanical robustness of cellulose wet-spun bres may offer
the most balanced performance for advanced heavy-metal
removal in water purication. Future studies can build on this
analysis by modifying bre compositions used in our study or
related literature by integrating nanomaterials for enhanced
selectivity to scale up the bre for production in real-world
applications.

To bridge the gap between scientic research and industrial
adoption, a study has ensured that the development of bio-
based water purication materials, including those incorpo-
rating M. oleifera, aligns with sustainability goals, regulatory
compliance, and practical feasibility.275 Furthermore, we believe
that countries such as developing nations, where low-cost and
locally sourced materials are essential for clean water access,
can use M. oleifera-based bre composites to provide a viable,
sustainable, and highly effective solution for addressing heavy
metal contamination in drinking water and industrial
wastewater.

8 Research gaps and future directions

Despite signicant progress in developing biopolymer-based
adsorbents for heavy metal remediation, key research gaps
persist in the current literature. Many existing systems depend
heavily on synthetic or chemically modied materials, raising
concerns about sustainability, cost, and potential secondary
pollution. Natural biopolymers like sodium alginate and cellu-
lose are gaining increased attention due to their abundance,
biodegradability, and functional groups suitable for metal ion
binding. However, their full potential is yet to be realised,
particularly in hybrid forms incorporating low-cost biosorbents
© 2026 The Author(s). Published by the Royal Society of Chemistry
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such as M. oleifera. While seed extracts have been extensively
studied as biosorbents because of their cationic proteins and
bioactive components, limited research has been conducted on
their integration with alginate and cellulose using advanced
fabrication techniques like wet spinning and electrospinning.
Despite the rising demand for biodegradable and renewable
alternatives, several studies have focused on synthetic polymers
and unsustainable materials. Integrating alginate, cellulose,
and M. oleifera within engineered bres marks an emerging
research frontier. These materials can be utilised to develop
adsorbents with tunable adsorption capacities based on opti-
mised parameters such as pH, dosage, and contact time.
However, the experimental frameworks for selecting and ne-
tuning these parameters have not been fully developed.
Furthermore, although the seed has been the most studied part
of M. oleifera, other parts of the plant, such as the bark, husk,
and leaves, contain functional bioactive compounds and should
be comparatively assessed for their adsorption efficacy.

Therefore, future studies should aim to:
(I) Explore underutilised parts of M. oleifera in combination

with alginate, cellulose or their combinations.
(II) Optimise electrospinning and wet spinning methods to

fabricate advanced biopolymeric adsorbents.
(III) Establish application-relevant parameters for enhanced

adsorption capacities.
(IV) Validate composite performance in real water matrices

and assess their regeneration, reusability potential and detailed
assessment of adsorption performance.

These gaps highlight the need for systematic investigations
that bridge materials science and environmental engineering.
The insights gained from this review provide a foundational
basis for selecting suitable material combinations, fabrication
strategies, and operational parameters for improved heavy
metal adsorption.

9 Conclusion

This review critically evaluates the potential of alginate, cellu-
lose, and M. oleifera-based composites for heavy metal removal
from aqueous systems. These bio-based materials offer envi-
ronmentally friendly, low-cost alternatives to conventional
synthetic adsorbents and align with the goals of sustainable
water treatment. Sodium alginate and cellulose provide the
necessary functional groups for efficient adsorption, while M.
oleifera contributes additional bioactive compounds that
enhance adsorption performance. Although signicant prog-
ress has been made in their utilisation, a lack of integrated
systems developed using advanced fabrication techniques such
as electrospinning and wet spinning remains. The novelty of
this study lies in its emphasis on the potential interactions
among these bio-based components and the emerging fabri-
cation strategies that can enhance their adsorption properties.
Based on the systematic comparison of sodium alginate,
cellulose, and M. oleifera composites, alginate-based systems
consistently show that cellulose-based composites offer the
most consistent and broadly effective adsorption performance.
Alginate-based systems can reach exceptionally high capacities,
© 2026 The Author(s). Published by the Royal Society of Chemistry
though largely when modied. M. oleifera adsorbents remain
effective and sustainable but generally show lower capacities
unless chemically enhanced. Taken together, cellulose emerges
as the most reliable high-performance bio-adsorbent, followed
by alginate and M. oleifera. Notably, the review highlights how
adsorption performance can be tuned through parameter
optimisation rather than solely relying on mechanical strength
or structural modications. The major gaps remain in devel-
oping sustainable, high-performance bio-based adsorbents.
The combined use of alginate, cellulose, and M. oleifera, espe-
cially within engineered bres, remains underexplored, and
optimisation frameworks for adsorption parameters are still
limited. Furthermore, most work focuses only on the seed,
leaving other functional plant parts insufficiently investigated.
The ndings herein contribute to the body of knowledge by
outlining the suitability of these biopolymers as viable adsor-
bents for water purication and by identifying clear directions
for material selection, design, and implementation. Ultimately,
this review provides a basis for designing future studies to
improve adsorption capacities through the development of
tailored composites using sustainable materials and processes.
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Federal Government of Nigeria, through its relevant ministries,
investigate and promote the utilisation of abundant natural
resources such asM. oleifera, seaweeds (for alginate extraction),
and cellulose-rich ago-residues. Furthermore, establishing
accessible electrospinning and wet-spinning facilities for
researchers working in this area would signicantly enhance
national research capacity and foster innovation in sustainable
water treatment technologies. Harnessing these bioresources
for sustainable water treatment technologies could enhance
national environmental strategies and contribute to achieving
the UN Sustainable Development Goals (SDGs).
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