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We report canonical and grand-canonical lattice Monte Carlo simulations of the self-assembly

of addressable structures comprising hundreds of distinct component types. The nucleation

behaviour, in the form of free-energy barriers to nucleation, changes significantly as the co-

ordination number of the building blocks is changed from 4 to 8 to 12. Unlike tetrahedral

structures – which roughly correspond to DNA bricks that have been studied in experiments

– the shapes of the free-energy barriers of higher co-ordination structures depend strongly

on the supersaturation, and such structures require a very significant driving force for

structure growth before nucleation becomes thermally accessible. Although growth at high

supersaturation results in more defects during self-assembly, we show that high co-

ordination number structures can still be assembled successfully in computer simulations and

that they exhibit self-assembly behaviour analogous to DNA bricks. In particular, the self-

assembly remains modular, enabling in principle a wide variety of nanostructures to be

assembled, with a greater spatial resolution than is possible in low co-ordination structures.
1 Introduction

Materials that can be formed by self-assembly have over time become increasingly
more complex.1 Furthermore, in the last few years, the eld has seen something of
an explosion in the number of self-assembling materials which exhibit not only
structural complexity, but which are ‘addressably’ complex,2 in the sense that the
individual building blocks making up these structures are all distinct. Such self-
assembled materials are not only interesting from the point of view of funda-
mental science, but are thought to hold considerable promise for applications in
many aspects of nanotechnology,3 especially since the addressable nature of the
building blocks should allow the structures to be functionalised with sub-nano-
metre-scale resolution.

Recent experiments have demonstrated that it is possible to assemble struc-
tures comprising thousands of distinct modular building blocks into well-formed
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target structures by making use of single-stranded DNA molecules – termed ‘DNA
bricks’ – designed to have an obligate set of hybridisation partners, in the sense
that those parts of the DNAmolecules that are designed to be bonded in the target
structure have complementary sequences.4–8 In the past few years, several theo-
retical and computational studies have also been undertaken, probing the
intriguing self-assembly behaviour exhibited by such systems.9–18

We have previously shown that DNA brick self-assembly is made possible by the
interplay between self-assembly and growth. In particular, as a system of DNA
bricks is cooled, at some temperature the free-energy barrier to nucleation becomes
small enough that nucleation can occur, but nucleation events remain sufficiently
rare so that any clusters that do form do not interact signicantly with one another,
and monomers are not initially signicantly depleted,10,16 which enables these
clusters to grow in an essentially error-freemanner as the temperature is decreased.
However, such behaviour only occurs over a very narrow window of temperatures: if
the experiment is performed at a low temperature from the outset, misassembled
aggregates dominate instead.10 Nucleation thus plays an important role in enabling
structures of this type to self-assemble successfully.

Whilst DNA bricks have been shown to self-assemble reliably, our previous
theoretical work has indicated that the co-ordination number of the particles that
form self-assembling structures determines their nucleation behaviour in both
two and three dimensions.16 In particular, the larger the co-ordination number,
the more classical-looking the free-energy barrier to nucleation becomes. Yet one
of the key aspects that seemed to enable the lower co-ordinate structures to form
successfully was the non-classical nucleation barrier. Specically, for tetrahe-
drally co-ordinated building blocks, the critical cluster size was found to be largely
insensitive to the nature of the target structure, and the nucleation barrier was
signicant but surmountable at the point at which a large, nearly fully assembled
cluster of the designed structure is thermodynamically stable. By contrast – and in
agreement with the predictions of classical nucleation theory – for higher co-
ordination number structures, the free-energy barrier to nucleation changes with
temperature and is considerably larger than that for tetrahedral structures at the
same supersaturation.16 This suggests that, in order to overcome the free-energy
barrier to nucleation, the driving force for growth must increase, for example by
increasing the monomer concentration, reducing the temperature or increasing
the bond strengths by choosing a different set of DNA sequences. Such
approaches, however, would make competing structures in which monomers
have not assembled as designed ever more stable, and our previous theoretical
work thus suggests that, as the co-ordination number increases, the structures
should become more and more difficult to form.

However, in order to create more varied target structures in an addressable way,
we may well need to move to a system with a higher co-ordination number, as this
should in principle allow us to construct structures with ner small-scale features due
to the considerably greater spatial resolution of the system than we can achieve using
tetrahedrally co-ordinated particles. Moreover, a greater degree of bonding can help
to stabilise such structures, which may also be important in practical applications.

Although DNA bricks are tetrahedrally co-ordinated,4 there are many possible
ways in which addressable structures with higher co-ordination numbers might
be experimentally realised. For example, one can envisage that colloidal particles
with carefully positioned DNA strands graed onto the particle in the correct
216 | Faraday Discuss., 2016, 186, 215–228 This journal is © The Royal Society of Chemistry 2016
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geometry might be possible to assemble in the near future, perhaps similar to the
experiments of Wang et al.19 or Lu et al.,20 but with each particle functionalised
with a unique set of DNA strands. Alternatively, DNA Holliday junctions and
multi-arm motifs21 can be synthesised to correspond to high co-ordination
number structures. Of course in practice, producing structures of this type in
experiments may be non-trivial because, in our examples, each colloidal particle
would have to be created with a unique set of graed DNA strands, and each DNA
junction with a different sequence would have to be pre-assembled. It is therefore
important that future experiments focus on strategies that are likely to be
successful. It is with this in mind that we have carried out the simulations pre-
sented here: if structures of this kind cannot be assembled on a computer with a
toy model, then it may be risky to attempt to do so experimentally in the light of
the signicant cost and effort likely to be involved.
2 Simulation methods

We perform canonical ensemble simulations on a lattice, with periodic boundary
conditions, using a Metropolis Monte Carlo22 scheme. To determine the free-
energy barriers as a function of the size of the largest crystalline cluster in the
system, we use umbrella sampling with adaptive weights23 in a time-step sepa-
rated24 Monte Carlo scheme. We use ‘virtual moves’25 to allow for realistic
dynamics of cluster motion. In our simulations, clusters are randomly translated
or rotated on a lattice, with 24 permissible orientations per particle, corre-
sponding to all the possible neighbour interactions on a cubic lattice.10

Each particle in the system is hard in the sense that dual occupancy of lattice
sites is not permitted, and each particle has n ‘patches’, where n is the co-
ordination number. Every patch is assigned a DNA sequence such that, in the
fully assembled target structure, adjacent patches have a complementary
sequence, but otherwise these sequences are randomly assigned (subject to the
rules identied by Wei et al.5).† Particles that are adjacent to each other interact
with a slightly repulsive energy 3init/kB ¼ 100 K,10 to which we add the hybrid-
isation free energy of the longest complementary sequence match between the
nearest pair of patches, calculated using a standard thermodynamic model.26 As
in the experimental work of Ke et al.,4 the outermost particles in the target
structure are assigned a poly-T sequence to minimise any misbonding.

Particles which have 4 and 8 patches have a minimum interparticle
distance of a

ffiffiffi
3

p
, where a is the lattice parameter,10 whilst particles with 12

patches have a minimum interparticle distance of a
ffiffiffi
2

p
to be able to accom-

modate the additional neighbours. This means that the effective densities are
not strictly comparable, as the lower co-ordination structures have a greater
excluded volume.

In grand-canonical simulations, we introduce particle addition and removal
moves in addition to the canonical (virtual move) translations and rotations.
Particles to be added or removed are chosen at random. A particle addition move
† It is by no means essential for particles in our system to interact via DNA hybridisation; it is sufficient
that they have specic, designed interactions. In practice, however, we anticipate at this stage that DNA is
the most likely candidate for an experimental realisation of such systems, and we have chosen to
parameterise our model accordingly.
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Fig. 1 A single monomer and snapshots towards the end of the nucleation process of
some structures assembled from a vapour of monomers for the (a) 8 (332 K) and (b) 12 (345
K) co-ordinate monomers. The target structures in each case were simple rectangular
parallelepipeds. In the simulation snapshots, correctly bonded clusters are shown in the
same colour, but each particle, and each patch, is in fact distinct.
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in which a particle of type i has been placed at a random position and with a
random orientation in the simulation box is accepted with probability‡27

P add
acc ¼ min

�
1;

Vzi

Ni þ1
exp

�� DE=kBT
��
; (1)

where V is the volume of the simulation box, Ni is the current number of particles of
type i in the system,DE is the trial change in the system's potential energy, and zi is the
fugacity of particles of type i, i.e. zi ¼ exp(mi/kBT), where mi is the particle's chemical
potential. The ideal chemical potential is given by mid ¼ kBT ln r, where r is the
number density; in the absence of interactions, the fugacity thus determines the target
number density. An analogous acceptance probability holds for particle removals,

P rem
acc ¼ min

�
1;

Ni

VziNtypes

exp
�
DE=kBT

��
; (2)

whereNtypes is the number of types of particle in the system. This accounts for the fact
that when we add a particle, we choose its type uniformly at random, whereas when
we remove a particle, we choose the particle at random: in order to obey detailed
balance, we must account for the probability of choosing a particle of each type.
3 Results and discussion

We have previously considered tetrahedral co-ordination as applicable to DNA
bricks. Here, we investigate the self-assembly behaviour of structures with co-
ordination numbers of 8 (giving bcc-like target structures) and 12 (giving fcc-like
target structures). The corresponding building blocks and sample target struc-
tures are shown in Fig. 1. The sequences associated with each patch for the
structures we have studied are provided as supporting data.§ In the simulations
reported here, the number of distinct particles in the target structures was 396 for
the 4-, 403 for the 8- and 256 for the 12-co-ordinated structures.
‡ The de Broglie thermal wavelength is subsumed into the chemical potential, and cancels out in the
case of an ideal chemical potential. For convenience, we have therefore set it to unity.

§ It is important to bear in mind that, if these sequences are chosen randomly, the temperatures at which
nucleation and growth occur can change by a few degrees in identical conditions.10 The temperatures we
quote in the text refer to these specic DNA sequences. While the numerical values change with sequence
choice, the qualitative behaviour does not.
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Fig. 2 The size of the largest cluster in the system as a function of Monte Carlo time for a
canonical simulation with a total of 403 distinct particles with a co-ordination number of 8.
T ¼ 332 K, r ¼ 1/(62a)3. The different colours correspond to individual Monte Carlo
trajectories starting from an equilibrated vapour of monomers. These trajectories were run
for a fixed real-time; since virtual moves make simulations of larger clusters slower,
simulations in which nucleation occurred later could run for a larger number of Monte
Carlo steps.
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Contrary to expectation,16 brute-force simulations starting from a vapour of
one copy of each of the monomers required to assemble a single target structure
can, within a narrow temperature window, result in the successful self-assembly
of the target structures shown in Fig. 1. Moreover, as evident from Fig. 2, this
process is stochastic: under identical thermodynamic conditions, systems can
exhibit drastically different lag times before any signicant growth occurs. This is
indicative of the presence of a free-energy barrier to nucleation, whereby a cluster
of a sufficient size must form spontaneously before further growth is thermody-
namically favoured. Since monomers coming together to form such a cluster lose
a signicant amount of translational and orientational entropy, this happens
infrequently: there is a free-energy barrier associated with nucleation. Using
umbrella sampling, we have calculated this free-energy barrier{ for the two target
structures shown in Fig. 1 at a number of temperatures, as shown in Fig. 3, where
we also show a free-energy barrier for a reference tetrahedral system. Of course
higher co-ordination structures are more stable at higher temperatures, since
such structures entail many more bonds, and so the temperature scale at which
nucleation occurs depends on the co-ordination number. Figs 2 and 3 indicate
that the process is indeed nucleation-initiated for both the 8- and 12-co-ordinated
target structures. However, whilst the process remains nucleation-initiated, there
are signicant differences in the systems' behaviours relative to the self-assembly
of tetrahedral particles.

In particular, tetrahedrally co-ordinated structures, which include the experi-
mentally studied DNA bricks, exhibit a free-energy barrier with a distinct jagged
{ The order parameter used as a collective variable, i.e. the number of particles in the largest cluster, is a
convenient choice consistent with classical nucleation theory. However, because each particle is different
in these simulations, any particular cluster that forms can behave rather differently from this averaged
behaviour. This is especially important if the cluster under consideration forms near a face or an edge
of the target structure, where the average environments are different from those at the centre of the
structure.

This journal is © The Royal Society of Chemistry 2016 Faraday Discuss., 2016, 186, 215–228 | 219
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Fig. 3 The free-energy profile for cluster growth of particles with a co-ordination number
of (a) 4, (b) 8 and (c) 12. Simulation results from different umbrella sampling windows are
depicted in alternating styles to show their overlap. The thick dashed line corresponds to
brute-force simulations.10 In each case, there was one copy of each particle in a simulation
box of dimensions 62a � 62a � 62a.
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appearance. This is not an artefact of the simulation technique used or a lack of
equilibration, but rather reects the fact that as clusters grow, there is a
competition between the entropy loss associated with monomers losing their
translational and orientational degrees of freedom when they are attached to a
larger cluster and the energy gain associated with the formation of ‘designed’
interactions, which are, by construction, highly favourable. Tetrahedral structures
grow in a very predictable fashion, with steps at which clusters can form closed
cycles, for which the entropic penalty is compensated by not one, but two
designed bonds forming, having a considerably lower free energy than other steps
do.10,15,16 The critical cluster for tetrahedrally co-ordinated structures is typically
bicyclic or tricyclic (adamantane-like) with a single particle missing,10,15,16 i.e. the
size of the critical cluster is typically 8 or 9, and this cluster size appears to be
essentially temperature independent in the regime where nucleation can occur.
By contrast, the free-energy proles shown in Fig. 3, in agreement with our
220 | Faraday Discuss., 2016, 186, 215–228 This journal is © The Royal Society of Chemistry 2016
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theoretical prediction,16 are considerably smoother, and the temperature greatly
affects the size of the critical cluster. The reason for this behaviour is that there
are a considerably larger number of possibilities of forming different clusters
comprising the same number of building blocks;16 this makes the nucleation
considerably more classical, affecting both the smoothness and the dependence
of the critical nucleus size on temperature.

However, despite this quite different behaviour at high temperatures, the systems
behave in a less divergent manner at temperatures where the nucleation barrier is
sufficiently small compared to the thermal energy that nucleation can reasonably be
expected to occur. The degree of supercooling required in order to observe a nucle-
ation event is not signicantly different amongst the structures we have studied: if we
deem the temperature at which a pre-formed target structure fully ‘melts’ to be an
effective melting point, nucleation becomes sufficiently fast to observe in brute-force
simulations at a supercooling of approximately 2% for all target structures consid-
ered. The point at which mass aggregation occurs is also similar, at roughly 4%
supercooling. These results indicate that a more optimistic view of the possibility of
assembling high co-ordination number structures is perhaps warranted.

Nevertheless, one difference in the behaviour observed is noteworthy. At
temperatures at which there is a reasonably small free-energy barrier to nucle-
ation, the driving force for growth is considerably larger for higher co-ordination
number structures. One proxy for this is the gradient of the free-energy prole at
post-critical cluster sizes: this gradient has roughly the same value (��1.1kBT per
particle) in the tetrahedral case where the critical free-energy barrier height is
approximately 10kBT, and in the 8-co-ordinate structure at 338 K with a critical
free-energy barrier height of 25kBT. As the temperature is decreased, the effective
supersaturation increases: at 332 K, the large-cluster gradient of the free energy is
already�5kBT per particle. This means that the conditions in which the 8- and 12-
co-ordinate structures grow are considerably harsher than in the tetrahedral case,
which is likely to lead to more mistakes during assembly.11

In simulations where only one particle of each component is present, the
increased supersaturation may not interfere with correct self-assembly, since
competing structures are less likely to occur. Of course, in experiments, many
copies of each building block are present. To investigate whether higher co-
ordination number structures can still form in circumstances where competition
from additional monomers and clusters is possible, we have also simulated the
self-assembly process in the grand-canonical ensemble. We have run simulations
at a fugacity corresponding to the same ideal number density as in the canonical
simulations, starting from an empty simulation box of various volumes, and we
observe successful self-assembly to completion at a number of temperatures for
both the 8- and 12-co-ordinate structures.k Correctly assembled clusters grow
one-by-one in such simulations: at sufficiently high temperatures, nucleation
remains a rare event and the clusters grow essentially to completion before
additional clusters nucleate. This observation supports the conclusion from
canonical simulations that nucleation helps to prevent cluster interactions. These
k In the grand ensemble, the stability of the target structure at temperatures at which nucleation occurs
changes with the co-ordination number: for the tetrahedral structures, partially formed structures
dominate, whilst for high co-ordination structures, essentially fully formed structures result at the end
of the self-assembly process.
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grand-canonical simulations also conrm that the lack of competition from
monomers and clusters in solution is not the principal reason why self-assembly
can succeed in the canonical ensemble, and the self-assembly process is
surprisingly robust.

Despite this apparent success, the prediction that the greater supersaturation
leads tomore defects does hold. If we compare the largest assembled structures in
the grand ensemble at the highest temperature at which nucleation was found to
occur for co-ordination numbers of 4 and 12 (319 K and 338 K, respectively), the
high co-ordination number structures typically have one or two incorrect particles
embedded in the structure, and one or two vacancies, whilst the tetrahedral
structure is entirely error free. The error rates would, moreover, be expected to be
higher still if we implemented a ‘kinetic constraint’ to prevent the change of state
for any particle wholly within the solid structure to account for the relative
slowness of the relaxation dynamics within a solid structure:28 this would, in
particular, prevent vacancies from being lled when the rest of the structure has
already formed around them. While the number of defects in absolute terms is
not large even for the high co-ordination number structures, it is worth bearing in
mind that incorrect particles on the surface of the cluster can lead to additional
undesired clustering as the temperature is lowered and the clusters are allowed to
undergo diffusion for long periods of time.

One way in which the driving force for nucleation can be changed is by
strengthening or weakening the average bond energy between particles. When
using DNA bases, this can be achieved by varying the proportion of G and C bases
at the expense of A and T: the larger the GC content, the stronger on average the
hybridisation between two complementary strands will be.26 We have therefore
simulated the self-assembly of the same target structures, but with differently
chosen patch sequences. These are still chosen randomly, but with an appropriate
bias towards either GC or AT base pairs.** Because the DNA hybridisation free
energy itself depends strongly on the temperature, changing the bond strengths
in this way is not equivalent to simply shiing the temperature scale. We show in
Fig. 4 some additional free-energy barriers calculated for a system with stronger
average interactions. While the basic behaviour remains unchanged, the different
temperatures at which nucleation becomes feasible do affect the driving force for
growth and thus the likelihood of defects occurring during the process. For
example, if we compare the curves corresponding to T ¼ 352 K and T ¼ 344 K in
Fig. 4, the system with weaker bonds has a less negative large-cluster gradient of
the free energy as a function of the largest cluster size (��1.1kBT per particle
compared to ��1.5kBT per particle) and thus has a weaker driving force for
growth, even though the nucleation free-energy barrier is considerably smaller
(23kBT compared to 29.5 kBT). Moreover, the system with stronger bonds appears
to grow with more defects in a grand-canonical simulation, with typically three or
four incorrect particles bonded in the nal structure. A judicious choice of DNA
sequences can thus signicantly affect the probability that high co-ordination
number structures in particular can grow in a reasonably error-free manner.

One of the main advantages of the work on DNA bricks has been their
modularity, in the sense that a large range of target structures have been
** Terminal poly-T sequences are ignored in the GC content calculation.
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Fig. 4 The free-energy profile for cluster growth of particles with a co-ordination number
of 12 and a GC content of 68%. The free-energy profiles of Fig. 3 are reproduced in a
greyed-out hue.
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assembled from essentially the same building blocks: the cubic target structures
considered so far can be thought of as a ‘molecular canvas’.4,5 It is possible in
experiment to construct more intricate structures simply by excluding the
undesired bricks from the assembly pot, although in practice, poly-T DNA strands
were used at every non-bonded position to minimise undesired interactions. To
verify that this modularity continues to be a feature of target structures with a
higher co-ordination number, we have run grand-canonical simulations with
certain building blocks simply missing. This results in the self-assembly of more
complex target structures, exactly as expected. We show two structures that have
formed in such conditions in Fig. 5: a ‘top hat’ style structure and a cube with a
cavity. The self-assembly of these target structures from a cubic canvas conrms
that the modularity of the building blocks remains a feature in these high-co-
ordination number structures.

Moreover, we have run simulations in which the target number density of the
undesired building blocks is not set to zero, but rather to a nite but small
number. In principle, one would expect that the undesired building blocks need
not be completely absent from the reaction mixture, but must simply be vastly
outnumbered by the correct building blocks. Our simulations suggest that this is
indeed possible, but the fugacities (and hence the solution number densities) of
the undesired particles must be set to very low values in order to form the target
structure reproducibly. The precise value of the required fugacity depends on the
environment of the undesired particles in the underlying canvas structure. For
example, for structures with a co-ordination number of 12, if the target structure
is a ‘top hat’ (Fig. 5(b)), most of the undesired particles are outlying particles with
relatively few bonds connecting them to the remaining structure. It thus proves
possible to form the desired target structure reliably when the undesired particle
fugacities are set to approximately 0.5% of the desired particle fugacities of zdes ¼
2/(78a)3 (where 78a is the length of the simulation box in lattice units). Larger
‘undesired’ fugacities result in considerable attachment of the undesired parti-
cles over time. However, if the target structure is the central cavity structure of
Fig. 5(c), most of the undesired particles are at the centre of the cubic canvas and
any undesired bonding that does occur is rather stable; therefore an even lower
This journal is © The Royal Society of Chemistry 2016 Faraday Discuss., 2016, 186, 215–228 | 223
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Fig. 5 Snapshots from grand-canonical ensemble simulations of 12-co-ordinate particles
with a 68% GC content. T¼ 344 K. The fugacity of all ‘desired’ particle types is set to zdes ¼
2/(78a)3, where 78a is the length of the simulation box in lattice units. All simulation
snapshots shown here were obtained from the same building blocks, but with the fugacity
of particles not part of the ‘desired’ structure set to zero. In each case, the whole simu-
lation box and a close-up of the largest cluster are shown. (a) Original cubic target
structure. (b) ‘Top hat’ structure. (c) Central cavity structure.
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concentration of undesired particles is required in order to be able to self-
assemble the target structure robustly.†† Whilst in theory, designed structures
can form in a modular way even when the solution concentration of undesired
particles is non-zero, if the target structures are not passivated as they are in
experiment (with a poly-T sequence assigned to outlying non-bonding portions of
the single-stranded DNA), there is always the chance that at least some undesired
†† In addition, such a structure is considerably more difficult to nucleate than the full cube, since the
nucleus that forms must be near the edges of the target structure and has, of necessity, fewer bonds
and is thus less stable.
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particles will attach to the structure, either during growth or once the desired
structure is already fully assembled. In this sense, the experimental strategy of
passivating the outer surfaces appears to be very important and permits the
desired structure to be assembled even in slightly unclean environments.

4 Conclusions

We have shown that, using a simplied computational model for addressable
self-assembly, we are able to self-assemble structures with co-ordination numbers
as high as 12. This was a somewhat unexpected result, because we had previously
predicted that such structures will exhibit free-energy barriers to nucleation very
different – and less conducive to self-assembly – from those previously deter-
mined for tetrahedrally co-ordinated structures. Our theoretical work suggested
that the nucleation barriers would be less jagged in appearance and much more
classical in shape. We predicted that this indicated that self-assembly would be
considerably more challenging, because the supersaturation required for nucle-
ation free-energy barriers to be surmountable would need to be greater: so great,
we hypothesised, that competition from misassembled structures would domi-
nate and it would be impossible for high co-ordination number structures to be
assembled spontaneously in high yield.16

Indeed, the theoretical predictions we made about the free-energy barrier are
borne out in simulations, but the hypothesis that such structures would be
impossible to form is not. We have shown that the free-energy barriers do indeed
become less jagged, the critical cluster size is considerably more temperature-
dependent and it is more difficult to nd mild conditions under which error-free
self-assembly can occur. However, we have shown that despite this, it is still
possible to nd conditions under which the nucleation free-energy barrier is large
enough that nucleation is rare, but sufficiently small that it can nonetheless
sometimes occur, in conditions under which the stable structure lies along the
pathway towards the formation of a fully assembled and designed target struc-
ture. This is very good news, because it gives us some condence that higher co-
ordination number structures, which are expected to be of considerable interest
in nanotechnology, may indeed be possible to assemble using only a simple
protocol.

We have also shown that the design process is modular in much the same way
as it is for DNA bricks and that the designed structures self-assemble reproducibly
in computer simulations. However, it is necessary to qualify these successes of the
simulation method. The computational model we have used to study these effects
is very crude and neglects a number of aspects that are likely to be important in
any experimental realisation. Notwithstanding the molecular-level mechanisms
of DNA hybridisation that have been coarse-grained away, one particular limita-
tion of the model we have used is that it is a lattice model, which over-constrains
the geometry of the growing structures and favours their successful assembly.
This geometric constraint may be a signicant issue in experimental work,
perhaps especially so if DNA multi-arm motifs rather than coated colloidal
particles were used in the assembly process, as they are themselves not very stiff,
and the resulting poor geometry of the growing cluster may signicantly retard
the growth process. Such additional geometric considerations may cause diffi-
culties not only during the nucleation stage itself, where the additional loss of
This journal is © The Royal Society of Chemistry 2016 Faraday Discuss., 2016, 186, 215–228 | 225
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entropy of the monomers required to form a compact structure would likely
increase the height of the free-energy barrier, but because of the time involved in
the reorganisation of the monomer structure when bonding to the growing
clusters, they may also reduce the ratio of the rate of cluster growth relative to
cluster diffusion. This may make it more likely for different clusters in the system
to meet and interact, frustrating their correct assembly. It would be useful in
future work therefore to characterise more fully the effect of the cooling protocol
on addressable self-assembly.

These considerations may mean that not all possible experimental approaches
to many-component building blocks may result in successful self-assembly, and
so experimental success is far from guaranteed. It is likely to be the case that an
experimental realisation of such building blocks may involve a signicant
investment of time, effort and not least money. Nevertheless, since we have shown
that high co-ordination number self-assembly is computationally feasible, this
indicates that the underlying physics does not preclude such structures from self-
assembling: we hope this will help to stimulate experimental efforts to achieve
similar complexity.
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