Paul J. A.
Withers
*a,
James J.
Elser
b,
Julian
Hilton
c,
Hisao
Ohtake
d,
Willem J.
Schipper
e and
Kimo C.
van Dijk
f
aSchool of Environment, Natural Resources and Geography, Bangor University, Bangor, Gwynedd LL57 2UW, UK. E-mail: p.withers@bangor.ac.uk
bSchool of Life Sciences, Arizona State University, Tempe, Arizona 85287-4501, USA
cAleff Group, Cross Keys Centre, 36 Erith High Street, Erith, London, DA8 1QY, UK
dDepartment of Biotechnology, Osaka University, Yamada-oka 2-1, Suita-shi, Osaka, Japan
eWillem Schipper Consulting, Oude Vlissingseweg 4, 4336 AD Middelburg, The Netherlands
fDepartment of Soil Quality, Wageningen University, P.O. Box 47, 6700 AA Wageningen, The Netherlands
First published on 9th March 2015
The sustainability of global phosphorus (P) use is emerging as a major societal goal to secure future food, energy, and water security for a growing population. Phosphate rock (PR) is a critical raw material whose inefficiency of use is leading to widespread eutrophication and uncertainties about supplies of affordable fertilizers. Green chemistry and green engineering can be applied to help close the global P cycle by addressing three sustainability challenges: (1) consume less PR and with greater efficiency, (2) minimise P losses and generation of waste P that can no longer be re-used, and (3) set economically, socially and environmentally acceptable P sustainability targets to lower P demand. Greater precision in P use by the agriculture sector (the main P flow) supported by smarter PR mining and processing technology could greatly improve global P use efficiency. Emerging bio-based and green chemical technologies could be more widely applied to enhance first- and second-generation valorization of low-grade PR ores, manures, by-products and residues to provide renewable secondary sources of P and other essential elements and compounds. All sectors of society have the potential to lower their P demands, and all production systems could be redesigned to facilitate recovery and recycling of P. Collectively these ‘green engineering’ actions at sector and regional level can help achieve planetary P sustainability.
(J. Elser quoted in Lougheed (2011)).1
Phosphorus (P) is a critical element for our food production systems, manufacturing industries, and general economic growth whose long-term security of supply is of major concern for regional and national economies. Phosphate rock (PR) is mined for processing into P derivates, such as phosphoric acid (PA, H3PO4) and white phosphorus (P4), for final use in various products that society uses ranging from fertilizers to toothpaste to car batteries. The mineable reserves of PR are essentially finite for the human era because of the geological timescales over which the natural cycling and therefore renewability of P occurs. Current high rates of P consumption (over 20 Tg P year−1)2 driven largely by fertilizer use are putting increasing pressure on the global supplies of this vital resource, leading to rising and volatile prices.3 Estimates of how long global PR reserves will last are uncertain and currently vary from <100 up to 400 years, but their accessibility and cost are a major concern for many countries with no PR reserves, such as Europe.4,5 Future demand for P in emerging economies, notable in Africa and Asia, is anticipated to be very high, while rising demands are also imposed by expanding biofuel production.6 Ironically, a more immediate environmental problem is the widespread leakage of P to waterbodies where it causes nuisance algal blooms, loss of aquatic biodiversity, and increased risk to human health.7 These pressing problems have been evidenced quite tangibly in the bloom-induced drinking water crises that have emerged in recent years in Lake Taihu (China)8 and Lake Erie (USA/Canada).9 Phosphorus is therefore both a critical element and a pollutant and must be used more efficiently and sustainably in the future to help safeguard future food, energy and water security.5,10–12
Phosphorus has no substitute, but can be continually re-used, and is thus a prime example of a critical resource that could be utilized more efficiently in a circular economy to support sustainable growth with less pollution.13,14 The current P cycle is inherently inefficient because the vast majority of the P that is mined each year becomes dissipated in low-grade PR ores, manures, by-products and residues that are not fully re-used or re-used uniformly, and in surface waters and seas. Actual rates of P re-use will clearly vary considerably between sectors and countries, but a recent review of P budgets across different geographical scales suggests it is <20% of total P inflows.15,16 This is a low percentage and there continues to be large scale disposal of P to landfill in developed countries. A large proportion of dissipated P (wrongly termed waste) could potentially be re-used as secondary P resources subject to technological and financial constraints.17–19 A distinction has been made between strategies that enhance P re-use through more uniform recycling directly back to land, and those that first require recovery through innovation in bio- and chemical engineering.5 True wastage occurs when P is dissipated to the oceans. These permanent P losses have quadrupled due to anthropogenic activity in the 20th century and must also be reduced.20
Achieving long-term sustainability of P use in society will require insights from a variety of emerging approaches, including “green chemistry” and “green engineering”.21,22 In the context of P, these two concepts adopt the same core principles of (a) the development of benign products and processes, (b) the elimination of waste, (c) the use of renewable (secondary) resources, and (d) the design of output-driven production systems with minimum requirements and maximum efficiency.23 These green principles will be critical in developing new strategies for how we use P in the technosphere and how products can be designed in the future with a focus on recycling. For example, an immediate green chemistry challenge is to remove and re-use the potentially harmful elements naturally present in PR, such Cadmium (Cd), Uranium (U) and Lead (Pb), that might persist in the environment or through the food chain.24 The cradle-to-cradle philosophy implicit in green chemistry has yet to be fully adopted by sectors in the P cycle, although the conceptual basis for achieving this transition exists through P accounting and recent drivers towards industry sustainability and a circular economy.13,25–27 This probably relates to the relatively recent recognition of P as a critical resource by government and industry, and P sustainability as a serious societal problem. For example, PR has only just been recognized in Europe as a critical raw material.28 Considering the environmental impact of the whole life cycle, and afterlife, of P products and not just the impact of their initial manufacture will also require a large paradigm shift in attitude by all stakeholders and actors in defining societal P needs and how systems can be best designed to meet them.29–31
This paper outlines a variety of avenues for the application of green chemistry principles and practice to transform P use in society. We describe a variety of existing and emerging technologies and strategies for elemental re-use in the P cycle. If not constrained by cost, their adoption will help deliver a sustainable P system that can sustain future generations with abundant food, feed, fibre, fuel, clean water and other essential P products society relies on. After a synopsis of global P use, we consider sustainability and green chemistry challenges in recycling and recovery technologies within different sectors and then system design with some regional examples of progress. Our ultimate objective is to inspire green chemists and engineers to take a major role in developing and implementing a more efficient and sustainable P cycle.
Fig. 1 Phosphorus cycling in the technosphere showing thought bubbles suggesting where green technologies and innovations could improve P sustainability by reducing P fluxes, losses and wastage. Points of P loss are shown by dotted lines. Adapted from Sylvester-Bradley and Withers.32 |
Two major issues emerge from global P budgeting. The first is that food consumption patterns and global trade in food, feed and livestock products have a major impact on P flows and their global distribution.35 In particular, increasing demand for meat is a major driver of fertilizer and feed P consumption and a major cause of global inefficiency of P use.36 This is because large areas of agricultural land are needed to grow the fodder and grain to feed animals, and 70–80% of the P consumed by animals is excreted and must be handled. The second issue is that the amount of new PR mined each year is currently about 30 Tg of P, whilst the actual incremental demand for new P by a growing world population is estimated at only 1 Tg P year−1.2,37 This highlights the gross inefficiency of the global P cycle and the necessary infrastructure and societal costs of handling dissipated P. Sheldon introduced the E Factor (or Environmental Factor) to describe the ratio of the amounts of waste generated per unit of product processed.23 Although not strictly comparable, PR production has an E factor of at least 30 making it similar to the fine chemical industry in terms of waste generation.
The first stage of waste generation is in the mining operation and subsequent processing to PA, with global estimates of unrecovered P amounting to 7–11 Tg P year−1.2 Over 80% of mined PR is used to manufacture fertilizers (chiefly through PA), with the remainder used in feed and food additives mainly as calcium and sodium phosphates (through PA), and in the chemical industry as white phosphorus (from PR).38 The majority of fertilizer P accumulates in the soil from where crops take up their P requirements to be harvested or grazed into food for animals and humans. Excreted P is either recycled back to the land, incinerated, taken to landfill after treatment or discharged to water (Fig. 1). Fluxes of P through animals are similar in size to those through crops (arable crops and managed grass, ca. 20–25 Tg year−1, and dominate the technosphere P budget.33,39 Globally there is more P in animal excreta than in manufactured fertilizers, but both grazing returns and collected manure are not recycled uniformly. Animal slaughter also leads to significant amounts of slaughter waste which is often co-incinerated for its fuel value in cement works and power stations. Global estimates of P in slaughterhouse waste suggest it could be 10–15% of total P imports and therefore significant.40 For example, for Europe it represents about 70% of the P imported into the livestock sector.15
High animal stocking rates in some areas lead to an oversupply of collected manure P for the available land area. This misplacement of P, together with its intrinsically high P content, is both a source of localized P surplus, P accumulation in soil and P loss in land runoff causing a high eutrophication risk.41,42 Surpluses of P in soil also arise due to excessive fertilizer use.43,44 Global surpluses of P accumulating in agricultural soils are estimated at 11–16 Tg P year−1.45,46 The legacy soil P associated with cumulative past P surpluses therefore represents a considerable P resource base to reduce P fertilizer use.5,47 For example, Ringeval et al. recently estimated that over 80% of the total P in French soils (0–35 cm) was of anthropogenic origin.48 Estimates of global P losses in land runoff to water associated with erosion and direct losses from the fertilizers and manures applied are typically quoted at 13–24 Tg year−1.2,33,46 Although there is large uncertainty around these runoff losses, there is clearly potential to reduce them.
The flux of P associated with consumed food, with smaller contributions from detergents and other materials is ca. 5 Tg year−1.45,49 The majority of this P input ends up in wastewater, or in solid (largely food) waste. Wastewater P is either discharged directly to watercourses, or treated in a septic tank or collectively at a treatment centre. Wastewater treatment plants (WWTPs) are estimated to receive about 4 Tg P year−1, of which up to 90% is removed in the form of sewage sludge depending on local effluent regulations. Of this P rich sludge, ca. 50% is returned to the land as biosolids, but this figure can vary considerably; for example in Europe between 0 and 80%.15 The remainder of sewage P, i.e. that is not captured in the sludge, is discharged to water as treated sewage effluent amounting to ca. 1.5 Tg P year−1.50 Globally consumer waste is increasingly being recycled, but the majority is still disposed of in landfill or incinerated.51 Total amounts of household and industrial P that are disposed of to landfill, or incinerated are estimated at 2–3 Tg P year−1.2 The total amounts of P potentially recoverable from wastewater effluent, landfill and incineration are therefore only ca. 5 Tg P year−1, and much lower than the larger global fluxes of P retrievable from agricultural systems.
Global usage of P in the chemical industry is estimated at only 1–3 Tg year−1, but there are still opportunities to recycle industrial residues containing P.18,49,52 The use of P in applications that might be considered non-essential are also relatively minor (1 Tg P year−1), but still contribute to the P cycle.2 This evidently raises debate on which applications of P are considered unnecessary and what the consequences of replacement would be. Detergent P is one example of unnecessary P that is now being phased out in the USA and Europe.2,5
Fig. 2 The Phosphate Refinery for production of renewable secondary P sources in agriculture and industry. After Ohtake.18,54 |
Fig. 3 Components present in food chain waste and their uses in common consumer applications, highlighting sectors of the chemical industry that could benefit from the use of such a renewable resource. After Clark et al.58 |
• address all available resources from a given site/deposit in an integrated resource management strategy |
• disturb the ground once |
• construct regulation of naturally occurring radioactive materials (NORM) industries based on shared values between operators and regulators |
• obtain and keep a social licence to operate, focused on equitable distribution of benefits between stakeholders and stockholders |
• sequence extraction procedures and select extraction technologies to optimise deposit returns, e.g. by classifying and progressing resources on a whole “energetic basin” project management basis |
• extract and store resources that would otherwise be wasted or dispersed for future use |
• manage resources across the whole life-cycle seeking to conserve primary resources and substitute secondary resources for primary where feasible |
• align to the waste hierarchy seeking all opportunities for re-use and recycling of by-products, residues and “wastes”, resulting in a zero waste outcome |
• promote new product development as strategic alternative to waste disposal (e.g. from recycling tailings or residues) |
• ensure a net positive contribution to food, energy and water security as part of a wider commitment to sustainable development |
The challenge of recovery of P from low-grade PR ores (BPL values of 50 or above) is stimulating innovation in an industry that has been very change averse. Ecophos and the Improved Hard process (IHP) are typical examples of such innovation. The Ecophos process expands on the well-known hydrochloric acid route to dissolve phosphate from rock (http://www.ecophos.com). This serves as an alternative to the standard sulphuric acid method (wet process), which is applied worldwide to produce PA. Unlike the latter, the hydrochloric acid route does not create an insoluble stream of PG to separate the calcium oxide from the PA, but instead produces soluble calcium chloride which remains mixed with the PA product. This poses a separation challenge which can be surmounted by solvent extraction of the PA, or precipitation with lime. The latter chemistry yields feed grade phosphates in the form of dicalcium phosphate. This process has a marked operational cost advantage if hydrochloric acid waste is locally available and is more sustainable than the market procurement of sulphur (S), which is needed to produce sulphuric acid for the conventional wet process of PA manufacture. The IHP uses the local formation of P4 in a heated mixture of low-grade rock and a low-cost reduction agent such as petcoke. The off gases are oxidized immediately, giving off sufficient heat to keep the process going without significant external energy input. The now-oxidized P is hydrolysed to PA which is used in fertilizer and industrial phosphates manufacture. The process is eminently suited to use low-grade rocks, being competitive in variable cost for these, and might use other locally available P-rich waste also as input. This process has seen a very long development phase and is now at pilot stage near Fort Meade, Florida. The operator anticipates this will become commercially viable sometime in the coming years based on a 200000 t PA yr−1 production plant.64
Another sustainable development within the mining industry has been the focus on registering mine and PA processing wastes, reducing their volume and re-using them. The efficiency of P extraction from PR ore is very variable, with estimates of P losses and wastage during mining, beneficiation, chemical processing and handling of between 15 and 50% (average 30%) depending on PR quality and the methods deployed.38,49,63 This wastage could be substantially reduced by optimising the PR extraction process and recovering P from mine tailings and the by-product PG produced during PA manufacture.19 About 20 Tg (dry weight) of mine tailings equivalent to 1 Tg P year−1, and about 160–170 Tg of PG (dry weight) equivalent to 0.5 Tg P year−1 are produced each year.63 Reducing ore waste at the mine face is being explored through laser technology to improve ore quality detection, and mine tailings can be flocculated and thickened using polymers and re-used to strengthen concrete.63 As a result of an evidence-based review by the International Atomic Energy Agency,65 PG is also no longer classed as a hazardous waste (it contains the radionuclide Radium, Ra), but as a co-product, encouraging its re-use rather than indefinite disposal to stacks. By 2015, annualised re-use of PG as a soil amendment and fertilizer in agriculture, as a building and road base material in the construction industry and as a source of ammonium sulphate (through the Merseburg process) will be at least 30 Tg year−1 from a near zero base in 2008. However, although their re-use has increased, the recovery of P from mine tailings and PG remains a challenge and one potentially for green chemistry to tackle.
Fig. 4 Schematic overview of the main options to recover P from manures and biosolids. Adapted from Oenema et al.53 and Schoumans et al.55 |
Drying, or prior separation before drying and pelletizing may pose an environmentally acceptable solution, allowing the dried manure (nutrient concentrate) to be transported over longer distances to crop producing areas with P demand. Separation of the P-poor liquid fraction to allow more efficient drying of the P-rich solid fraction requires separate treatment and/or disposal of the liquid which increases cost. Green chemistry techniques to combust whole (wet) manures without separation by supercritical and subcritical oxidation or and water gasification for energy production could provide a solution, but are still in their infancy.55 Alternatively, bulky manures or separated solids can be anaerobically digested, incinerated or pyrolysed to provide energy (Fig. 4). Pyrolysis can promote the conversion of animal manure into charcoal (i.e. biochar) by heating to 300–550 °C in the absence of oxygen, thereby reducing the solid volume. Biochar is proving a useful soil amendment and fertilizer with low greenhouse gas emissions.73 Pyrolysis has also been used as a pre-treatment for raw biomass which is not suitable for direct combustion because of a low energy density and high moisture content.74 Gasification heats manure at higher temperatures (800–1000 °C) but loses more of the carbon as CO2.55 Incineration of animal manure is an attractive option in regions with a high animal density, particularly for handling chicken manure, and the incineration ash, contains a considerable amount of P and can be processed into fertilizers (see wastewater sector below).75
Wastewater from the vegetable industry has been conventionally treated with iron salts to remove P to allow discharge to rivers, but alternative green chemistry approaches are now being explored. In the potato industry after anaerobic digestion of the organic matter to produce biogas, P is recovered from the P-rich wastewater as struvite by adjusting pH and adding magnesium chloride in the NuReSyS-P process (http://www.nuresys.com).56 The process is suitable for any anaerobic digestate or P-rich wastewater (>55 mg PO4-P L−1) with up to 80% P recovery and produces a crystalline struvite product suitable for re-use as fertilizer. A similar process used in the potato industry uses a fluid-bed crystallizer partially filled with sand or mineral to seed the crystallization process to struvite or calcium phosphate (Crystalactor®).78 The process is accurately controlled to limit the growth of the crystals to approximately 1 mm which then move to the bottom of the bed for removal and drying. The advantage of this process is that there is no residual waste because the nearly dry phosphate pellets are fully recovered and useable. However, the pH adjustments to the inflow necessary before entry to the bed are quite demanding in terms of energy (CO2 stripping) and chemicals (acids/bases).56 A comparable approach currently under investigation is recovering P from vegetable wastewater as calcium phosphate for subsequent conversion to PA for use in the chemical industry (http://www.biorefine.eu).
Food waste contains non-negligible amounts of P, not least because society wastes at least a third of its food, whilst in rich countries it can be up to 40%.79,80 As food waste has by definition been safe for consumption before its expiry, it is suited for composting (provided packaging can be separated) and the small amount of P in the ensuing compost contributes to its wider agricultural value. As such, it may not be necessary to selectively extract P from food waste, but rather see it as an essential if minor part of its wider agricultural value as a soil amendment, or as a source of other second generation critical compounds.81
To avoid potential environmental and human health risks, there is an increasing global trend towards sludge incineration with the ashes offering an entry point for P recovery and metal removal to produce fertilizers that are safer to store, handle and apply.88,89 The green chemistry advantage of this route is the near-complete collection of sewage P provided WWTPs are well-designed and meet operational criteria. There is also potential to recover other non-renewable elements of value to society (e.g. K, Zn, Cu, Se).57 While P recovery from liquid phases at WWTP is only 40–50% at most, recovery of P from ashes is up to 90%.56 Thermo-chemical and wet chemistry technologies using acid or caustic digestion of these ashes can produce P products with high P-availability suitable for animal feed or fertilizers, or as elemental P, whilst also removing any heavy metal contamination that might otherwise reduce the recycling value.52,55 For example an innovative refinement of the hydrochloric acid technology used in the Ecophos process to produce feed phosphate from sewage sludge ashes is currently being investigated and may achieve full scale in 2017 (http://www.ecophos.com). Two full-scale plants have been implemented in Japan to recover P from incinerated sludge ash using alkaline (NaOH) leaching technology to minimize the leaching of heavy metals from the ash that would otherwise contaminate the recovered product.18 The relatively low level of Ca (typically less than 10% CaO by weight) in the ash makes alkaline leaching sufficiently efficient. Such routes are economical wherever a local source of attractively priced NaOH (e.g. as by-product) is available.
An alternative green engineering approach to P removal in WWTPs is by biological treatment, a setup where little or no further chemical P removal is needed.54 In enhanced biological P removal (EBPR), alternate anaerobic and aerobic cycles facilitate polyphosphate accumulation in microorganisms.90 Inorganic P (Pi) can be released from EBPR sludge in a more concentrated form by various technologies, including heat treatment,91 anaerobiosis,92 anaerobic digestion,93 and incineration followed by chemical leaching.94,95 P can also be recovered from Pi-rich solution using precipitation technologies with inorganic cations such as Ca2+ or Mg2+, producing either calcium hydroxyapatite (Ca10(PO4)6(OH)2), or struvite (MgNH4PO4·6H2O).96,97 Struvite poses a scaling issue in EBPR plants, and its targeted precipitation therefore offers considerable operational cost savings. The recovered product has so far proved a useful slow-release fertilizer, but recovery of struvite from liquid phases is only applicable in WWTP with EBPR.55 Recovery of struvite directly from the digested sludge is also in operation (e.g. Airprex, and Seaborne processes), but not on a large scale due to economic feasibility and national legislation.56 In the Seaborne process, P and metals are recovered separately. Digested sludge is first acidified with sulphuric acid to mobilise P and heavy metals, the metals are removed with sulphur-rich digester gas and the P is precipitated as struvite by addition of sodium hydroxide. Both struvite and ammonium sulphate produced from the process can be re-used in agriculture. A more green chemistry approach at the pilot stage is the Budenheim process which uses carbon dioxide rather than acid to dissolve the P in the sludge before precipitating the P as calcium phosphate.77 The CO2 extractions are very efficient at mobilising the P with 60–70% recovery and the used CO2 is recycled in the process (http://www.budenheim.com).
A number of potential green and bio-engineering solutions to recover P from dilute wastewaters are at the pilot scale. Amorphous calcium silicate hydrates (A-CSHs) synthesized using natural and low cost materials, such as siliceous shale and calcium hydroxide (Ca(OH)2) have proved an effective option to recover P from aqueous solutions by simple adsorption.98 Similar suitable materials can even be obtained from construction material production waste. The lack of any need for pH adjustment and the high settling rates, filterability, and dewaterability of recovered P are the advantages of A-CSHs over conventional CaCl2 and Ca(OH)2 chemistry.99 No chemical coagulants are required for P recovery by A-CSHs, and, unlike Ca(OH)2, no significant carbonate inhibition occurs with P recovery with A-CSHs. Other novel phosphate-binding materials for treating wastewater have included polymeric hydrogels synthesized by chemically crosslinking linear poly(allylamine) PAA⋯HCl chains with epichlorohydrin, and ion-exchangeable ceramic beads (0.55 mm diameter and 85% porosity) which exhibit a high specificity for fast phosphate adsorption over a wide pH range (pH 2 to 14), and can be used more than 100 times.100,101 With an increasing need to further lower WWTP effluent P concentrations for eutrophication control, sorption and ion exchange may become more attractive green engineering approaches for enhanced wastewater P recovery in the future.102,103 Microfiltration (0.2 μm) and nanofiltration technology together with various pre-treatment steps also have the potential to produce recovered products with specific N:P ratios from wastewaters.60,71 Microalgal recovery of wastewater P for re-use in biodiesel production is another bio-based technology, but the economics of this route still remain unfavourable.104,105
Elemental P from this process, or the classical production route, serves as the base for a large number of derivatives. Processing routes include the intermediate product phosphorus trichloride (PCl3), the workhorse for organic P chemistry. The chlorine in this case merely serves as a means to activate the P atom and does not turn up in most – if not all – final products. Therefore, more direct and green routes to such derivatives are needed. Chlorine free routes have been pioneered by CNR-ICCOM, Thermphos International and are now being pursued by the SusPhos project, aimed at green non-phosphate (i.e. white P) based chemistry especially in fine chemistry applications (http://www.susphos.eu). For example, triphenylphosphine (TPP) is commonly used in the Wittig reaction for the industrial production of Vitamin A, carotenoids and many other alkenes. Yet, the P-containing by-product, triphenylphosphine oxide (TPPO), does not currently have a large-scale application, which results in thousands of tonnes of solid P-containing waste.106 SusPhos aims to achieve an economic recycling protocol to create a P waste-free Wittig reaction, which can be applied throughout a wide range of industrial processes. More generally, using white P in an atom efficient way remains a challenge for the non-fertilizer P industry. Designing products to allow re-use over and over again is also a goal for such industries.
High-grade PA is widely used in the chemical and manufacturing industries and a considerable portion could be recovered and recycled from different industrial wastes.11 In terms of quantity, P emitted into steel-making slag is a particularly important secondary P resource and is an input to the P cycle outside the usual PR-based inputs. Coal and iron ore, which are essential raw materials for the manufacture of iron and steel, contain small amounts of P (typically less than 0.03% P2O5 by weight). Since P has detrimental effects on the mechanical properties of steel, it is removed into dephosphorizing slag at concentrations as high as 2–10% P2O5 by weight.107 The global production of iron ore is approximately 2000 Tg year−1. Steel slags therefore contain approximately 0.6 Tg P year−1, which is equivalent to one-fifth of the annual world industrial P demand (2.8 Tg P year−1). Removing P from these slags would allow their iron content to be recovered in the process, adding economic benefits to this P recovery route. As elemental P is reported in some of these cases as a nuisance, its targeted recovery poses a challenge for green chemistry. The separation of iron and other metals from the product (P4 or PA) may be difficult to achieve.
Similarly fertilizer use efficiency could be increased at the field scale through improved product formulation design and by more precise application methods targeting the crop rather than the soil.120,121 The synthesis of nano-particle P fertilizers that are able to supply P to crops efficiently and with lower leaching risk represents a significant advance. Stable hydroxyapatite nanoparticles (15.5 nm in diameter) have been successfully synthesized using sodium carboxymethyl cellulose solution and used to fertilize soybean.122 Fertilizer P nanoparticles (28.2 nm in diameter) have also been recently biosynthesized from tricalcium phosphate using mycelium from the Aspergillus tubingensis fungus.123 The green engineering advantage of these nanoparticles is that they can be potentially be (bio)-synthesized from a range of secondary P products, and engineered so that the particle size (and hence P uptake rate) can be matched to the P uptake patterns of different crops, thereby improving P efficiency.
It has been suggested that society could potentially substitute at least 50% of its PR processing requirement based on recovered secondary P at the regional scale.15,18,45,77 Such predictions belie the huge financial and social challenges in developing and marketing recovered products that have suitable physical and chemical consistency, good P availability, are safe to use and are economically viable. In view of these constraints, progress in greening the global P cycle will be more realistically achieved in the short term through sector and regional level initiatives.21,29,53 For example, green chemistry principles have already been adopted in regional government policies towards circular and bio-based economies,13 and in sustainable food production initiatives such as Origin Green in Ireland.124 New smarter, more diversified and customer-focused business models are rapidly emerging in the mining industries that take account of the their wider social responsibilities, the need to raise safety and environmental standards and reduce wastage.27 For example, under a government-industry covenant, Amsterdam-based ICL has committed to substituting its entire PR feedstock, amounting to 0.5 Tg year−1 with secondary P, initially from human wastewater. Yet more ambitious are the aspirations of leading edge Chinese producer Wengfu, who have taken a top-down policy-led decision to reach zero waste by 2015, which includes 100% re-use of PG as ammonium sulphate and calcium carbonate.63 This has entailed restructuring the company from being a fertilizer only company to having three divisions, fertilizers, chemical products and construction materials. It has also started to recover a wide range of materials from phosphate ores, including 100 t year−1 of iodine.
This journal is © The Royal Society of Chemistry 2015 |