Dalton Transactions

COMMUNICATION

Cite this: Dalton Trans., 2024, 53, 6496

Received 8th March 2024, Accepted 25th March 2024 DOI: 10.1039/d4dt00702f

rsc.li/dalton

Catalytic dinitrogen reduction to hydrazine and ammonia using $Cr(N_2)_2$ (diphosphine)₂ complexes[†]

Charles H. Beasley, ^(b)^a Olivia L. Duletski, ^(b)^a Ksenia S. Stankevich, ^(b)^a Navamoney Arulsamy ^(b)^b and Michael T. Mock ^(b)*^a

The synthesis, characterization of trans-[Cr(N₂)₂(depe)₂] (1) is described. 1 and trans-[Cr(N₂)₂(dmpe)₂] (2) catalyze the reduction of N₂ to N₂H₄ and NH₃ in THF using SmI₂ and H₂O or ethylene glycol as proton sources. 2 produces the highest total fixed N for a molecular Cr catalyst to date.

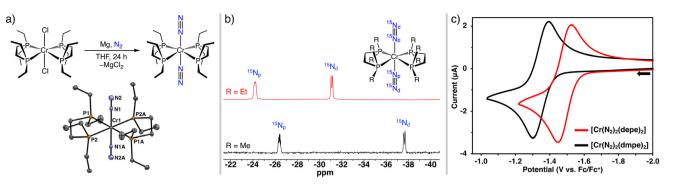
Motivated by the desire to understand and control the challenging multi-proton, multi-electron reaction of N₂ reduction to NH₃, researchers have intensely studied the reactivity of molecular transition metal dinitrogen complexes.¹ Well-defined molecular systems offer a high degree of electronic and structural control to regulate chemical reactivity of N2.² When combined with effective strategies to form N-H bonds, such as proton-coupled electron transfer (PCET) reagents,³ *i.e.* SmI₂ and a proton source, tens-of-thousands of equivalents of NH₃ can be generated.⁴ The valuable information obtained from these studies includes the identification of viable M-N_xH_y reaction intermediates from spectroscopic data that can be used to delineate the mechanistic steps of a putative catalytic cycle. Such studies can aid in the understanding of the mechanistically complex biological N2 fixation processes carried out by nitrogenase enzymes,⁵ as well as heterogeneous Haber-Bosch catalysts.⁶

Group 6 N₂ complexes bearing monodentate phosphine ligands, especially with Mo and W, were among the first molecular systems to generate stoichiometric quantities of N₂-derived NH₃ from protonolysis reactions with strong acids nearly 50 years ago.⁷ Recently, a renaissance of examining structurally similar [M(N₂)₂(P–P)₂], (M = Mo, W; P–P = diphosphine) systems has begun, elevating these simple complexes as catalysts for N₂ reduction to NH₃, or other remarkable reac-

tions such as cleavage of the N₂ triple bond.⁸ Masuda and coworkers reported spontaneous N=N bond cleavage upon oneelectron oxidation of *trans*-[Mo(N₂)₂(depe)₂] (depe = Et₂PCH₂CH₂PEt₂) to form [Mo(N)(depe)₂]^{+.9} Chirik and coworkers developed a photocatalytic strategy to form NH₃ from [Mo(N)(depe)₂]⁺ and H₂.¹⁰ Electrocatalytic N₂ fixation with Mo and W-phosphine complexes was described by Peters and coworkers using a tandem catalysis approach.¹¹ Nishibayashi and co-workers showed simple Mo-phosphine complexes catalyzed N₂ reduction to NH₃ using SmI₂ and various proton sources.¹²

While these examples highlight new discoveries using $[M(N_2)_2(P-P)_2]$ (M = Mo, W) complexes, catalytic N₂ reduction with analogous Cr compounds are limited. Recent reports highlighted the utility of molecular Cr complexes using a variety of ligand architectures for N2 activation,^{8a,13} functionalization,¹⁴ or catalytic N₂ silylation.¹⁵ However, molecular Cr complexes that catalyze the direct reduction of N₂ to NH₃ are rare. In 2022, Nishibayashi and co-workers reported a Cr complex bearing a PCP pincer ligand that catalyzed direct N₂ reduction to NH₃ and N₂H₄ at -78 °C to rt. KC₈ and phosphonium salts as H⁺ sources were required for turnover, and this system was not catalytic using SmI2.16 Herein we prepared and characterized trans- $[Cr(N_2)_2(depe)_2]$ (1), and report catalytic N2 reduction to NH3 and N2H4 with 1 and trans-[Cr $(N_2)_2(dmpe)_2$ ¹⁷ (2) (dmpe = Me_2PCH_2CH_2PMe_2) at room temperature using SmI₂ and ethylene glycol or H₂O as proton sources.

Vigorous stirring of yellow *trans*-[CrCl₂(depe)₂]¹⁸ (1-Cl) in THF with excess Mg powder under a N₂ atmosphere for 24 h furnished **1** as a dark red solid in 70% yield. Isolation of **1** allowed for a comparison of the structural and spectroscopic data with **2** that was reported in 1983.^{17*a*} The structure of **1**, determined by single crystal X-ray diffraction, shows Cr with four phosphorus atoms of the chelates on the equatorial plane and two axial end-on bound N₂ ligands, Fig. 1, panel a. The average Cr–N, Cr–P, and N≡N bond distances are 1.904 ± 0.005 Å, 2.334 ± 0.007 Å, and 1.104 ± 0.004 Å, respectively. The corresponding Cr–N, and Cr–P, bond distances in **2** (see ESI[†]),



View Article Online

^aDepartment of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA. E-mail: michael.mock@montana.edu

^bDepartment of Chemistry, University of Wyoming, Laramie, WY, 82071, USA

[†]Electronic supplementary information (ESI) available: Experimental procedures, crystallographic details, and additional spectroscopic and electrochemical data. CCDC 2330754 (1) and 2330755 (2). For ESI and crystallographic data in CIF or other electronic format see DOI: https://doi.org/10.1039/ d4dt00702f

Fig. 1 (a) Synthesis and molecular structure of **1**. Thermal ellipsoids are drawn at 50% probability. Hydrogen atoms are omitted for clarity. Crystals of **1** contain two molecules per asymmetric unit with comparable metric parameters; only one molecule is shown. Selected bond distances (Å) and angles (°): Cr1–N1 = 1.9081(10); N1–N2 = 1.1003(14); Cr–P1 = 2.3343(3); Cr–P2 = 2.3249(3). Cr2–N3 = 1.9008(10); N3–N4 = 1.1069(14); Cr–P3 = 2.3425(3); Cr–P4 = 2.3346(3). P1–Cr1–P2 = 81.650(9); P3–Cr2–P4 = 81.583(10); P1–Cr1–N1 = 89.25(3); P2–Cr1–N1 = 90.21(3); P3–Cr2–N3 = 89.29 (3); P4–Cr2–N3 = 90.59(3). (b) $^{15}N^{1}H$ NMR spectra of **1**^{15N} (red) and **2**^{15N} (black) recorded at 25 °C in THF-d₈. (c) Cyclic voltammograms of **1** and **2** in THF showing the Cr^{1/0} wave.

are slightly shorter at 1.8862(17) Å, and 2.294 \pm 0.005 Å, and the N \equiv N distance is 1.110(2) Å.¹⁹ The ligand bite angles for **1** and **2**, *i.e.* P1–Cr–P2, are 81.6° and 83.5°, respectively, and the P–Cr–N angles are near 90°.

The ³¹P{¹H} NMR spectrum of **1** in THF-d₈, displays a singlet at 79.9 ppm (68.8 ppm for 2) consistent with four magnetically equivalent P atoms. Complexes **1** and **2** were characterized by ¹⁵N NMR spectroscopy to augment the cumulative library of tabulated ¹⁵N NMR data of phosphine-supported group 6 N₂ complexes.^{13h} The ¹⁵N₂-labelled complexes **1**^{15N} and **2**^{15N}, were prepared by mixing the respective Cr–N₂ complexes in THF-d₈ under 1 atm ¹⁵N₂. The ¹⁵N NMR spectra were collected after mixing for 24 h. The ¹⁵N{¹H} MMR spectra contain two resonances; a doublet ($J_{NN} = 7.0$ Hz) and a multiplet (~2.5 Hz ³¹P coupling) (**1**^{15N}: -31.1 ppm, -24.2 ppm, and **2**^{15N}: -37.6 ppm, -26.4 ppm), assigned as the distal (N_d) and proximal (N_p) nitrogen atoms, respectively, (Fig. 1, panel b).¹³ⁱ

Cyclic voltammetry (CV) experiments established the redox behaviour of the Cr(0)-N₂ complexes. Voltammograms were recorded using a glassy carbon working electrode at 0.1 V s⁻¹ in THF. The voltammogram for each complex displays a reversible, one-electron $Cr^{1/0}$ wave with the half-wave potential ($E_{1/2}$) of -1.49 V and -1.34 V (vs. Cp₂Fe^{+/0}) for 1 and 2, respectively (Fig. 1, panel c). The electrochemically reversible Cr^{I/0} couples indicate N2 dissociation does not occur upon oxidation to Cr(I) during the CV experiments. The reversibility of the waves for 1 and 2 contrasts other *cis*- or *trans*- $[Cr(N_2)_2(P_4)]$ complexes measured by CV that exhibit quasi-reversible or irreversible $Cr^{I/0}$ waves due to rapid N₂ loss upon oxidation.^{13b,c,i} In the current study, an irreversible anodic wave was assigned to the $Cr^{II/I}$ redox feature at E_{pa} = -0.48 V and E_{pa} = -0.63 V, for 1 and 2, respectively, due to N₂ dissociation at more positive potentials, (Fig. S17 and S18 ESI[†]). The CV results suggest a one-electron chemical oxidation to form trans- $[Cr(N_2)_2(P-P)_2]^+$ should be possible; however, our attempts to isolate such a species have been unsuccessful. Owing to the more electronrich metal centre of 1, the $\nu_{\rm NN}$ band in the infrared spectrum

at 1906 cm⁻¹ (THF) appears at lower energy than the $\nu_{\rm NN}$ band for 2 at 1917 cm⁻¹ (THF).

Complexes 1 and 2 were examined as catalysts for the direct reduction of N_2 to NH_3 and N_2H_4 . The catalysis studies were performed in THF at room temperature using the PCET reagent SmI_2 and ethylene glycol and/or water as proton donors. A typical catalytic run used 583 equiv. SmI_2 , 1166 equiv. ROH per Cr centre and was stirred for 48 h. Quantification of NH_3 , N_2H_4 and H_2 (see ESI for details†) products assessed the total fixed N generated in each reaction. Selected catalytic data are listed in Table 1 (see ESI for all tabulated results†).

Analysis of the catalysis results provides insights about the performance of 1 and 2 under identical reaction conditions. 2 afforded more total fixed N than 1 in all catalytic trials. For example, 1 generated up to 5 equiv. of NH_3 and 5 equiv. N_2H_4 per Cr center using ethylene glycol as the proton donor after >100 h. Under identical conditions, 2 produced up to 16 equiv. NH₃ and 10 equiv. N₂H₄ in 48 h. Furthermore, ethylene glycol worked more effectively as the proton donor affording higher total fixed N than using H₂O. The deliterious effect of H₂O on catalysis was noted in reactions with 2 using ethylene glycol as the primary proton source. As the amount of H₂O added to the reaction increased, NH_3 production declined, while the N_2H_4 formed stayed relatively constant. We postulate the Cr complexes may simply be more prone to degradation in the presence of H₂O. Separately, 2 was treated with 500 equiv. H₂O or ethylene glycol in THF-d8. Free dmpe from complex degradation appeared more rapidly using H_2O , as assessed by ³¹P NMR spectroscopy. Catalysis performed with 2 under an atmosphere of ${}^{15}N_2$ afforded ${}^{15}NH_4^+$ as a doublet at 7.1 ppm (J_{15N-1H} = 71 Hz) in the ¹H NMR spectrum, identifying ${}^{15}N_2$ as the source of ¹⁵NH₃.

Catalytic trials using *trans*- $[CrCl_2(dmpe)_2]$ (2-Cl) and ethylene glycol generated comparable amounts of NH₃ and N₂H₄ as using 2 as the precatalyst. 1-Cl did not catalyze N₂ reduction, affording only 1 equiv. of NH₃ and N₂H₄ per Cr center. SmI₂

Table 1	Selected Cr-catalyzed N ₂ reduct	ion experiments
---------	---	-----------------

Entry	Cr cat.	ROH	NH ₃ equiv./Cr ^a	N ₂ H ₄ equiv./Cr ^b	Total fixed N	Time (h)
1	None	$(CH_2OH)_2$	0	0	0	48
2	1	$(CH_2OH)_2$	3.7 ± 0.9	1.4 ± 0.8	$4.9^h \pm 1.5$	48
3	1	$(CH_2OH)_2$	4.6 ± 0.6	4.0 ± 1.7	$8.6^{h} \pm 2.1$	100
4^c	1	H ₂ O	1.4	0.7	2.1	48
5^d	1	H_2O	3.2	0.6	3.8	28
6	1-Cl	$(CH_2OH)_2$	1.2	0.9	2.1	48
7	2	$(CH_2OH)_2$	14.6 ± 1.6	5.9 ± 2.9	$20.5^{h} \pm 3.8$	48
8 ^e	2	$(CH_2OH)_2$	6.2 ± 0.5	6.4 ± 0.8	$12.6^{h} \pm 0.3$	48
9^f	2	$(CH_2OH)_2$	4.4 ± 0.9	6.6 ± 0.6	$11^h \pm 0.4$	48
10^g	2	$(CH_2OH)_2$	1.1	5.7	6.8	48
11^d	2	H ₂ O	5.1	5.9	11	3
12	2-Cl	$(CH_2OH)_2$	13.5 ± 2.8	5.9 ± 0.6	$19.4^{h} \pm 3.4$	48

- - -

Experiments performed using 0.6 µmol catalyst in 15.0 mL THF at 25 °C under 1 atm N2, with 583 equiv. of SmI2, and with 1166 equiv. ROH unless otherwise specified. ^a Determined by acidification and NH₄⁺ quantification using ¹H NMR spectroscopy (see ESI⁺). ^b Determined by color-metric *p*-dimethylaminobenzaldehyde method (see ESI⁺). ^c 1000 equiv. H₂O/Cr. ^d 10 000 equiv. H₂O/Cr. ^e 25 ppm of H₂O. ^f 250 ppm of H₂O. ^g 583 equiv. (CH₂OH)₂, 583 equiv. H₂O. ^h Average of two or more trials. H₂ quantification by gas chromatography, values are tabulated in ESI.[†]

and ethylene glycol may be ineffective at reducing the $Cr(\pi)$ center of 1-Cl to Cr(0) where N2 is strongly activated. Treatment of 2-Cl with 2 equiv. SmI2 and 2 equiv. ethylene glycol rapidly generated 2 (see ESI[†]). However, the same reaction of 1-Cl and SmI₂ with ethylene glycol additive did not form 1 ($E_{1/2}$ = -1.49 V, vide supra). 1 or 2 could not be generated from 1-Cl or 2-Cl using excess SmI2(THF) alone (E° of $SmI_2(THF) = -1.41 \pm 0.08 V^{20} vs. Fc/Fc^+$). A Cr(1) species could be accessible, but N2 activation and subsequent functionalization steps may be moderated at Cr(1), limiting catalysis.

The mixed N₂ reduction selectivity to form NH₃ and N₂H₄ provides preliminary evidence for a catalytic cycle that follows, at least in part, an alternating N₂ reduction mechanism, Fig. 2, bottom. A purely distal N2 reduction pathway, Fig. 2, top, would be selective for NH₃ formation. In a 1986 report, the reaction of 2 with CF₃SO₃H was postulated to form a Cr-hydrazido product, [Cr(NNH₂)(dmpe)₂][CF₃SO₃]₂.²¹ A recent study by Wei, Yi, Xi, and co-workers examining early stage N₂ functionalization of $[Cp^*Cr^0(depe)(N_2)]^ (Cp^* = \eta^5 - C_5(CH_3)_5)$ using a variety of electrophiles (H⁺, Me₃Si⁺, Me⁺) also revealed the selective formation of Cr-hydrazido products, consistent with a distal pathway. Contrary to these reaction patterns, protonation studies of related *cis*- or *trans*- $[Cr(N_2)_2(P_4)]$ complexes we examined using strong acids or H⁺/e⁻ reagents, as well as the catalytic Cr[PCP] system¹⁶ generated NH₃ and N₂H₄.^{13c,i,15a} Considering all these examples, and that N₂ reduction mechanisms are sensitive to reaction conditions, (i.e. identity of the H^+ and e^- reagents, solvent, temperature), a hybrid N_2 reduction pathway²² where the third and fourth N-H bonds are formed at the proximal N atom of a Cr-hydrazido intermediate, Fig. 2, middle, cannot be excluded for the current systems. Further studies are warranted to understand the N₂ reduction pathways with Cr.

The proclivity for N₂ ligand substitution in 1 and 2 was evaluated as a metric that could reflect catalyst stability and influence catalytic performance. We examined reactions of 1 and 2 with CO to assess the rate of ligand exchange, Fig. 3. Ligand substitution in these six-coordinate complexes is expected to be a dissociative process; a result of Cr-N or Cr-P bond dissociation. Wilkinson, Hursthouse, and co-workers noted 2 did not react with 7 atm CO for several hours except under u.v. irradiation (in light petroleum) to form *cis*-[Cr(CO)₂(dmpe)₂] (cis-2-CO).^{17b} This account was surprising, and the unreactive nature toward N₂/CO exchange seemed uncharacteristic of a

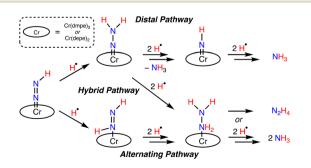


Fig. 2 Plausible N₂ reduction mechanisms for Cr mediated formation of hydrazine and ammonia.

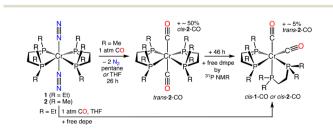


Fig. 3 Ligand exchange reactions of 1 and 2 with CO display different reaction profiles.

complex with terminally bound N₂ ligands. We reacted 2 with 1 atm CO at 25 °C in pentane or THF without u.v. irradiation and monitored the reaction by *in situ* IR spectroscopy, or ³¹P NMR spectroscopy (see ESI†). In both solvents the reaction was slow, but 2 was not unreactive. In THF, after 26 h ~85% of 2 converted to a ~1:1 mixture of *cis*-2-CO and *trans*-[Cr (CO)₂(dmpe)₂] (*trans*-2-CO). *trans*-2-CO converts to ~95% *cis*-2-CO (and ~5% free dmpe) after additional 46 h by ³¹P NMR spectroscopy. In THF, 1 converts directly to *cis*-[Cr(CO)₂(depe)₂] *cis*-1-CO (ν_{CO} = 1829, 1768 cm⁻¹) in ~3 h by *in situ* IR spectroscopy (see ESI†). The vastly different rates of N₂/CO ligand exchange underscore the greater kinetic stability of 2 toward Cr–L dissociative processes that could ultimately curtail catalyst deactivation pathways (*i.e.* ligand loss) improving catalyst performance for N₂ reduction compared to 1.

In conclusion, we present a contemporary advancement in the use of *trans*- $[Cr(N_2)_2(P-P)_2]$ complexes (1 and 2) for direct catalytic reduction of N₂ to form NH₃ and N₂H₄ using the PCET reagent SmI₂ and H₂O and/or ethylene glycol as proton donors. A new complex, *trans*- $[Cr(N_2)_2(depe)_2]$, was presented herein. Despite having similar electronic structures, we posit 2 is a better catalyst than 1 (using the presented conditions), due to a less negative Cr^{1/0} redox couple and greater kinetic stability from Cr–L dissociative processes.

Author contributions

C. Beasley, investigation, methodology, writing, editing; O. L. Duletski, investigation; K. S. Stankevich, investigation; N. Arulsamy, investigation, writing; M. T. Mock, conceptualization, methodology, supervision, writing, editing, funding acquisition.

Conflicts of interest

There are no conflicts of interest to declare.

Acknowledgements

The authors thank Dr. Bernhard Linden and Mathias Linden for LIFDI-MS analysis. This material is based upon work supported by the National Science Foundation (NSF) under Grant No. CHE-1956161 and CHE-2247748. Support for MSU's NMR Center has been provided by the NSF (Grant No. NSF-MRI: CHE-2018388 and DBI-1532078), the Murdock Charitable Trust Foundation (2015066:MNL), and MSU's office of the Vice President for Research and Economic Development. The authors gratefully acknowledge financial support for the X-ray diffractometer from the NSF (CHE-0619920) and a Institutional Development Award (IDeA) from the National Institute of General Medical Sciences of the National Institutes of Health (Grant # 2P20GM103432).

References

- (a) Y. Tanabe and Y. Nishibayashi, Chem. Soc. Rev., 2021,
 50, 5201–5242; (b) Y. Tanabe and Y. Nishibayashi, Coord. Chem. Rev., 2022, 472, 214783; (c) Transition Metal-Dinitrogen Complexes: Preparation and Reactivity, ed. Y. Nishibayashi, Wiley-VCH, Weinheim, 2019.
- 2 M. J. Chalkley, M. W. Drover and J. C. Peters, *Chem. Rev.*, 2020, **120**, 5582–5636.
- 3 (a) Y. Ashida, K. Arashiba, K. Nakajima and Y. Nishibayashi, *Nature*, 2019, 568, 536–540;
 (b) N. G. Boekell and R. A. Flowers II, *Chem. Rev.*, 2022, 122, 13447–13477;
 (c) E. A. Boyd and J. C. Peters, *J. Am. Chem. Soc.*, 2022, 144, 21337–21346.
- 4 Y. Ashida, T. Mizushima, K. Arashiba, A. Egi, H. Tanaka, K. Yoshizawa and Y. Nishibayashi, *Nat. Synth.*, 2023, **2**, 635–644.
- 5 C. Van Stappen, L. Decamps, G. E. Cutsail III, R. Bjornsson,
 J. T. Henthorn, J. A. Birrell and S. DeBeer, *Chem. Rev.*, 2020,
 120, 5005–5081.
- 6 C. M. Goodwin, P. Lömker, D. Degerman, B. Davies, M. Shipilin, F. Garcia-Martinez, S. Koroidov, J. Katja Mathiesen, R. Rameshan, G. L. S. Rodrigues, C. Schlueter, P. Amann and A. Nilsson, *Nature*, 2024, 625, 282–286.
- 7 J. Chatt, A. J. Pearman and R. L. Richards, *Nature*, 1975, 253, 39–40.
- 8 (a) F. A. Darani, G. P. A. Yap and K. H. Theopold, Organometallics, 2023, 42, 1324–1330; (b) S. J. K. Forrest, B. Schluschass, E. Y. Yuzik-Klimova and S. Schneider, *Chem. Rev.*, 2021, 121, 6522–6587; (c) C. E. Laplaza and C. C. Cummins, *Science*, 1995, 268, 861–863.
- 9 A. Katayama, T. Ohta, Y. Wasada-Tsutsui, T. Inomata, T. Ozawa, T. Ogura and H. Masuda, *Angew. Chem., Int. Ed.*, 2019, **58**, 11279–11284.
- 10 (a) S. Kim, Y. Park, J. Kim, T. P. Pabst and P. J. Chirik, *Nat. Synth.*, 2022, 1, 297–303; (b) M. T. Mock, *Nat. Synth.*, 2022, 1, 262–263.
- 11 P. Garrido-Barros, J. Derosa, M. J. Chalkley and J. C. Peters, *Nature*, 2022, **609**, 71–76.
- Y. Ashida, K. Arashiba, H. Tanaka, A. Egi, K. Nakajima, K. Yoshizawa and Y. Nishibayashi, *Inorg. Chem.*, 2019, 58, 8927–8932.
- 13 (a) A. J. Kendall and M. T. Mock, Eur. J. Inorg. Chem., 2020, 1358-1375; (b) M. T. Mock, S. Chen, R. Rousseau, M. J. O'Hagan, W. G. Dougherty, W. S. Kassel, D. L. DuBois and R. M. Bullock, Chem. Commun., 2011, 47, 12212-12214; (c) M. T. Mock, S. Chen, M. O'Hagan, R. Rousseau, W. G. Dougherty, W. S. Kassel and R. M. Bullock, J. Am. Chem. Soc., 2013, 135, 11493-11496; (d) M. Fritz, S. Demeshko, C. Würtele, M. Finger and S. Schneider, Eur. I. Inorg. Chem., 2023, 26, e202300011; (e) W. H. Monillas, G. P. A. Yap, L. A. MacAdams and K. H. Theopold, J. Am. Chem. Soc., 2007, 129, 8090-8091; (f) W. H. Monillas, G. P. A. Yap and K. H. Theopold, Inorg. Chim. Acta, 2011, 369, 103-119; (g) X. Wang, Y. Wang, Y. Wu, G. X. Wang, J. Wei and Z. Xi, Inorg. Chem., 2023, 62,

18641–18648; (*h*) M. T. Mock, A. W. Pierpont, J. D. Egbert,
M. O'Hagan, S. Chen, R. M. Bullock, W. G. Dougherty,
W. S. Kassel and R. Rousseau, *Inorg. Chem.*, 2015, 54, 4827–4839; (*i*) J. D. Egbert, M. O'Hagan, E. S. Wiedner,
R. M. Bullock, N. A. Piro, W. S. Kassel and M. T. Mock, *Chem. Commun.*, 2016, 52, 9343–9346; (*j*) I. Vidyaratne,
J. Scott, S. Gambarotta and P. H. M. Budzelaar, *Inorg. Chem.*, 2007, 46, 7040–7049.

- 14 (a) J. Yin, J. Li, G. X. Wang, Z. B. Yin, W. X. Zhang and Z. Xi, J. Am. Chem. Soc., 2019, 141, 4241-4247;
 (b) G. X. Wang, X. Wang, Y. Jiang, W. Chen, C. Shan, P. Zhang, J. Wei, S. Ye and Z. Xi, J. Am. Chem. Soc., 2023, 145, 9746-9754; (c) G. X. Wang, Z. B. Yin, J. Wei and Z. Xi, Acc. Chem. Res., 2023, 56, 3211-3222; (d) Z. B. Yin, B. Wu, G. X. Wang, J. Wei and Z. Xi, J. Am. Chem. Soc., 2023, 145, 7065-7070; (e) T. Shima, J. Yang, G. Luo, Y. Luo and Z. Hou, J. Am. Chem. Soc., 2020, 142, 9007-9016; (f) Y. Kokubo, K. Tsuzuki, H. Sugiura, S. Yomura, Y. Wasada-Tsutsui, T. Ozawa, S. Yanagisawa, M. Kubo, T. Takeyama, T. Yamaguchi, Y. Shimazaki, S. Kugimiya, H. Masuda and Y. Kajita, Inorg. Chem., 2023, 62, 5320-5333.
- 15 (a) A. J. Kendall, S. I. Johnson, R. M. Bullock and M. T. Mock, *J. Am. Chem. Soc.*, 2018, **140**, 2528–2536;
 (b) M. C. Eaton, B. J. Knight, V. J. Catalano and

L. J. Murray, *Eur. J. Inorg. Chem.*, 2020, 1519–1524; (c) J. Li, J. Yin, G. X. Wang, Z. B. Yin, W. X. Zhang and Z. Xi, *Chem. Commun.*, 2019, **55**, 9641–9644.

- 16 Y. Ashida, A. Egi, K. Arashiba, H. Tanaka, T. Mitsumoto, S. Kuriyama, K. Yoshizawa and Y. Nishibayashi, *Chem. – Eur. J.*, 2022, 28, e202200557.
- 17 (a) G. S. Girolami, J. E. Salt, G. Wilkinson, M. Thornton-Pett and M. B. Hursthouse, J. Am. Chem. Soc., 1983, 105, 5954–5956; (b) J. E. Salt, G. S. Girolami, G. Wilkinson, M. Motevalli, M. Thornton-Pett and M. B. Hursthouse, J. Chem. Soc., Dalton Trans., 1985, 685–692.
- 18 D. M. Halepoto, D. G. L. Holt, L. F. Larkworthy, G. J. Leigh, D. C. Povey and G. W. Smith, J. Chem. Soc., Chem. Commun., 1989, 1322–1323.
- 19 Structural metrics from XRD data of 2 collected here at 100 K. Data from ref. 17 at 295 K.
- 20 (a) M. L. Kuhlman and R. A. Flowers II, *Tetrahedron Lett.*, 2000, 41, 8049–8052; (b) R. J. Enemærke, K. Daasbjerg and T. Skrydstrup, *Chem. Commun.*, 1999, 343–344.
- 21 J. E. Salt, G. Wilkinson, M. Motevalli and M. B. Hursthouse, J. Chem. Soc., Dalton Trans., 1986, 1141–1154.
- 22 (a) J. Rittle and J. C. Peters, *J. Am. Chem. Soc.*, 2016, 138, 4243–4248; (b) N. B. Thompson, P. H. Oyala, H. T. Dong, M. J. Chalkley, J. Zhao, E. E. Alp, M. Hu, N. Lehnert and J. C. Peters, *Inorg. Chem.*, 2019, 58, 3535–3549.