The evolution of the surface of the mineral schreibersite in prebiotic chemistry
Abstract
We present a study of the reactions of the meteoritic mineral schreibersite (Fe,Ni)3P, focusing primarily on surface chemistry and prebiotic phosphorylation. In this work, a synthetic analogue of the mineral was synthesized by mixing stoichiometric proportions of elemental iron, nickel and phosphorus and heating in a tube furnace at 820 °C for approximately 235 hours under argon or under vacuum, a modification of the method of Skála and Drábek (2002). Once synthesized, the schreibersite was characterized to confirm the identity of the product as well as to elucidate the oxidation processes affecting the surface. In addition to characterization of the solid product, this schreibersite was reacted with water or with organic solutes in a choline chloride–urea deep eutectic mixture, to constrain potential prebiotic products. Major inorganic solutes produced by reaction of water include orthophosphate, phosphite, pyrophosphate and hypophosphate consistent with prior work on Fe3P corrosion. Additionally, schreibersite corrodes in water and dries down to form a deep eutectic solution, generating phosphorylated products, in this case phosphocholine, using this synthesized schreibersite.
- This article is part of the themed collection: Prebiotic chemistry and the molecular origins of life