Ramakrishna
Dadigala
a,
RajKumar
Bandi
a,
Bhagavanth Reddy
Gangapuram
ab and
Veerabhadram
Guttena
*a
aDepartment of Chemistry, Osmania University, Hyderabad, Telangana State 500007, India
bDepartment of Chemistry, PG Center Wanaparthy, Palamuru University, Mahabub Nagar, Telangana State 509001, India. E-mail: gvbhadram@gmail.com
First published on 4th September 2018
Although photocatalytic degradation is an ideal strategy for cleaning environmental pollution, it remains challenging to construct a highly efficient photocatalytic system by steering the charge flow in a precise manner. In this work, a novel, highly efficient, stable, and visible light active hybrid photocatalytic system consisting of FeWO4 and g-C3N4 nanosheets (CNNs) has been successfully prepared by an in situ self-assembly solvothermal approach. Several characterization techniques were employed to study the phase structures, morphologies, optical properties, surface composition and chemical state of the as-prepared samples. SEM and TEM results demonstrated that the FeWO4 nanoparticles are uniformly dispersed on the surface of CNNs with a diameter of about 10–20 nm, which could provide maximum interfacial contact and a synergistic coupling effect between FeWO4 and CNNs. XPS and FTIR results confirmed that there was strong electrostatic interaction between FeWO4 and CNNs, suggesting the formation of heterojunctions between them. In addition, UV-DRS and PL spectroscopy revealed that the FeWO4/CNN composites exhibited increased visible light absorption and improved charge generation/separation efficiency. As a result, the photocatalytic activity of the FeWO4/CNNs was enhanced in comparison with pure FeWO4 and CNNs for rhodamine B (RhB) and tetracycline (TC) degradation under natural sunlight irradiation. The photocatalytic efficiency of the optimal FeWO4/CNN composite (10 wt% FeWO4/CNNs) for the degradation of RhB (TC) was about 13.26 (4.95) and 86.2 (31.1) times higher than that of pure FeWO4 and CNNs, respectively. Meanwhile, the 10 wt% FeWO4/CNN sample exhibits good photocatalytic stability in recycling experiments. The enhanced photocatalytic activity may be attributed to the formation of the Z-scheme system between FeWO4 and CNNs, effectively prolonging the lifetime of the photoexcited electrons generated by CNNs and the photoexcited holes generated by FeWO4, which was subsequently confirmed by the active species trapping experiments and the calculation of relative band alignments. This work opens up a new feasible avenue to synthesize visible light active Z-scheme photocatalysts for application in energy production and environmental remediation.
Recently, two-dimensional (2D) materials have been widely studied in photocatalysis due to their unique structural and optical properties, of which the g-C3N4 material gained special attention because it is abundant, sustainable, environmentally friendly and has a suitable band gap and high chemical stability, making it potentially suitable for solar energy conversion and environmental purification.32–36 Unfortunately, pure g-C3N4 seriously suffers from poor photocatalytic efficiency because of a high recombination rate of photogenerated charge carriers.37–40 Besides, it is reported that g-C3N4 nanosheets show considerably superior photocatalytic activity compared to the bulk g-C3N4 resulting from the reduction of internal defects and improvement of the specific surface area.41,42 It can be predicted that the photocatalytic activity of g-C3N4-based photocatalysts may be further enhanced by increasing the specific surface area of bulk g-C3N4. Thus, it is accepted that the construction of g-C3N4-based Z-scheme photocatalysts with a narrow band gap semiconductor may provide bright prospects for dealing with the increasingly serious environmental pollution.
Recent studies have investigated some metal tungstates as potential co-catalyst candidates for photocatalytic applications, which could effectively reduce the recombination of charge carriers for improving the degradation of pollutants.43–45 Among these tungstates, the investigation of iron tungstate (FeWO4) has been widely reported in the literature due to its narrow band gap, and good magnetic and photocatalytic properties.46,47 Recently, FeWO4 has been explored for photocatalytic reactions with no co-catalysts.48,49 Furthermore, suitable matching of the band levels of FeWO4 with g-C3N4 nanosheets to form a direct Z-scheme photocatalytic system offers appropriate driving forces to separate and transfer photogenerated electron–hole pairs. As FeWO4 and g-C3N4 are both visible light driven photocatalysts, after combining the FeWO4 photocatalyst with g-C3N4 nanosheets, the obtained FeWO4/g-C3N4 nanosheet composite may be a promising candidate for efficient photocatalytic activity under visible light irradiation. However, to the best of our knowledge, no group has reported in situ growth of FeWO4 nanoparticles on the surface of g-C3N4 nanosheets by a facile solvothermal method for the degradation of RhB and TC under sunlight irradiation.
Based on the above considerations, herein we grew FeWO4 nanoparticles on the surface of g-C3N4 nanosheets by a facile solvothermal method to form composite catalysts for efficient degradation of organic pollutants and these composites were found to exhibit superior photocatalytic activity compared with the pure FeWO4, g-C3N4 nanosheets and mechanically mixed catalyst. It was found that the composite photocatalysts exhibited not only an improved photocatalytic activity but also excellent stability and reusability during the photocatalytic process, which can be mainly attributed to the synergistic effect between FeWO4 and g-C3N4 nanosheets. Furthermore, a possible direct Z-scheme mechanism for the enhanced photocatalytic activity of the FeWO4/g-C3N4 nanosheet composite was also discussed based on the relative band gap positions of these two semiconductors and the free radical trapping experimental results. Detailed characterization of the structure, composition, and optical properties of the as-prepared photocatalysts was also carried out.
In addition, a control sample was also prepared by mechanical grinding of CNNs and FeWO4. A mixture of FeWO4 and CNNs was finely ground and then calcined at 200 °C for 12 h. After cooling to room temperature, the resultant product was collected and crushed to powder for further use. The mass ratio of FeWO4 and CNNs in the sample was the same as that in the optimal composite catalyst of FeWO4/CNNs [10-FWO/CNNs]. The control sample was denoted as FeWO4 + CNNs. More details about the materials and characterization methods are provided in the ESI.†
Scheme 1 Schematic representation of the preparation of bulk g-C3N4, g-C3N4 nanosheets and FeWO4/g-C3N4 nanosheet composites. |
Fig. 1 (a) XRD patterns of CN, CNNs, FeWO4 and the FeWO4/CNNs composites and (b) magnified curves of CN and CNNs. |
The morphology and microstructure of the as-prepared samples were investigated by SEM and TEM. Fig. 2a–d show the SEM images of CN, CNNs, FeWO4 and the 10-FWO/CNNs composite, respectively. As shown in Fig. 2a, the pure CN has a layered structure composed of tightly stacked g-C3N4 nanosheets several micrometers in size. And as expected, after exfoliation, the CNNs (Fig. 2b) exhibited a clear two-dimensional sheet-like structure with wrinkled edges, which further confirmed the successful exfoliation of CN.50 Furthermore, the thickness of CNNs decreases dramatically, which may result in an increase in the specific surface area and reactive species.57 From Fig. 2c, it can be seen that pure FeWO4 exhibited spherical shapes with a diameter of 10–20 nm. In the case of the 10-FWO/CNN composite (Fig. 2d), we can clearly see that numerous FeWO4 nanoparticles are well dispersed on the surface of CNNs. The EDS spectrum analysis of the 10-FWO/CNN composite (Fig. 2e) reveals that it contains of C, N, Fe, W, and O elements, which further confirmed the coexistence of CNN and FeWO4 phases in the FeWO4/CNN composites.
Fig. 2 SEM images of (a) CN, (b) CNNs, (c) FeWO4 and (d) the 10-FWO/CNNs composite; and (e) the corresponding EDS image of the 10-FWO/CNN composite. |
TEM was also performed to further confirm the morphology of CNNs and the FeWO4/CNN composite formed. The TEM image shown in Fig. 3a further proved that the CNNs have a lamellar structure, with several stacking layers. The TEM image of 10-FWO/CNNs in Fig. 3b demonstrates that the FeWO4 nanoparticles are uniformly dispersed on the surface of CNNs with a diameter of about 10–20 nm, which is in good agreement with the SEM results. Given the different morphologies of FeWO4 and CNNs, the dark parts in the TEM image should be FeWO4, while the light parts correspond to CNNs. These highly dispersed FeWO4 nanoparticles could provide maximum interfacial contact with the CNN surface, which could further strengthen the synergistic coupling effect between FeWO4 and CNNs. Moreover, the intimate contact between FeWO4 and CNNs would further strengthen the photogenerated charge separation and transfer.58 To observe in detail the interface between FeWO4 and CNNs, HRTEM analysis was also performed. As shown in Fig. 3a and c, a lattice spacing of 0.326 nm that corresponds to the (002) crystallographic plane of g-C3N4 (ref. 38 and 59) and a clear lattice fringe of 0.37 nm ascribed to the (002) planes of FeWO4 (ref. 51) were observed, which confirms the formation of heterojunctions via the in situ growth of FeWO4 on the CNN surface. The formed interface is favorable for the transport of photogenerated charge carriers, and thereby promotes the separation of electron–hole pairs.
Fig. 3 TEM images of the (a) CNNs and (b) 10-FWO/CNN composite; and (c) HRTEM image of the 10-FWO/CNN composite. |
XPS analysis was performed to investigate the surface chemical states and bonding configuration of the pure CNNs and 10-FWO/CNN composite and the results (survey and high resolution spectra) are shown in Fig. 4. The survey XPS spectrum (Fig. 4a) of the 10-FWO/CNN composite exhibited strong C 1s and N 1s peaks related to the g-C3N4 phase, together with Fe 2p, W 4f and O 1s peaks related to the FeWO4 phase without any contamination, and the survey XPS spectrum of CNNs contains C 1s, N 1s and O 1s peaks. In addition, the small peak of O 1s in CNNs is assigned to adsorbed oxygen species. Fig. 4b shows the high-resolution spectra of C 1s. Pure CNNs show two peaks at 284.6 eV and 288.1 eV, which can be assigned to the sp2 C–C bond and sp2 bonded carbon of N–CN coordination present in the triazine rings of g-C3N4, respectively.43 The 10-FWO/CNN composite also displayed the two C 1s peaks. However, compared with pure CNNs, the binding energy of 10-FWO/CNNs at 288.1 eV was shifted to 288.4 eV, while the position of the peak at 284.6 remained unchanged. The N 1s spectrum of CNNs (Fig. 4c) was deconvoluted into three peaks at 398.8, 399.8 and 401.1 eV, which could be assigned to sp2 hybridized aromatic nitrogen atoms bonded to carbon atoms (C–NC), tertiary nitrogen groups (N–(C)3), and uncondensed amino groups (C–N–H), respectively.43 The N 1s binding energies of CNNs shifted to 339.1, 400.4 and 401.5 eV for 10-FWO/CNNs, respectively. These results indicate that the carbon and nitrogen atoms present in CNNs formed the binding interaction with metal species of FeWO4. In Fig. 4d, the peaks at 710.4 and 723.9 eV are assigned to the binding energies of Fe 2p3/2 and 2p1/2 respectively, and are characteristic of Fe2+ in the FeWO4 material.51 The W 4f peaks at 35.5 and 37.8 eV in Fig. 4e correspond to the W 4f7/2 and W 4f5/2 binding energies of W6+ in FeWO4,60 respectively. The O 1s peak at 530.1 eV (Fig. 4f) corresponds to the FeWO4 oxygen atom.60 The shifting of C 1s and N 1s peaks and presence of Fe 2p, W 4f and O 1s peaks in the 10-FWO/CNN composite can be ascribed to the fact that FeWO4 hybridized with CNNs during the in situ growth process, also indicating that certain chemical interactions are possibly formed between them, as observed in TEM images.
The chemical structure and functional groups of the as-prepared samples were studied using FTIR spectra and the results are shown in Fig. 5a. For the FTIR spectrum of pure FeWO4, the absorption bands appearing at 834 and 877 cm−1 were due to the symmetrical vibrations of bridging oxygen atoms of Fe–O–W. The absorption band at 650–680 cm−1 can be due to the stretching mode of W–O in WO6 octahedra and the absorption band at 556 cm−1 is the characteristic stretching vibration of the Fe–O bond in hematite particles.43 In the FTIR spectrum of CN, the series of bands observed in the region of 1200–1650 cm−1 are ascribed to the stretching vibration of C–N heterocycles, while the broad band at 3000–3500 cm−1 is ascribed to the stretching vibration of N–H groups and surface adsorbed hydroxyl groups. In addition, the band at 810 cm−1 originates from a breathing mode of s-triazine units.28,54,61 It can be seen that the characteristic FTIR spectrum of CNNs is similar to that of CN, indicating that the g-C3N4 chemical structure has not been destroyed after the exfoliation process. Moreover, the FTIR spectra of the FeWO4/CNNs composites are similar to that of pure CNNs, and all the characteristic absorption bands of CNNs appear in the composites, suggesting that no structural change of CNNs occurs during the composite formation. After introducing FeWO4 into CNNs, the characteristic bands from the C–N heterocycles of CNNs appear as blue shifts (Fig. 5b), indicating that there might be some interactions between the C–N heterocycles of g-C3N4 and FeWO4. From the TEM, XPS and FTIR results, we concluded that there was strong electrostatic interaction between FeWO4 and CNNs, which could promote photogenerated electron–hole pair separation and transfer, and further enhance the photocatalytic performance of the FeWO4/CNN composites.
Fig. 5 (a) FTIR spectra of CN, CNNs, FeWO4 and the FeWO4/CNN composites; and (b) magnified curves in the range of 700 to 1800 cm−1. |
The light absorption properties of the as-prepared samples were examined by UV-vis DRS analysis (Fig. 6). As shown in Fig. 6a, CNNs show a slight blue shift of the absorption edge with respect to that of CN, which is ascribed to the quantum confinement effect of g-C3N4 nanosheets and is consistent with previous reports.62 The pure FeWO4 exhibited profound absorption over a wide spectral region from UV to visible light. After the introduction of FeWO4 into CNNs, the composite samples exhibited stronger optical absorption in the visible region compared with CNNs, and the absorption intensities of these composites are strengthened with an increase in the FeWO4 content. This demonstrates well that the in situ grown FeWO4 nanoparticles can act as a sensitizer for enhancing the visible light absorption of CNNs, suggesting that the FeWO4/CNN composites can harvest more light energy and produce more photogenerated charge carriers.
Fig. 6 (a) UV-vis diffuse reflectance spectra of CN, CNNs, FeWO4 and the FeWO4/CNN composites; (b) (αhν)1/2versus hν plot of CNNs and CN; and (c) (αhν)2versus hν plot of FeWO4. |
The energy level and band gap of the semiconductors play a crucial role in determining their physical properties. The band gap energies of the as-prepared photocatalysts can be calculated using the following formula45
αhν = A(hν − Eg)n/2 |
Generally, the PL spectra of photocatalysts can be used to illustrate the recombination rate of the photogenerated electron–hole pairs; it is known that higher PL intensity usually means more recombination of electron–hole pairs and lower photocatalytic activity. Fig. 7 shows the PL spectra of the as-prepared samples. It can be observed that both the CN and CNNs have a strong PL peak at an excitation wavelength of 360 nm, which could be related to the recombination of the photogenerated electron–hole pairs in g-C3N4. A blue shifted peak for CNNs compared with that for CN is mainly due to shifted conduction band and valence band edges, which is caused by the well-known quantum confinement effect.62 After coupling CNNs with FeWO4, the emission peak intensities decreased significantly, indicating that the recombination of electron–hole pairs is greatly suppressed by the introduction of FeWO4. One reason might be that coupling with FeWO4 may change the transition path of photogenerated electrons to the ground state for CNNs, which may result from interactions between CNNs and FeWO4. As a result, the charge separation could be promoted on the FeWO4/CNN composites, leading to the higher photocatalytic activity of the composite photocatalysts. From Fig. 7, it can also be seen that the PL peak positions shifted to lower wavelengths with the increase in the amount of FeWO4. This may be caused by the strong interaction between the FeWO4 and CNNs in the composite samples, which also occurred in the g-C3N4–WO3 system.59
A physical mixture of FeWO4 and CNNs (defined as FeWO4 + CNNs) was also tested for RhB and TC degradation, and it exhibited much weaker photocatalytic activity as compared to the in situ synthesized FeWO4/CNN composites. This fact indicates that intimate contact between FeWO4 and CNNs is crucial for the interfacial charge transfer between the two semiconductors, which improves the separation efficiency of photogenerated electron–hole pairs and ultimately enhances the photocatalytic activity.
To quantitatively study the reaction kinetics of RhB and TC degradation, the experimental data were analyzed using the pseudo-first-order kinetic model, ln(Ct/C0) = −kt,52 where k is the rate constant, C0 is the initial concentration of RhB or TC, and Ct is the concentration of RhB or TC at time t. This equation is well built for photocatalytic experiments when the pollutant is in the millimolar concentration range. The k value can be determined by a linear fit of the plot of ln(Ct/C0) versus reaction time, as shown in Fig. 8c and d. The calculated k values for RhB and TC degradation over all the photocatalysts are listed in Table 1; it can be seen that the k values of 10-FWO/CNNs for RhB and TC photodegradation were 86.2 times and 31.1 times higher than that of pure FeWO4, and 13.26 and 4.95 times as high as that of individual CNNs, respectively, revealing that the introduction of FeWO4 greatly influences the performance of the composite photocatalysts. As a result, the 10-FWO/CNNs were the optimal performing sample among all composites.
Photocatalyst | Rate constant (min−1) | |
---|---|---|
Rhodamine B | Tetracycline | |
FeWO4 | 0.000711 | 0.000757 |
CN | 0.00302 | 0.00368 |
CNNs | 0.00463 | 0.00476 |
FeWO4 + CNNs | 0.00728 | 0.00593 |
5-FWO/CNNs | 0.0322 | 0.0222 |
10-FWO/CNNs | 0.0614 | 0.0236 |
15-FWO/CNNs | 0.0272 | 0.0181 |
20-FWO/CNNs | 0.0203 | 0.0150 |
The time-dependent UV-vis absorption spectral changes of the RhB and TC under sunlight irradiation in the presence of 10-FWO/CNNs are shown in Fig. S1a and b.† The characteristic peak intensities of RhB and TC gradually decreased by prolonging the irradiation time, revealing the degradation of the pollutants. The shifts of the characteristic peaks indicate the presence of decomposition products of the pollutants.
In addition to the photocatalytic activity, the stability of photocatalysts is another important parameter for practical application. To evaluate the stability and reusability of the FeWO4/CNN composites, recycling reactions were performed for the photodegradation of RhB over the optimized catalyst (10-FWO/CNNs) under sunlight irradiation (Fig. 9). As shown in Fig. 9, very interestingly, no significant reduction of photocatalytic efficiency was observed up to the fourth cycle (there was a slight decrease derived from the loss of the photocatalyst during the cycling process), which implies the high stability of the photocatalyst during photodegradation. The XRD and FTIR patterns of the 10-FWO/CNN composite were also investigated after four recycling runs. As shown in Fig. S2a and b,† the XRD and FTIR patterns of the 10-FWO/CNN composite before and after reaction reveal that the phase and structure remained unchanged. Therefore, it is evident that the FeWO4/CNN composite does not undergo any photocorrosion or photobleaching during the degradation experiments.
For the sake of theoretical investigation of the mechanism of photodegradation, the valence band (VB) and conduction band (CB) edge potentials of the FeWO4 and g-C3N4 were determined using the following empirical equations:45
EVB = χ − Ee + 0.5Eg |
ECB = EVB − Eg |
In theory, the photogenerated electrons in the CB of FeWO4 cannot reduce O2 to give ˙O2−, because the CB edge potential of FeWO4 (0.75 eV vs. NHE) is more positive than the standard redox potentials of O2/˙O2− (−0.33 eV vs. NHE).27,45 However, the photogenerated holes in the VB of FeWO4 can oxidize H2O to give ˙OH, because the VB potential of FeWO4 is more positive than the standard redox potentials of H2O/˙OH (2.68 eV vs. NHE).26,58 For the CNNs, because the CB edge potential of CNNs (−1.135 eV vs. NHE) is more negative than the standard redox potentials of O2/˙O2−, the photogenerated electrons can reduce O2 to give ˙O2−. Meanwhile, since the VB potential of CNNs is lower than the standard redox potentials of H2O/˙OH, the photogenerated holes in the VB of CNNs cannot oxidize H2O to give ˙OH.
If the charge carrier transfer in the FeWO4/CNN composites occurs through a type-II heterojunction mechanism (Fig. 11a), the electrons in the CB of CNNs will migrate to the CB of FeWO4, and the holes in the VB of FeWO4 will migrate to the VB of CNNs. As a result, the electrons get accumulated in the CB of FeWO4 and cannot reduce O2 to ˙O2−, and the holes get accumulated in the VB of CNNs and cannot oxidize H2O to ˙OH. Hence, this kind of electron–hole transfer process is not favorable for the formation of active species, and leads to lower photocatalytic activity of the reaction system. Nevertheless, the radical trapping experiment and TAPL analysis implied that ˙O2− and ˙OH are the major reactive species in the FeWO4/CNN photocatalytic system, and the photocatalyst exhibited higher photocatalytic activity. Therefore the separation process of the photogenerated electron–hole pairs in this system did not follow the type-II heterojunction mechanism, but might have occurred through the Z-scheme mechanism.
On the basis of the above experimental results and band structure analysis of FeWO4 and CNNs, a Z-scheme mechanism was proposed to explain the enhanced photocatalytic performance of the FeWO4/CNN composites and is schematically illustrated in Fig. 11b. Under illumination of sunlight, both FeWO4 and CNNs can be excited to generate electron–hole pairs. The photogenerated electrons in the CB of FeWO4 tend to transfer and recombine with the photogenerated holes in the VB of CNNs. In this way, the larger number of photogenerated electrons accumulated in the CB of CNNs can reduce the adsorbed O2 to form more ˙O2−. Meanwhile, the photogenerated holes left behind in the VB of FeWO4 can oxidize the adsorbed H2O to give ˙OH. Therefore, the photocatalytic activity of the FeWO4/CNN system is significantly increased, and RhB or TC is decomposed by ˙O2− and ˙OH reactive species. Therefore, a conclusion can be drawn that the photocatalytic reaction of the as-prepared FeWO4/CNN composites followed a direct Z-scheme mechanism, which could improve the photogenerated electron–hole pair separation and transfer and show a strong oxidation and reduction ability for the effective degradation of organic pollutants.
Footnote |
† Electronic supplementary information (ESI) available: A part of the Experimental section, time-dependent UV-vis absorption spectra of rhodamine B and tetracycline solution, and XRD patterns and FTIR spectra of the 10-FWO/CNN composite before and after photocatalytic reaction. See DOI: 10.1039/c8na00041g |
This journal is © The Royal Society of Chemistry 2019 |