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nge p-conjugation in
phenanthrene and phenanthrene-based molecular
crystals for anomalous piezoluminescence†

Tongge Xu, Xiu Yin, Chunguang Zhai, * Desi Chen, Xiaoying Yang, Shuhe Hu,
Kuo Hu, Yuchen Shang, Jiajun Dong, Zhen Yao, Quanjun Li, Peng Wang,
Ran Liu, Mingguang Yao * and Bingbing Liu

Unlike the known aggregation-caused quenching (ACQ) that the enhancement of p–p interactions in rigid

organic molecules usually decreases the luminescent emission, here we show that an intermolecular

“head-to-head” p–p interaction in the phenanthrene crystal, forming the so-called “transannular effect”,

could result in a higher degree of electron delocalization and thus photoluminescent emission

enhancement. Such a transannular effect is molecular configuration and stacking dependent, which is

absent in the isomers of phenanthrene but can be realized again in the designed phenanthrene-based

cocrystals. The transannular effect becomes more significant upon compression and causes anomalous

piezoluminescent enhancement in the crystals. Our findings thus provide new insights into the effects of

p–p interactions on luminescence emission and also offer new pathways for designing efficient

aggregation-induced emission (AIE) materials to advance their applications.
Introduction

Solid-state luminescent materials have been attracting intensive
research interest because of their wide range of applications,
such as optoelectronics,1–4 data storage5,6 and theranostics.7–9

Aggregation-induced emission (AIE) has been considered
a dominant mechanism for designing organic solid lumines-
cent materials for many applications.10–19 In general, AIE
molecules should be non-rigid with active intramolecular
motions, and they usually show no emission in solutions at the
molecular level but become brightly emissive in mesoscopic
aggregated states.20–22 For the AIE mechanism, it is generally
accepted that the restriction of intramolecular motions (RIM)
could reduce the energy dissipation channels of the non-
radiative transition, enhance the radiative transition process
and thus increase the emission in the aggregation state.14,18

Compared to non-rigid organic luminescent molecules, rigid
organic molecules could exhibit additional advantages such as
higher thermal stability and structural stability,23,24 but rigid
organic molecules usually show aggregation-caused quenching
(ACQ)13,14 in the aggregated state while becoming highly emis-
sive in the isolated form.25 In this case, the p–p stacking
enhancement that should affect thep electron behaviors during
excitation and radiation processes is considered as the main
als, College of Physics, Jilin University,

jlu.edu.cn; yaomg@jlu.edu.cn

tion (ESI) available. See DOI:

the Royal Society of Chemistry
reason responsible for the ACQ.26,27 Therefore, how to develop
a new strategy to realize solid-state luminescent materials with
high efficiency for new functionalities (such as piezolumi-
nescence) and extended practical applications by using rigid
organic molecules is highly desirable but remains challenging.

Numerous studies show that the delocalization and ow-
ability of p electrons in organic luminescent molecules play
important roles in their optical properties.28–30 Graphene can be
considered as an extremely large two-dimensional “conjugated
molecule” constructed by substantial aromatic carbon rings,31,32

in which p electrons exhibit high delocalization and also high
owability, leading to excellent electrical properties33–35 but the
absence of uorescent properties. In contrast, when the number
of aromatic rings decreases to the molecular level (such as
polycyclic aromatic hydrocarbons, PAHs), p electrons tend to
display heightened localization and reduced owability because
of the break of long range p-conjugation, which causes new
properties and brings uorescence emission.36–38 Therefore,
a possible way to design solid luminescent materials using rigid
organic molecules is to promote the delocalization of p elec-
trons without increasing their owability, which remains
a challenging task but is a new strategy different from those by
decreasing p–p stacking. However, this has not been explored
for the design of efficient luminescent materials.

High-pressure can be used to precisely tune intermolecular
interactions, altering molecular vibration and rotation modes
and electronic excited states, and thus manipulating the emis-
sion behaviors.39–44 It is also an efficient technique to tune the
delocalization of p electrons and amplify the related effects that
Chem. Sci., 2023, 14, 11629–11637 | 11629
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are weak at ambient pressure. In this study, we discovered that
the “transannular effect”,45–47 a type of weak p–p interaction,
occurs in phenanthrene molecular crystals because of their
unique molecular conguration. Such an effect becomes more
signicant upon compression and causes anomalous piezolu-
minescent enhancement in molecular crystals, which was also
observed in phenanthrene-based cocrystals but absent in their
isomers. The transannular effect could facilitate delocalization
by generating long range p-conjugation in phenanthrene crys-
tals while the owability of p electrons is still limited within
a single molecule, leading to an increase in radiative transition
rates and emission intensity. Our nding not only adds another
mechanism for aggregation-induced emission enhancement in
luminescent materials but also presents an efficient strategy for
the design of novel piezoluminescent materials.

Results and discussion

Experimental and theoretical details are presented in the ESI,†
and structural information for all crystals and cocrystals
involved in this work is presented in Fig. S1.† Fig. 1(a) displays
the high-pressure photoluminescence (PL) spectra of phenan-
threne crystals obtained by 360 nm excitation. The phenan-
threne crystal shows split emission bands, similar to those of
single molecules, which agrees well with the weak p–p stacking
due to the bent geometry and a “herringbone” pattern48

molecular arrangement in the phenanthrene crystal at ambient
pressure (Fig. 1(f)). As shown in Fig. 1(b), phenanthrene shows
anomalous emission enhancement at 1 atm–1.65 GPa as pres-
sure increases, while at above 1.65 GPa, the emission exhibits
the ACQ phenomenon (Fig. S2†). The quenched emission is
Fig. 1 (a) 2D colormap of pressure-dependent PL intensity and wavelen
threne crystal below 1.65 GPa. (c) Pressure-dependent PL wavelength
spectra of the phenanthrene crystal. (e) Schematic illustrations of the
phenanthrene crystal.

11630 | Chem. Sci., 2023, 14, 11629–11637
primarily attributed to the compression-induced strengthening
of intermolecular interactions, which results in more electron
internal conversion and less radiation. In situ ultraviolet-visible
(UV-vis) absorption spectra demonstrate that the energy gap
was narrowed upon compression (Fig. 1(d and e)), leading to the
red shi of emission.

The pressure-dependent PL intensities of phenanthrene
crystals upon compression are shown in Fig. 1(c), revealing
a signicant intensity enhancement of about 5-fold up to
1.65 GPa. To elucidate the underlying reasons for such an
anomalous emission enhancement, in situ infrared (IR) and
Raman spectra measurements were performed to investigate
the intra- and intermolecular interactions in the phenanthrene
crystal under high pressure. The experimental results match the
calculated results well (Fig. S3(c) and (d)†), and as shown in
Fig. 2(a) and S4,† all IR absorption peaks are blue-shied upon
compression, indicating an increase in the intramolecular
vibrational energies of phenanthrene and an increase of non-
radiative processes.

We noticed that the IR absorption intensity at approximately
793 cm−1, which represents the carbon skeleton out-of-plane
bending vibration of the phenanthrene molecule according to
our calculation, increases with pressure. The corresponding
intensities of the 793 cm−1 mode as a function of pressure are
plotted and shown in Fig. 2(b). This vibration mode exhibits
a high degree of symmetry, and its intensity enhancement upon
compression indicates that the molecule's dipole moment
changes. This change may be due to the increased electronic
delocalization of the intermediate aromatic ring because of the
non-linear molecular structure of phenanthrene. Our Raman
measurements show that all Raman modes are blue-shied
gth of the phenanthrene crystal. (b) In situ PL spectra of the phenan-
and intensities. (d) 2D colormap of high-pressure UV-vis absorption
band gap changes. (f) The sketch map for molecular packing of the

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 (a) In situ IR spectra of the phenanthrene crystal upon compression. (b) The pressure-dependent IR absorption intensities around
793 cm−1 and the schematic diagram of the corresponding vibrational mode. The relevant vibrations are marked in the diagrams (a).
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upon compression, which is consistent with our IR results
(Fig. S3†). This clearly suggests that the general RIM mecha-
nism cannot explain why phenanthrene exhibits such anoma-
lous emission upon compression. Note that the Raman peaks
around 100 cm−1 (see the marked regions in Fig. S3†) from out-
of-plane carbon skeleton deformation vibrations exhibit a rapid
blue shi at low pressure, implying signicant interactions
between the neighboring phenanthrene molecules, which may
lead to a change in the p-electronic distribution on phenan-
threne molecules. Combining our results from IR and Raman
measurements, we suggest there is an active intermolecular
Fig. 3 (a) High-pressure XRD patterns of the phenanthrene crystal below
a function of pressure. Inset shows the compression rate of lattice co
structure. (c) The crystal structure viewed along the b-axis, in which
molecules. The XRD patterns are analyzed by JADE.

© 2023 The Author(s). Published by the Royal Society of Chemistry
nonbonding interaction – transannular effect. Note that
previous studies show that the transannular effect can indeed
alter the electronic structures of the aromatic system.45,46,49,50 In
our case, such a unique interaction that most likely occurs
between phenanthrene molecules could lead to greater delo-
calization of p electrons, which can increase the radiative
transition rates and result in an anomalous piezoluminescent
enhancement.

To understand if the molecular stacking could favor the
transannular effect in the crystal upon compression, a high-
pressure X-ray diffraction (XRD) experiment has been carried
2.08 GPa. (b) Plotted curves for the unit cell volume of phenanthrene as
nstants as pressure increases, which is given by the monoclinic P21
the marked regions represent the head-to-head approach between

Chem. Sci., 2023, 14, 11629–11637 | 11631
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out on phenanthrene crystals. The recorded XRD patterns are
presented in Fig. 3(a), wherein all the diffraction peaks are
shied to lower d-values, indicating compression of the lattice.
Additionally, Fig. 3(b) depicts the variation of unit cell volume
with pressure, showing that no structural transition occurred in
the phenanthrene crystal during compression. Note that the a-,
b-, and c-axes exhibit distinct pressure evolutions upon
compression, implying an anisotropic compression of the
lattice (inset, Fig. 3(b)). Furthermore, below 2.08 GPa, the a-axis
was more compressible than the b- and c-axes, implying that the
molecules become more closely packed along the a-axis, which
is favorable for head-to-head p–p interactions between mole-
cules (Fig. 3(c)). The Hirshfeld surface (HS) analysis51–53 was
performed to quantify and visualize the closed intermolecular
atomic contacts in the phenanthrene crystal. The directions and
strengths of intermolecular interactions within the molecular
crystal are mapped onto the HS using the descriptor dnorm. The
dnorm is essentially based on the two contact distances between
the nearest atoms present inside (di) and outside (de) the
surface, respectively, and is expressed as: dnorm = (di − rvdwi /
rvdwi )/(de − rvdwe /rvdwe ), where rvdwi and rvdwe are the van der Waals
radii of the appropriate atoms internal and external to the
surface. The HS analysis also shows that high pressure can
signicantly enhance intermolecular interactions in head-to-
head areas in phenanthrene crystals (Fig. S5†). Our structural
analysis indicates that the aforementioned transannular delo-
calization effect is likely due to the close proximity of the head
areas between phenanthrene molecules, which can lead to
enhanced transannular effects. As shown in Fig. S5 (c and d),†
the interactions between neighboring molecules were signi-
cantly enhanced, with an increase of 2.7% in C–H interactions
from 1 atm to 2 GPa, respectively. Remarkably, the C–C inter-
actions, which can be considered a p–p stacking interaction,
increased by only 0.4% in the same pressure range, indicating
that the transannular effects were more dominant than the p–p
stacking effects below 2 GPa.

As we know, Fuzzy bond order (FBO)54,55 was proposed to
quantitatively describe the number of electron pairs shared
between the fragments and has been used for the character-
ization of p-conjugation. Here FBO was thus calculated to
analyze the conjugation of the head areas between neighboring
phenanthrene molecules as shown in Fig. 3(c). The FBO is
0.19995 and 0.25464 for 1 atm and 2 GPa, respectively, indi-
cating the increase of the transannular effect between neigh-
boring phenanthrene molecules as pressure increases. On the
Table 1 The values of HOMA for each part of the phenanthrene
molecule at 1 atm and 2 GPa

HOMA-1 HOMA-2 HOMA-3

1 atm 0.840094 0.475597 0.844315
2 GPa 0.866979 0.550963 0.876380

11632 | Chem. Sci., 2023, 14, 11629–11637
other hand, the transannular effects should change the
aromaticity of the molecules, and Harmonic oscillator measure
of aromaticity (HOMA)56 is the most popular geometry-based
index for measuring aromaticity. HOMA was thus calculated
and is shown in Table 1. The variation of HOMA was charac-
terized by the three geometric segments of the phenanthrene
molecule, which all show an increase in HOMA as pressure
increases from 1 atm to 2 GPa. Note that the intermediate
phenyl ring at the head (HOMA-2) exhibits the most signicant
increase from 0.476 to 0.551, indicating that the “head-to-head”
interaction remarkably increases the delocalization of p-elec-
trons on this aromatic ring. Such interactions can be considered
as medium/long range p-conjugation, which is different from
intermolecular p–p stacking. The theoretical calculations show
that the proximity of adjacent phenanthrene molecules makes
the transannular effect strengthened, which enhances the p-
electron conjugation effect.

To obtain a further understanding of how the transannular
effect caused the emission enhancement upon compression, we
calculated the excited state properties of the phenanthrene
crystal.57 It is well known that the emission intensity of a system
is proportional to the oscillator strength. We observed that the
oscillator strength of emission in the phenanthrene crystal
increases by an order of magnitude under high pressure as
compared to that at ambient pressure (Fig. 4(a and b)), which
agrees well with the observed emission enhancement in the
experiment. The hole–electron analysis58 was further performed
to analyze the excitation characteristic of S1 / S0. As shown in
Fig. S6,† the photo-induced S1/ S0 transition presents a locally
excited (LE) feature at both ambient pressure and 2 GPa.
Furthermore, the overlap function between hole and electron

distribution can be dened as SrðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rhole ðrÞrele ðrÞ

p
, in

which rhole and rele represent the densities of holes and elec-
trons.59 As shown in Fig. 4(c) and (d), the Sr is 0.75 and 0.82 for 1
atm and 2 GPa, respectively, indicating the increase of electron–
hole overlap as pressure increases, which implies an increase in
the orbital overlap between the excited state and ground state.
This will increase the radiative transition probability and thus
cause an enhancement of emission. In addition, it is found that
the smaller the hole/electron delocalization index (HDI/EDI),
the larger the spatial delocalization of the hole/electron.59 The
HDI and EDI of the phenanthrene crystal were calculated,
which decrease from 1.92 to 1.67 and from 1.89 to 1.83,
respectively, as pressure increases from 1 atm to 2 GPa, indi-
cating an increase in spatial delocalization of the hole/electron
upon compression. This is in agreement with the result ob-
tained from the HOMA analysis. As shown in Fig. 4(e), the heat
map of the hole, electron and hole–electron overlap for the
three fragments is presented in Table 1, which shows that the
intermediate aromatic ring plays a dominant role in the S1/ S0
emission. Our theoretical simulations further demonstrate that
head-to-head transannular delocalization alters the electronic
structure of the phenanthrene molecule, which affects its
emission.

The above results indicate that the transannular effect
should be due to the bent geometry of phenanthrene. For
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 (a and b) The emission oscillator strengths of phenanthrene calculated at 1 atm and 2 GPa. (c and d) The overlap function Sr(r) during the S1
/ S0 transition at 1 atm and 2 GPa (isosurface level = 0.00016 a.u.), the marked regions represent the head-to-head areas between molecules.
(e) The contributions of the three parts of the phenanthrene molecule (rings 1, 2, 3) to the hole, electron, and orbital overlap during the S1 / S0
transition at 1 atm and 2 GPa.
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comparison, the linear isomer of phenanthrene, anthracene,
was studied and it exhibits a normal ACQ behavior accompa-
nied by red-shied emission upon compression in both exper-
iments and calculations (Fig. S7(b–d)†), despite anthracene and
phenanthrene having very similar molecular packing in the
corresponding crystals (Fig. S7(a)†). The molecular
conguration-dependent emission responses can be under-
stood by the fact that the linear anthracene can easily form an
excimer60,61 and thus reduce the emission under high pressure,
while the bent geometry is more favorable to suppress the
increased p–p stacking between parallel phenanthrene mole-
cules upon compression and provides a stronger steric effect.
These differences in molecular conguration may be the reason
why transannular effects do not occur in anthracene crystals.

We further demonstrate that the transannular effect could be
either preserved or suppressed by introducing another
© 2023 The Author(s). Published by the Royal Society of Chemistry
component to form piezoluminescent cocrystals. Considering
from molecular packing, we insert 1,2,4,5-tetracyanobenzene
(TCNB) into phenanthrene (Phe) crystals, forming Phe–TCNB
cocrystals. The TCNB could serve as an acceptor and hold the
cocrystal's lowest unoccupied molecular orbital (LUMO), thereby
simplifying the energy transfer route (charge-transfer (CT)
emission). The TCNB could also prevent the face-to-face packing
of phenanthrene molecules and thus leave only their head-to-
head interactions (Fig. 5(a)). Our high-pressure PL spectra
(Fig. 5(b)) reveal that the Phe–TCNB cocrystal indeed exhibits
emission enhancement at a pressure range of 1 atm–1.77 GPa,
but no structural phase change occurs in the cocrystals (Fig. S8†).
The high-pressure IR absorption spectra of the Phe–TCNB coc-
rystal (Fig. S9†) also show that all IR absorption peaks were blue-
shied as pressure increased, indicating that the nonradiative
energy dissipation of the molecule is not suppressed. Instead,
Chem. Sci., 2023, 14, 11629–11637 | 11633
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Fig. 5 (a) The sketch map for molecular packing of Phe–TCNB. (b) High-pressure PL spectra of Phe–TCNB.
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the 796 cm−1 and 1602 cm−1 absorption peaks of Phe–TCNB
from the carbon skeleton out-of-plane and in-plane bending
display anomalous intensity enhancement as pressure increases,
giving a strong indication for the transannular effect in this
cocrystal. Note that when phenanthrene was replaced by its
linear isomer anthracene (Ant), forming the Ant–TCNB cocrystal,
emission quenching was observed upon compression (Fig. S10†).
We could also destroy the head-to-head interactions between the
phenanthrene molecules by inserting anthracene in Phe–TCNB
cocrystals, forming a ternary Ant0.5–Phe0.5–TCNB cocrystal. In
this case, the transannular effect was suppressed and emission
quenching was observed upon compression (Fig. S11†). These
results thus demonstrate that the transannular effect can be
applicable to different luminescent materials, offering new
pathways for designing more efficient organic luminescent
materials for different applications.
Experimental and computational
details
Materials source, synthesis and crystal structure

Phenanthrene (Phe, 98%) was purchased from Alfa Aesar,
anthracene (Ant, 99%) was purchased from MACKLIN, and
1,2,4,5-tetracyanobenzene (TCNB, 97%) was purchased from
Tokyo Chemical Industry Co., Ltd (TCI). All of the chemicals
were used as received without further purication. The Phe–
TCNB, Ant–TCNB and Ant0.5–Phe0.5–TCNB cocrystals were
prepared by solvent evaporation methods. Identical molar
masses of phenanthrene and TCNB were dissolved in excess
tetrahydrofuran (THF) solutions and ultrasonicated for 12
minutes. The yellow stick-like transparent sample Phe–TCNB
was obtained aer evaporation of solvent from the solution
aer 3–4 days under ambient conditions. Ant–TCNB and Ant0.5–
Phe0.5–TCNB cocrystals can be obtained by the same method.
The initial crystal structures of our phenanthrene and anthra-
cene were obtained from the Cambridge Crystallographic Data
Centre (CCDC, no. 1232373 and no. 950158).
11634 | Chem. Sci., 2023, 14, 11629–11637
In situ high-pressure experiments

High-pressure experiments were performed in a diamond anvil
cell (DAC). Samples were loaded into a 120 mm diameter hole
drilled in the T301 stainless-steel gasket. Pressure was cali-
brated by the uorescence emission of ruby in the sample
chamber.62 The pressure transmitting medium (PTM) used in
the high-pressure PL, XRD, Raman and UV-vis absorption
measurements was silicone oil, while it was KBr in the high-
pressure IR measurements. A home-built integrated optical
measurement system was used to collect high-pressure PL
spectra and ultraviolet-visible (UV-vis) absorption spectra of
phenanthrene and anthracene, and a semiconductor UV laser
and a deuterium-halogen lamp were used as the excitation
sources for the PL and absorption spectra, respectively, along
with a Horiba Jobin Yvon iHR320 spectrometer; the PL excita-
tion laser had a wavelength of 360 nm. And PLmeasurements of
Phe–TCNB, Ant–TCNB and Ant0.5–Phe0.5–TCNB were performed
on a Raman spectrometer equipped with a CCD detector
(Renishaw in Via) in uorescence mode, and a 514 nm line of
a Cobolt FandangoTM laser was used for the excitation source.
Infrared measurements were carried out using a Bruker Vertex
80 V spectrometer with a liquid nitrogen-cooled MCT detector.
In situ high-pressure X-ray diffraction measurements were per-
formed using a Rigaku Synergy Custom FR-X (l = 0.7093 Å),
while ambient-pressure X-ray diffraction measurements were
performed using a Rigaku MicroMax-007 HF (l = 1.5418 Å).
High-pressure Raman spectra were collected using a LabRAM
HR Evolution spectrometer (HORIBA Jobin-Yvon) excited by
a 473 nm laser.

Computational details

The vibrational analysis was performed using the CASTEP63

module in the Materials Studio package. The exchange and
correlation of electrons were treated by the generalized gradient
approximation (GGA) with the Perdew–Burke–Ernzerhof (PBE)
functional, and the OTFG norm-conserving pseudo-potentials
were used for calculations. We used the CP2K soware
© 2023 The Author(s). Published by the Royal Society of Chemistry
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package57 to perform geometry optimization and electronic
structure simulation of a 2 × 2 × 2 supercell with 384 atoms.
Our calculations employed the TZVP basis set, Goedecker–
Teter–Hutter (GTH) pseudo-potential, PBE functional and
dispersion corrected density functional (DFT-D3(BJ)), with
a grid cutoff of 400 Ry. The relaxation of atomic positions and
calculation of the electronic structure properties of excited
states are performed by using linear response TDDFT for the
singlet excited state. The CP2K input les, Fuzzy bond order
(FBO) analysis,54 hole–electron analysis58 and HOMA analysis56

were generated using the Multiwfn program.55 The Crystal-
Explorer soware 21.5 was employed to create Hirshfeld
surface plots.51–53 The lattice parameters at 1 atm and 2 GPa
were calculated using the CP2K code by optimizing the energy
of the geometry.

Conclusion

Our experiments and calculations strongly suggest that
a unique transannular effect occurs in the phenanthrene
crystal, which is related to its bent molecular geometry but
absent in its isomers. The unique molecular geometry causes
a typical head-to-head p–p interaction between phenanthrene
molecules which can be modied by pressure, resulting in
a higher degree of electron delocalization and thus an anoma-
lous emission enhancement upon compression. Moreover,
from the molecular stacking point of view, we succeeded in the
design of phenanthrene-based cocrystals with the transannular
effect and did observe similar piezoluminescence enhancement
below 1.77 GPa. This indicates that the transannular effect can
be active in both locally excited (LE) phenanthrene and charge-
transfer (CT) phenanthrene-based cocrystals. Our ndings
contribute to a better understanding of the role of some typical
p–p interactions on luminescence emission in highly aggre-
gated conjugated systems and also provide a new way to design
new organic AIE materials that could be used in stimulus
response, optoelectronic devices, biomedical engineering, and
other elds.

Data availability

Essential data are provided in the main text and the ESI.† Data
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