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-assisted materials development
and device management in batteries and
supercapacitors: performance comparison and
challenges

Swarn Jha,*a Matthew Yen, b Yazmin Soto Salinas,a Evan Palmer,a John Villafuertea

and Hong Liang *ac

Machine learning (ML) has been the focus in recent studies aiming to improve battery and supercapacitor

technology. Its application in materials research has demonstrated promising results for accelerating the

discovery of energy materials. Additionally, battery management systems incorporating data-driven

techniques are expected to provide accurate state estimation and improve the useful lifetime of

batteries. This review briefs the ML process, common algorithms, advantages, disadvantages, and

limitations of first-principles materials science research techniques. The focus of discussion is on the

latest approaches, algorithms, and model accuracies for screening materials, determining structure–

property relationships, optimizing electrochemical performance, and monitoring electrochemical device

health. We emphasize the current challenges of ML-based energy materials research, including limited

data availability, sparse datasets, and high dimensionality, which can lead to low generalizability and

overfitting. An analysis of ML models is performed to identify the most robust algorithms and important

input features in specific applications for batteries and supercapacitors. The accuracy of various

algorithms for predicting remaining useful life, cycle life, state of charge, state of health, and capacitance

has been collected. Given the wide range of methods for developing ML models, this manuscript

provides an overview of the most robust models developed to date and a starting point for future

researchers at the intersection of ML and energy materials. Finally, an outlook on areas of high-impact

research in ML-based energy storage is provided.
1. Introduction

Electrochemical energy storage has become central to everyday
life and is critical for transitioning society to renewable energy
sources. Improvements to these energy storage systems are
urgently needed for enhancing their energy density, power
density, safety, cost, and lifetime. Many research studies have
focused on the computational discovery of novel energy mate-
rials.1 Signicant advances in computing power and methods
based on density functional theory (DFT) have enabled
researchers to simulate and calculate the properties of complex
atomic systems with high accuracy.2 This led to high-
throughput screening of candidate materials, but in
a restricted search space, making materials discovery for
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electrochemical energy storage difficult and time-consuming.3

The rise of data-driven machine learning (ML) has opened up
the possibility to search much wider material spaces with both
high speed and accuracy.4
1.1 Machine learning overview

Machine Learning involves the use of algorithms that can be
used to identify the underlying hidden patterns and relation-
ships within a dataset. It has been used to perform seemingly
simple human tasks from speech recognition,5 image recogni-
tion,6 and driving,7 to highly complex tasks like time series
forecasting,8 cancer diagnoses,9 and anomaly detection.10 ML
has been very inuential in various elds with the growing
amount of data being collected and transmitted everywhere. Its
success in many of these applications has allowed ML to
become central to everyday life.

ML algorithms can be placed into four main categories:
supervised, unsupervised, reinforced, and semi-supervised
learning.11 Supervised learning algorithms utilize labeled data,
where the model determines the relationship between known
features and an output. Meanwhile, unsupervised learning
This journal is © The Royal Society of Chemistry 2023
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Fig. 1 Decision tree identifying when supervised, semi-supervised,
unsupervised, and reinforcement learning should be used.
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algorithms are utilized when the data has no labels. This allows
users to identify hidden patterns and gain insights from a large,
complex dataset that has no ground truth. Semi-supervised
learning algorithms are the middle ground between super-
vised and unsupervised learning, where the available data has
both labeled and unlabeled observations. Reinforcement
learning also does not use ground truth labels but is capable of
taking actions that maximize rewards to ultimately reach
a solution.12 These algorithms provide exible and efficient
approaches to discovering new understandings from “big data”.
The decision tree in Fig. 1 illustrates the situations in which
each type of ML algorithm can be used.

Most approaches in physical science studies rely on super-
vised learning algorithms to train models that make predic-
tions.13 In prediction tasks, each data point is described by a set
of features or descriptors, and the output ground-truth label of
a data point is already known. A trained supervised ML model
uses this set of features to map the relationship to its respective
output label. Prediction tasks that involve supervised ML
include regression and classication, where the output is
a continuous value and a categorical label, respectively. A key
element of supervised learning is that error can be evaluated
quantitatively based on discrepancies between the prediction
and the actual output, also known as a loss function. During
training, an optimization algorithm like gradient descent is
used to minimize this loss function and achieve the minimum
error.

Although less commonly used in physical science studies,
unsupervised learning algorithms are important for descriptive
tasks, like clustering and anomaly detection.14 As with super-
vised ML, each data point is described by a set of features.
However, the output label of a data point is unknown, and
rather than predicting a continuous value as the output, the
output is the cluster or clusters that a data point belongs. The
purpose of unsupervised ML is to enable the automatic labeling
of data points in a dataset, which would be extremely time-
consuming to manually perform. The challenge of unsuper-
vised learning tasks is that without any ground-truth labels,
This journal is © The Royal Society of Chemistry 2023
determining model performance is much more difficult. Eval-
uating unsupervised models requires internal validation
metrics, which rely on quantifying how similar data points
within the same cluster are to each other and how different they
are from data points in other clusters.

Semi-supervised learning is especially useful in physical
science studies, where small labeled datasets are commonly an
issue. One important application is active learning, where the
algorithm is initially trained on a labeled dataset and then
poses queries to the user in a human-in-the-loop process to
determine the label for the queried data point.15 This frame-
work has excellent potential in accelerating the search for
optimal material designs through guided experimentation, as
will be demonstrated throughout this review.

Reinforcement learning is different from both supervised
and unsupervised learning in that no initial dataset is needed.
The concept is inspired by behavioral psychology, where the
algorithm learns through trial and error, ultimately aiming to
maximize a reward function while interacting with its environ-
ment.16 It also has great potential for accelerating the materials
design processes.
1.2 Common algorithms

ML can be applied and utilized using a wide variety of inter-
faces, such as scikit-learn,17 Tensorow,18 Pytorch,19 Keras,20

Armadillo,21 and several others. On top of this, there is a wide
variety of algorithms that can be utilized, with some of the most
prominent mentioned here.

1.2.1. Linear regression. Linear regression falls under the
supervised classication of ML algorithms. It consists of two
main types which are simple regression and multivariable
regression. Simple regression relates a single feature to a single
output value in the form of eqn (1).22

Y = bx + C + 3 (1)

where C is the y-intercept, b is the coefficient, x is the value of
the feature, and 3 is noise. Multiple features can also be
accounted for using multiple regression shown in eqn (2).

Y = b1x1 + b2x2 +.+ bnxn +C +3 (2)

Linear regression is attractive due to its excellent interpret-
ability, unparalleled performance when dealing with linear
data, as well as its simplicity. For example, Fig. 2a shows how
the data points would be modeled by linear regression, where
increasing x values lead to increasing y values. On the other
hand, dealing with linear regression introduces some disad-
vantages that include the assumption of linearity between input
and output variables, as well as being insufficient in modeling
complex relationships.23 However, nonlinearity may be
accounted for by using the “kernel trick”, which transforms
a feature before performing the regression.22

1.2.2. Logistic regression. The logistic regression algorithm
can be described as a linear regression model that is passed
through a sigmoid function, allowing the model to be applied to
classication problems, where the output is a probability
J. Mater. Chem. A, 2023, 11, 3904–3936 | 3905
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Fig. 2 Representations of (a) linear regression, (b) logistic regression, (c) decision tree, and (d) support vector machine.
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between 0 and 1. The form of the logistic regression equation
follows eqn (2), which is then constrained through the sigmoid
function in eqn. (3).24

Y ¼ eðCþbxþ3Þ

1þ eðCþbxþ3Þ (3)

The classication with the highest probability is the output.
This is demonstrated in Fig. 2b, where data points lie between
two categories (binary classication) based on the independent
variable. Logistic regression is resilient to overtting, has high
computational efficiency, avoids making assumptions
regarding the distribution of classes, and achieves high accu-
racy with linear problems. However, logistic regression is prone
to overtting and is unable to accurately model nonlinear
decision boundaries.25

1.2.3. Decision tree. The decision tree (DT) is a supervised
ML algorithm that generates a tree consisting of nodes, leaves,
and branches, and can perform classication and regression
tasks.25 It works through the progressive splitting of nodes
based on different parameters to reach the leaves that represent
the output. As shown in Fig. 2c, DT can output continuous
values for regression tasks with the ability to model nonlinear
functions. DTs have great interpretability, require minimal data
preparation, perform well with a nonlinear correlation between
the parameters, and have the ability to identify feature impor-
tance.26 However, it is prone to overtting and is not able to
make predictions for data outside the range of the training set.27

1.2.4. Support vector machine. Support vector machine
(SVM) is a supervised ML algorithm based on the structural risk
minimization principle that is well suited for classication and
regression. In regression tasks, SVM uses a kernel function to
transform the data to a higher dimension. Fig. 2d demonstrates
the hyperplane that is drawn with surrounding boundary lines
that form the margin of tolerance. This algorithm has gained
noticeable popularity due to its competency in dealing with
homogenous data.28 SVMs have demonstrated excellent gener-
alization capabilities and have good performance with linearly
constrained quadratic problems.29 Choosing the optimal kernel
function has a strong inuence on accuracy and can be difficult
to tune, and SVM may not perform well with large datasets.30

1.2.5. Articial neural network. The articial neural
network (ANN), inspired by the biological neural network, is
3906 | J. Mater. Chem. A, 2023, 11, 3904–3936
a collection of connected parameterized functions.31 Similar to
a biological brain, ANN operates by receiving a set of inputs,
processing the signal through layers of neurons, and outputting
a transformed signal. At each neuron, all the neurons from the
previous layer are multiplied by a weight and are summed
together to get a value, which is then passed through an acti-
vation function. Through consecutive epochs, optimal weight
distribution for each neuron connection is attained through
backpropagation. ANN can generate both linear and non-linear
models, thereby introducing a broader range of applications in
comparison to other algorithms.32 ANNs are also reputable for
generating outputs despite the corruption of some neurons,
having a distributed memory, parallel processing capability,
and an ability to generalize to unseen data.33
1.3 Advantages of ML

ML has been utilized in the energy storage sector due to its
capability of drastically increasing computational speed, com-
prehending complex mechanisms, and optimizing perfor-
mance through energy storage management systems.34 A
successful ML model performs predictions that are cheap and
accurate, allowing researchers to identify materials with desir-
able properties without the need for costly experiments or
simulations.35 In physics-based ML, complicated physical
processes are modeled solely through learned relationships
between the input and output values of a given dataset.36 These
methods are currently used for nding new materials through
crystal structure prediction, which can greatly reduce the
consumption of DFT calculation and computing resources, and
composition prediction.37 ML algorithms are easily able to learn
high-dimensional data, where hundreds of different features
can be utilized as input. Algorithms such as deep neural
networks and support vector regression (SVR) can be trained to
accurately predict values of highly dynamic systems, such as
state of charge (SOC) in electric vehicles, where constantly
changing external factors and driving behaviors play a signi-
cant role.38,39 However, there also exists a tradeoff between the
accuracy of the ML model compared to DFT.40 Currently, ML
enables rapid predictions for high-throughput tasks, but at
a lower accuracy, while DFT allows for high accuracy at the
expense of speed and high computational cost. The most
prominent advantage of ML is that as more data is continuously
collected and published through experimentation, training
This journal is © The Royal Society of Chemistry 2023
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datasets will also expand, therefore, increasing the size of
potential training datasets for MLmodels to continue becoming
more accurate and generalizable.
1.4 Disadvantages of ML

Though ML has many useful applications for researchers, there
are still several disadvantages that need to be discussed.
According to the “No Free Lunch” theorem, all ML algorithms
will have the same average performance for all possible opti-
mization problems.41 Thus, it is important to test a variety of
algorithms and identify which performs best for a particular
problem. With each approach, different levels of accuracy can
be achieved with varying levels of efficiency.38,39,42,43 Several ML
algorithms also require hyperparameter tuning, an important
step for choosing the best model conguration to achieve the
highest accuracy. This can become time-consuming in some
cases, such as with neural networks, where several possible
hyperparameters can be selected, leading to very expensive
training if all possible congurations were to be tested.
Bayesian optimization (BO), Particle Swarm Optimization,
genetic algorithms (GAs), and several other methods have been
employed to improve hyperparameter optimization.44 In addi-
tion, feature engineering can drastically increase the number of
ML training runs needed to identify the best subset of features.
Proper feature selection is necessary as it can have signicant
implications on model accuracy, generalizability, and
Fig. 3 Advantages and disadvantages of machine learning. Created with

This journal is © The Royal Society of Chemistry 2023
complexity.45 Since algorithms strictly learn from a provided
dataset during training, bias present in any dataset must be
considered whenmaking predictions, as an insufficient amount
of data can cause model accuracy and generalizability to
suffer.46 Datasets must be homogenized and processed before
they can be used, taking into account the input shape and
format supported by the algorithm. Careful attention must be
taken to prevent training unnecessarily complex models, which
can cause overtting to a specic dataset and limit practicality.47

Overtting is a common issue, especially with small, high-
dimensional datasets, but can be mitigated through feature
elimination. The advantages and disadvantages of the entire
ML process are summarized in Fig. 3.
1.5 Combining ML with rst-principles approaches

DFT and molecular dynamics (MD) are widely used rst-
principles techniques for simulating atomic structures and
computing the properties of materials through approximations
of the laws of quantum mechanics.48 The only inputs that are
required to carry out calculations are crystal structure and
material composition. Theoretical rst-principles simulations
have been widely used for elucidating structure–property rela-
tionships, probing rational synthesis methodologies, and
providing invaluable experimental guidance.49 Despite having
greater cost efficiency than conventional trial-and-error experi-
mentation and providing theoretical guidance, rst-principles
http://biorender.com/.
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methods have limits. They require solving the many-particle
Schrödinger equation, which currently requires several
approximations. Consequently, its accuracy is limited in various
situations that are yet to be resolved.50 There is also a limited
ability to simulate complex experimental conditions due to high
computational requirements, with denser and more complex
structures being particularly more computationally expensive.51

The high computational cost of rst-principles modeling also
makes it an inefficient high-throughput technique for screening
vast amounts of materials or discovering newmaterials.52 DFT is
limited to calculations ranging from several tens to a few
thousand atoms, as its complexity increases cubically with the
number of atoms.53 And with MD being computationally
intensive, simulations are very time-restricted, lasting from tens
to hundreds of picoseconds.54 An application of an active
learning algorithm is shown in Fig. 4a, where on-the-y ML was
Fig. 4 (a) Active learning coupledwith MD to simulate the collective diffu
movement direction. Reprinted with permission from ref. 54. Copyright 2
machine learning models and their application in energy materials rese
guided experimentation and data mining. Created with http://biorender

3908 | J. Mater. Chem. A, 2023, 11, 3904–3936
used to minimize the cost of training an interatomic potential
model used in MD simulations of Li-ion diffusion. This method
increased the efficiency of MD by 7 orders of magnitude and
calculates migration energies in close agreement with experi-
mental values.

By combining ML algorithms with rst-principles computa-
tions, the result is a trained model that can quickly derive
material properties. This allows researchers to screen for
candidate materials from large materials databases and predict
properties of novel materials without having to perform any
more time-consuming computational simulations.40,55–57 A
general workow for developing ML models and their applica-
tion in materials science research is illustrated in Fig. 4b.
Researchers that have applied ML methods to DFT calculations
discovered that optimized models were capable of making
accurate predictions of material properties outside of the
sion of Li-ions in Li3B7O12, where colored arrows illustrate simultaneous
020 American Chemical Society. (b) General workflow for developing
arch. Some applications of trained machine learning models include
.com/.

This journal is © The Royal Society of Chemistry 2023
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training dataset.58 Some researchers have even bypassed per-
forming DFT calculations by using easily accessible material
properties from previous experiments or materials databases to
make predictions for other properties, reducing the computa-
tional cost of the materials screening process by several orders
of magnitude.59,60 A hierarchy demonstrating materials design
through a combination of ML, rst-principles methods, and
experimentation is illustrated in Fig. 5. At the bottom is exper-
imentation, the slowest among the methods, which provides
the ground truth information. In the next layer up is compu-
tational simulation like DFT and MD, which is faster than
experimentation, but still computationally inefficient and con-
strained in its abilities. At the top is ML with the highest speed
for properties prediction, but can have limited accuracy and
generalizability. Data from experiments and computational
simulations are leveraged for training and improving models
that map features to target properties in ML models. For
materials discovery and design through ML, the ultimate goal is
to accelerate the identication of new materials with excellent
properties outside of the given training dataset. Thus, model
extrapolation is necessary, followed by verication through
theoretical simulations and experimentation.

Determining structure–function relationships from training
datasets through ML is key to signicantly accelerating mate-
rials discovery and design.61 ML was rst developed around the
1950s. Some techniques commonly used in ML, such as linear
and logistic regression, were introduced much earlier, as shown
Fig. 5 Hierarchy of materials design through ML involving a framework o
Adapted from ref. 118, 196–198 with permission from Elsevier and the Roya
Society of Chemistry. Created with http://biorender.com/.

This journal is © The Royal Society of Chemistry 2023
in the timeline of Fig. 6a. In the general ML workow, the rst
step involves data collection. This can be done through exper-
imentation or rst-principles calculations or can be collected
from public databases. Next, pre-processing data includes
splitting the dataset into training and test sets, normalization,
and homogenization. Then, feature engineering can be carried
out to reduce dimensionality, remove highly correlated features,
decrease model complexity, and improve model accuracy.62

Working with high-dimensional data can lead to sparse and
computationally intensive models. Some commonly used
dimensionality reduction techniques include principal compo-
nent analysis (PCA), Pearson correlation, and least absolute
shrinkage and selection operator (LASSO). During model
training, techniques such as grid search and cross-validation
are used for hyperparameter optimization. Evaluation metrics,
commonly including coefficient of determination (R2), root
mean squared error (RMSE), mean absolute error (MAE), and
mean absolute percent error (MAPE) are then used to quantify
model accuracy.63 Ultimately, ML can be used to generate
knowledge-based rules for screening a large number of mate-
rials.64 Another application of ML is active learning systems
capable of guiding experimentation to achieve much faster
material design and optimization.65 ML has also been intro-
duced for estimating the health of energy storage devices like
batteries and supercapacitors with computational efficiency
useful for real-time management.34 As shown in Fig. 6b and c,
the number of publications regarding the application of ML in
f experimentation, computational simulations, and ML model training.
l Society of Chemistry. Copyright 2018 Elsevier. Copyright 2018 Royal
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battery and supercapacitor research each year in the past
decade has grown substantially.

ML has demonstrated high-quality results for designing
energy storage materials that have been experimentally vali-
dated by researchers in a design-to-device process. The design-
to-device process is key for conrming the accuracy of ML and
simulated optimal materials design. Liow et al. demonstrated
a design-to-device approach by training a gradient boosting
regression (GBR) model to predict the discharge capacities of Li-
ion batteries (LIBs) based on cathode synthesis variables.66

Experimental validation of the optimal synthesis parameters
demonstrated a high discharge capacity of 209.5 mA h g−1 and
coulombic efficiency of 86%. Similarly, for a supercapacitor
design-to-device approach, Ghosh et al. used a RF model to
predict the specic capacitance of a novel electrode material,
cerium oxynitride, and observed a RMSE of 0.3 F g−1.67 With
experimental validation, the synthesized supercapacitor ach-
ieved a high specic capacitance of 214 F g−1 and high cyclic
stability of 100% aer ∼10 000 cycles. Park et al. employed
a combined ML-DFT screening using a multilayer perceptron
(MLP) model to screen formation energies of layered-oxide K-
ion battery cathode materials.68 Aer screening potential
candidates, the predicted material with the greatest stability
was K0.3Mn0.9Cu0.1O2, which was then synthesized to experi-
mentally validate the simulated data. The synthesized
compound proved to be in good agreement with the predicted
values, with the synthesized battery demonstrating high
discharge capacity, power density, and cyclic stability. Dave
et al.145 proposed a closed-loop experimental process that
combines robotics for automated experimentation with
a Bayesian optimization framework to optimize the ionic
conductivity of non-aqueous electrolytes. Aer 42 experimental
iterations, 6 electrolytes were measured with ionic conductivi-
ties above 12mS cm−1. When applied in a cell for validation, the
proposed electrolyte demonstrated improved discharging
capacity aer 4C fast-charging. Overall, this achievement
demonstrated a 6-fold time acceleration compared to random
search experimentation. Verduzco et al. demonstrated the
effectiveness of ML in accelerating the search for high ionic
conductivity lithium lanthanum zirconium oxide (LLZO)
garnets.69 Emulating the search for the highest ionic conduc-
tivity LLZO garnet as of 2020, the researchers utilized an active
learning framework to guide which experimental data points to
train the RF model on and predict the best candidate compo-
sition. Ultimately, 30% fewer experimental investigations of
different LLZO garnets published since 2005 were necessary to
identify the highest ionic conductivity composition. As
described above, ML has already demonstrated its potential for
accelerating the search for novel high-performing energy
storage materials through studies that have carried out the
entire design-to-device process.

Previous reviews on ML-guided energy materials and energy
storage devices research have demonstrated a trend of novel
approaches allowing for an expanding number of more complex
applications. Chen et al. provided a critical review of the
applications of ML to predict ionic conductivity, elastic moduli,
and interatomic potentials of Li compounds.70 Wang et al.
3910 | J. Mater. Chem. A, 2023, 11, 3904–3936
focused on recent applications of ML for predicting the elec-
trochemical performance of carbon-based supercapacitors.71

Liu et al. compiled several studies regarding the application of
ML to predict the properties of rechargeable battery electrolytes
and electrode materials.72 Kang et al. portrayed how ML appli-
cations for energy materials have assisted quantum chemistry
techniques, allowing for the prediction of electronic structure,
crystal structure, LIB performance, and the optimization of
experimental studies.73 These reviews are mainly focused on the
novel applications of ML research in energy materials and
storage devices, but there is a need for a review of the predictive
accuracy of these approaches to highlight the most promising
approaches and the most robust models for specic
applications.

This review compares and provides insights into the accu-
racies of recently developed ML approaches in energy materials
research. Here, we provide a review of recently developed ML-
guided models applied to predicting energy material proper-
ties, discovering materials, and predicting and optimizing the
performance of batteries and supercapacitors. We also provide
a direct comparison of the various ML algorithms that have
been proposed to clearly illustrate their prediction accuracies,
highlight the most successful models, and recommend future
directions for ML studies in energy storage technology. Finally,
we highlight opportunities for future research in applyingML to
aid advancements in energy materials.
2. Predicting material properties

The ability to understand complex, nonlinear structure–prop-
erty relationships is crucial for accelerating the discovery of
high-performance energy storage materials.74,75 To uncover
these structure–property relationships, data from experiments
and rst-principles calculations must be collected. Many
researchers have utilized published material datasets, such as
the Materials Project,76 Open Quantum Materials Database
(OQMD),77 Automatic FLOW for Materials Discovery (AFLOW),78

Novel Materials Discovery (NOMAD),79 and several others. By
signicantly reducing the computational costs of rst-
principles calculations for screening large datasets of candi-
date materials, ML can accelerate the discovery of new high-
performance energy storage materials.
2.1 Redox potential

Redox potential characterizes a material's tendency to be
reduced or oxidized, a crucial property for identifying high
voltage and high energy density electrode materials.80 When
considering candidate electrode materials, predicting the redox
potential through DFT modeling is computationally expen-
sive.81 Organic cathode materials have become extensively
researched due to their environmental friendliness, low cost,
and tunable electronic nature.82 Allam et al. developed ANN,
GBR, and kernel ridge regression (KRR) models to predict the
redox potential of carbon-based electrode materials.58 The
researchers utilized LASSO and Pearson correlation to reduce
the number of features from 20 875 to 7. KRR achieved the
This journal is © The Royal Society of Chemistry 2023
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Fig. 6 (a) Timeline depicting the introduction of various ML algorithms. The number of publications in 2012–2022 on (b) machine learning and
batteries, and (c) machine learning and supercapacitors. Data obtained from Google scholar (https://scholar.google.com/)
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lowest training RMSE of 0.158 V, and when applied to materials
outside the range of the training data, the model had a 3.94%
MAPE, demonstrating excellent generalizability. Doan et al.
trained a Gaussian process regression (GPR) model to predict
oxidation potentials of homobenzylic ether (HBE) redoxomers.57

With a training set of 1400 HBEs and 49 structural features, PCA
reduced the number of features to 15, allowing GPR to achieve
a test set RMSE of 0.097 V. The rst two principal components
are illustrated in Fig. 7, where most of the variance is explained
and the molecules are larger towards the right. Furthermore,
they were able to incorporate an active learning BO process with
a GPR surrogate model to efficiently select desirable
This journal is © The Royal Society of Chemistry 2023
redoxomers from an unseen dataset of 112 000 HBEs, starting
with 10 randomly selected for training. By tting a probabilistic
model to a dataset, BO can utilize the model uncertainty to
guide where to evaluate the function next to nd the global
optimum in the fewest number of steps.83 The BO process
utilized expected improvement (EI) for selecting the next best
candidate. EI is an acquisition function that balances between
generalizing from current best estimates (exploitation) and
searching through regions of higher uncertainty (exploration).84

This helps prevent converging at local optimums and expedites
the search for target properties. The researchers observed a 5-
fold improvement in optimal HBE screening efficiency using
J. Mater. Chem. A, 2023, 11, 3904–3936 | 3911
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Fig. 7 2D representation of homobenzylic ether molecules by reducing 49 features into 2 principal components, and color-coded by oxidation
potential. Reprinted with permission from ref. 57. Copyright 2020 American Chemical Society.
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the BO approach compared to random selection. Fig. 8a
demonstrates the efficient training process through the BO
approach in comparison to ground truth DFT values.

The redox stability of electrolytes is also essential for
ensuring electrochemical stability at the anode and cathode.
Okamoto & Kubo applied Gaussian KRR and GBR to predict the
redox potentials of electrolyte additives for LIBs using a dataset
of 149 entries.85 The researchers developed a method for
describing the molecular structures using a total of 22 struc-
tural features. The features, shown in Fig. 8b, describe the
number of atoms with the same coordination number, the
number of rings, and indicate any radicals. GBR demonstrated
the highest accuracy for predicting both reduction and oxida-
tion potentials, achieving R2 scores of 0.851 and 0.643 in the test
set, respectively. In contrast to the two previous studies
mentioned, performing feature elimination led to slightly lower
accuracy. In the test set, model accuracy suffered due to the
presence of outliers. Under closer examination, the outliers
predicted by ML helped to reveal the possible underestimation
of reduction potentials by the ab initio molecular orbital
calculations used for ground truth values. This interesting nd
illustrates how ML can reveal patterns in the dataset that
otherwise would have gone unnoticed.

Radical redox-active polymers have gained attention recently
as a cleaner and low-cost alternative to metal-based materials in
batteries.86 This has attracted the attention of ML researchers
looking to quickly predict the properties of polymeric materials
and avoid the high computational cost of atomistic simulations.
Li & Tabor trained a GPR model using electron affinity esti-
mated through the semi-empirical GFN2-xTB method, molec-
ular ngerprints, and 3D descriptors, a relatively simple set of
input features, to predict the reduction potential of polymers.87
3912 | J. Mater. Chem. A, 2023, 11, 3904–3936
The cross-validation results achieved an R2 of 0.83 when
compared to experimental values, demonstrating the strong
potential for this method to lower the computational cost of
DFT calculations by coupling GPR with a semi-empirical
method.

With a small dataset, low generalizability and low predictive
accuracy are difficult to overcome, even with feature elimina-
tion. From these studies, some of the most important features
identied include electron affinity, HOMO–LUMO gap, number
of tricoordinate carbons, number of tetracoordinate carbons,
number of monodentate oxygen atoms, and number of biden-
tate oxygen atoms. Table 1 summarizes the ML models
mentioned here trained for redox potential prediction. Among
the studies mentioned here, it is unclear whether KRR or GBR
has better performance for redox potential prediction. However,
GPR has gained attention for this specic application, achieving
an RMSE below 0.01 V due to its nonparametric form, making it
useful for more complex mapping functions.57 GPR is widely
used among computational chemists and material scientists
due to its ability to interpolate between high dimensional data
points and its probabilistic nature that enables uncertainty
quantication.88 Through uncertainty quantication, ML can be
utilized to expedite high-throughput screening and accelerate
the discovery of materials with extraordinary properties in an
active learning process.
2.2 Crystal structure

Predicting the crystal structure of compounds is an important
issue and a priority for materials science research as it governs
many physical and chemical properties. Being able to quickly
and easily predict the likely crystal structure of a molecule will
help researchers better understand how crystal structure is
This journal is © The Royal Society of Chemistry 2023
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Fig. 8 (a) GPR prediction of optimal oxidation potentials (1.40–1.70 V) guided by Bayesian optimization, allowing for a 5-fold increase in effi-
ciency over DFT. Reprinted with permission from ref. 57. Copyright 2020 American Chemical Society.85 (b) Examples of designed features based
on the number of atoms with the same coordination number, rings, and radicals. Reprinted with permission from ref. 85. Copyright 2018
American Chemical Society.90

Table 1 Summary of ML models used for redox potential prediction

Machine learning
algorithm Advantages Disadvantages Performance Ref.

ANN Effective non-linear
modeling, good generalizability,
implicit feature selection

Requires extensive
hyperparameter tuning,
prone to overtting, error
increases with feature
elimination

RMSE = 0.179 V 58

KRR Fits non-linear data well,
relatively simple

Strong reliance on kernel
selection, unstable with
multicollinearity, requires
composite features

RMSE = 0.158 V 58
R2 = 0.801 (reduction potential) 85
R2 = 0.512 (oxidation potential) 85

GBR Effective non-linear
modeling, implicitly selects
features

Large number of
hyperparameters, requires
a large training dataset

RMSE = 0.212 V 58
R2 = 0.851 (reduction potential) 85
R2 = 0.643 (oxidation potential) 85

GPR High accuracy, provides
uncertainty quantication

Poor efficiency with large
datasets

RMSE = 0.097 V 57
RMSE = 0.28 V (reduction potential) 87
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correlated with different material properties.56 In an approach
to training an ML model capable of predicting crystal structure,
Graser et al. constructed a random forest (RF) model trained
This journal is © The Royal Society of Chemistry 2023
with a database of 24 215 formulae.55 A high accuracy ranging
between 97% to 85% was achieved. When predicting class type,
average recall decreased from 73% to 54% as more classes were
J. Mater. Chem. A, 2023, 11, 3904–3936 | 3913
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added because many classes had only one or two data points.
This result illustrates the deterioration of ML models trained
with sparse data, a common challenge faced by material science
researchers with limited data availability. In another approach,
Cheng et al. developed a graph network (GN) to predict DFT-
based formation energies from atomic and structural features
and then performed BO to identify the optimal crystal struc-
ture.89 The researchers' method maps a crystal graph to its
formation energy. Therefore, predicting crystal structure entails
optimizing a crystal graph to achieve minimum formation
energy. With a dataset of 320 000 structures, the GN achieved
a test set MAE of 26.9 meV per atom using 50% for training data
and 50 meV per atom using 25% for training data. In the BO
process, Cheng et al. began with 200 random crystal structures
and were able to successfully predict the ground-state rock salt
structure in 5000 steps.89 Though a perfect crystal structure
prediction has not yet been achieved by GNs, this BO framework
provides a highly efficient method that avoids performing
a prohibitive number of expensive DFT calculations. A later
study by Cheng et al. substantiates the potential for a GN
approach paired with BO for crystal structure prediction. With
a dataset of 132 000 compounds and 50% used for training, an
MAE of 20.8 meV per atom was achieved, or a 22.7% improve-
ment over their previous model.90 This can be attributed to the
two additional features including crystal symmetry and occu-
pancy of the Wyckoff position that was implemented for
generating the crystal structures. Although the accuracy of this
ML approach may not be at the level of DFT calculations, its
computation efficiency is three orders of magnitude greater, as
shown in Fig. 9. In an active learning approach using moment
tensor potentials, Podryabinkin et al. predicted the low-energy
structures of carbon, sodium, and boron allotropes.53 Their
ML-based interatomic potential model could accurately predict
the low energy structures for carbon, sodium, and boron
structures using up to 5 orders of magnitude fewer DFT calcu-
lations compared to the number of evaluated congurations.
Fig. 9 Time comparison of GN paired with Bayesian optimization (GN
prediction of 25 different crystal structures. GN-BO requires three or
permission from ref. 90. Copyright 2022 Springer Nature.

3914 | J. Mater. Chem. A, 2023, 11, 3904–3936
Current research in crystal structure prediction has shown
the prevalence of active learning frameworks, specically BO,
and the importance of uncertainty quantication. This
approach can drastically decrease computational cost by a few
orders of magnitude compared to DFT. However, it is still
a challenge for researchers to identify an ML model with high
prediction accuracy for predicting crystal structures. Table 2
summarizes the performance of the ML models in the studies
mentioned here. GNs show good potential as they can easily
represent the structural features as crystal graphs, but this area
of research still needs more attention.
2.3 Dielectric breakdown

Dielectric materials are the building blocks of dielectric
capacitors, which are used in many ultrahigh power-density
applications.91 Dielectrics can store electrostatic energy by
polarization under an external electric eld.92 However, as
advancements are made to miniaturize electronic devices, the
dielectric breakdown strength signicantly decreases due to the
lower thermal and mechanical stability of a smaller dielec-
tric.93,94 Additionally, current dielectric materials suffer from
low energy densities.95 The dielectric breakdown mechanism
relies on complex chemical, electrical, thermal, and mechanical
interactions that are not fully understood.96 A framework for
calculating dielectric breakdown strength has been established
through DFT calculations, but this is a highly time-consuming
method.97

Shen et al. performed least squares regression (LSR) to
predict the dielectric breakdown of polymer-based nano-
composites as a function of dielectric constant, electrical
conductivity, and Young's Modulus, obtaining an R2 value of
0.91 for the training/test set combined.96 The predictive func-
tion generated by LSR demonstrated that adding nanollers
with low dielectric constant and low electrical conductivity to
the polymer nanocomposite improves dielectric breakdown
strength. Kim et al. utilized KRR, RF, and LASSO to predict the
-BO) to DFT paired with particle swarm optimization (DFT-PSO) for
ders of magnitude less time compared to DFT-PSO. Reprinted with

This journal is © The Royal Society of Chemistry 2023
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Table 2 Summary of ML models used for crystal structure prediction

Machine learning
algorithm Advantages Disadvantages Performance Ref.

RF High accuracy, not prone to
overtting, provides feature
importance, implicitly
selects features

Computationally intensive
with larger datasets and
more trees

Accuracy = 85–97% 55

SVM Self-adjusts kernel function,
scales up to high-
dimensional data well

Strong reliance on kernel
selection

Accuracy = 87–93% 55

GN Enables physically
meaningful descriptors for
crystal structure

Currently low accuracy MAE = 20.8 meV per atom 89
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intrinsic dielectric breakdown eld of dielectrical insulators
with a dataset of 82 entries.93 Though all three models achieved
similar predictive accuracies, only LASSO generated an explicit
functional formula, which related band gap and maximum
phonon frequency to the dielectric breakdown eld, achieving
a test set R2 of 0.72. Their LASSO model revealed that boron-
containing compounds were most consistently identied as
having a high dielectric breakdown. Using the same dataset as
Kim et al., Yuan et al. used genetic programming to search for
the best function for predicting dielectric breakdown, also
nding that band gap and maximum phonon frequency were
the most important features.97 Their best model had a lower
RMSE of 237MVm−1 compared to 692MVm−1 using the LASSO
model determined by Kim et al. The genetic programming
method was able to improve upon prediction accuracy, while
also balancing speed and accuracy. However, in both
approaches, overtting to training data was a common risk.
Kumar et al. proposed an approach that addresses the issue of
instability and overtting of ML models to small datasets.59

Using the same dataset of materials and 8 features used by Kim
et al., Bootstrapped projected gradient descent was used to
Table 3 Summary of ML models used for dielectric breakdown predicti

Machine learning algorithm Advantages

LSR High accuracy, simple and
efficient, outputs
mathematical function
relating descriptors to target

KRR Performs well with high
dimensionality, calculates
feature importance

RF Calculates feature
importance, performs well
with high dimensionality

LASSO Performs feature selection,
outputs mathematical
function relating descriptors
to target

Genetic programming Outputs mathematical
function relating descriptors
to target, automatically
generates composite
descriptors

This journal is © The Royal Society of Chemistry 2023
select the most important features along with dimensional
analysis through the Buckingham-Pi Theorem. The researchers
arrived at an equation relating band gap and nearest-neighbor
distance to the intrinsic breakdown eld, achieving an R2 of
0.85, outperforming the LASSO model obtained by Kim et al.

Currently, low data availability on dielectric breakdown has
signicantly affected the accuracy of trained ML models. The
most common ML pipeline for predicting dielectric breakdown
involves using a nonlinear function to generate compound
features. Band gap, nearest neighbor distance, and phonon cutoff
frequency have been found to have high importance in dielectric
breakdown prediction. Table 3 summarizes the performance of
the ML models used in the studies mentioned here. Future
studies should continue exploring more ML algorithms and
investigate how to overcome the issue of low predictive accuracy
and limited generalizability when training on small datasets.
2.4 Band gap

Band gap values are important for the classication of
compounds as metals, semiconductors, or insulators for
on

Disadvantages Performance Ref.

Strong sensitivity to outliers,
requires iterative
optimization and good
starting parameter values

R2 = 0.91 96

Strong reliance on kernel
selection

R2 = 0.69 93

Computationally intensive
with larger datasets and
more trees, low accuracy

R2 = 0.64 93

Unstable with
multicollinearity, requires
composite features

R2 = 0.72 93

Prone to overtting, may
converge at local minimum

RMSE = 1.48 MV m−1 97

J. Mater. Chem. A, 2023, 11, 3904–3936 | 3915

https://doi.org/10.1039/d2ta07148g


Journal of Materials Chemistry A Review

Pu
bl

is
he

d 
on

 0
4 

ja
nv

ie
r 

20
23

. D
ow

nl
oa

de
d 

on
 2

02
4-

10
-2

0 
19

:5
8:

48
. 

View Article Online
applications in electronic energy storage and conversion
devices.98,99 It is an essential parameter for determining elec-
tronic conductivity. A narrow band gap (high electronic
conductivity) is generally needed in electrode materials, while
a wide band gap (low electronic conductivity) is needed for solid
electrolytes.100 However, the high computational demand and
time requirement needed to perform complex band gap calcu-
lations prevents DFT-based methods from being practical for
characterizing large amounts of materials. In one study by Zhuo
et al., SVM, k-nearest neighbors (KNN), KRR, and logistic
regression were trained to identify nonmetals from inorganic
solids in a dataset of 4916 experimentally determined band
gaps.101 With SVM achieving the highest accuracy, the area
under the receiver operating characteristic (ROC) curve was
0.97, comparable to the accuracy of DFT. Then, SVR was used
for predicting the band gap values of the nonmetals, which
attained a test set RMSE of 0.45 eV. When applied to
compounds outside the database, SVR attained an RMSE of
1.46 eV, an improvement over a DFT-basedmodel with an RMSE
of 2.1 eV. The accuracy of this approach demonstrates that ML
can signicantly lower the computation requirements of pre-
dicting band gaps compared to DFT-based calculations, while
simultaneously being more accurate. The researchers observed
that SVR underestimated high band gap values, which was
attributed to the lack of data for high band gap materials. An
approach utilized by Rajan et al. was a GPR model trained to
predict band gap values of MXenes.102 LASSO reduced the
features from 47 to 8, and then KRR, SVR, GPR, and bootstrap
aggregating (bagging) methods were used to predict GW-
calculated band gaps from a training set of 76 MXenes. With
GPR performing the best, an R2 of 0.83 and an RMSE of 0.14 eV
were achieved in the test set. The training set utilized by Rajan
et al. was restricted to MXenes with band gaps around 1.5 to
3.5 eV, allowing for a much lower RMSE compared to the wide-
ranging band gaps of around 0.06 to 10 eV in the training set
utilized by Zhuo et al. Clearly, restricting the training set of
a model can prove benecial for enhancing the predictive
accuracy of the model, though at the expense of generalizability.

Materials databases are commonly insufficient in size and
diversity for training highly accurate ML models, resulting in
undertting. Zhang et al. found that increasing model accuracy
Fig. 10 (a) KRR cross-validation RMSE achieved for prediction of band ga
training set. Reprinted with permission from ref. 103. Copyright 2018 S
predicted using SVR and KRR models. Reprinted with permission from re

3916 | J. Mater. Chem. A, 2023, 11, 3904–3936
is associated with increasing degrees of freedom (and data size),
as demonstrated in Fig. 10a.103 This higher degree of freedom
leads to lower accuracy in unknown domains. By incorporating
a crude estimation property, or a low accuracy prediction of the
target property through non-expensive Generalized Gradient
Approximation (GGA) calculations, the researchers decreased
the RMSE of a KRR model by 33% (0.34 eV) in band gap
prediction. This demonstrates a feasible approach for
increasing the accuracy of models with high bias, when col-
lecting more data is too expensive or not an option.

Among recent studies on band gap prediction, SVR, GPR,
and KRR are the most commonly used. Table 4 summarizes
these studies and compares their performances. GPR was
demonstrated to have very low prediction error out of these
algorithms. As mentioned in a few studies, the lack of data on
wide band gap materials has limited the accuracy and gener-
alizability of ML. A potential workaround is to limit the dataset
to materials with more narrow band gaps at the expense of
generalizability. Another proposal is the use of a crude esti-
mation property that can improve model accuracy with inex-
pensive computations. Further studies should be performed on
overcoming low data availability in band gap prediction.
2.5 Formation energy

The stability of a material depends on fundamental thermody-
namic properties, such as formation energy, that rely on
computationally intensive DFT calculations to determine.104

The major challenge for developing ML models capable of
predicting formation energies is in representing crystal struc-
ture data and interatomic interactions in a suitable input
format.105 Faber et al. utilized KRR and varying molecular
Coulomb matrix representations of molecules to predict
formation energy, training with a dataset of 3938 crystal struc-
tures.106 The researchers found that model accuracy increased
with increasing training data size, with their most accurate
method of representation achieving a test set MAE of 0.37 eV per
atom. Krajewski et al. optimized an ANN model to predict the
formation energies of structures by utilizing 271 features,
including elemental and crystal structural attributes derived
from Voronoi tessellations.104 Their model achieved a test set
ps as a function of the average degree of freedom and data size of the
pringer Nature. (b) Convex hull of Li–Ge calculated through DFT and
f. 105. Copyright 2019 Elsevier.

This journal is © The Royal Society of Chemistry 2023
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Table 4 Summary of ML models used for band gap prediction

Machine learning algorithm Advantages Disadvantages Performance Ref.

SVM High accuracy, excellent
generalizability

Strong reliance on kernel
selection

RMSE = 0.45 eV 101
RMSE = 0.17 eV 102

KNN Simple to implement,
nonparametric modeling

Poor efficiency with larger
dataset, challenging
optimization of number of
neighbors, sensitive to
outliers

RMSE = 0.54 eV 101

KRR Relatively simple Low accuracy, strong
reliance on kernel selection

RMSE = 0.72 eV 101
RMSE = 0.19 eV 102

GPR High accuracy, highly
efficient, improves with
more features

Poor efficiency with larger
datasets

RMSE = 0.14 eV 102

Bootstrap aggregating Not prone to overtting,
calculates feature
importance

Low interpretability RMSE = 0.16 eV 102

LASSO Outputs mathematical
function relating descriptors
to target

Unstable with
multicollinearity

RMSE = 0.71 eV 103
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MAE of 30 meV per atom aer removing less-stable structures
with formation energies above 250 meV per atom, and an MAE
of 41 meV per atom when applied to a subset of more complex
structures. This demonstrated the increased predictive accuracy
and generalizability achieved by ML models by restricting the
chemical space of the dataset. Honrao et al. utilized KRR and
SVR to predict both unrelaxed and relaxed formation energies
using a DFT-calculated dataset of 14 168 Li–Ge crystal struc-
tures.105 The researchers represented crystal structure data
through partial radial basis functions. The test set RMSE of the
KRR model was 20.4 meV per atom and 20.3 meV per atom for
unrelaxed and relaxed energies, respectively, while SVR was 20.8
meV per atom and 20.9 meV per atom, respectively.

Noh et al. proposed an approach that applies uncertainty
quantication to crystal graph convolutional neural networks
(CNNs) through Monte Carlo sampling and dropout for
formation energy prediction.107 In each iteration, interlayer
connections between neurons are randomly dropped with a 0.2
probability, and 200 random samples are taken to produce
a Bayesian approximation. The Monte Carlo sampling mean
and variance correspond with the formation energy prediction
Table 5 Summary of ML models used for formation energy prediction

Machine learning
algorithm Advantages Disadva

KRR Relatively simple, ts non-
linear data well

Strong r
selection
larger da

SVR Efficient with large datasets Strong r
selection

ANN Dropout reduces model size
with little impact on
accuracy, excellent
generalizability, capable of
transfer learning

Requires
hyperpa
prone to

This journal is © The Royal Society of Chemistry 2023
and uncertainty, respectively. The materials that pass the
formation energy screening criteria within a 95% condence
interval undergo detailed DFT relaxations to rene the predic-
tion of the most promising material candidates. With this
scheme and a dataset consisting of >7000 materials, 67% of the
materials selected by a direct DFT screening method were
successfully identied, while also reducing the required
number of DFT calculations by a factor >50. Without uncer-
tainty quantication, only 39% of the materials were success-
fully identied. This study demonstrates the signicant
performance boost to high-throughput screening offered by
uncertainty quantication of MLmodels. Further exploration of
this uncertainty quantication approach should be applied to
other material properties and algorithms in high-throughput
screening applications.

Overall, KRR and ANN have both demonstrated good accu-
racy levels for formation energy prediction, even achieving high
accuracy in predicting the convex hull of Li–Ge shown in
Fig. 10b. Table 5 summarizes the ML models mentioned here
for predicting formation energies. Further studies should
continue exploring how crystal structure information can be
ntages Performance Ref.

eliance on kernel
, does not scale to
tasets well

RMSE = 20.3 meV per atom 105

eliance on kernel RMSE = 20.9 meV per atom 105

extensive
rameter tuning,
overtting

RMSE = 66.1 meV per atom 104
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represented in input formats understandable by ML models.
Other algorithms, such as graph neural networks should be
further explored for formation energy prediction, as their
accuracy is currently low.
3. Applications for batteries

Growing efforts toward electrication have accelerated the
demand for batteries. LIBs specically have gained widespread
use in applications including portable electronics and electric
vehicles. However, further enhancements are still required in
battery technology to satisfy future needs in automotive appli-
cations, including improvements to energy density, cycle life,
cost, safety, fast charging, and more sustainable materials.108

Accelerating demand for batteries will require aggressive
production ramp-up and an increase in raw material supplies.
Growing consideration over unsustainable materials and fragile
supply chains has directed many research efforts toward elim-
inating these critical elements.109,110
3.1 Designing and optimizing electrodes

In the search for novel electrode materials, there is a need for
computationally efficient models to aid in the understanding of
how composition, pore structure, morphology, ionic conduc-
tivity, and charge storage inuence each other to design high-
performing batteries and supercapacitors.111–114 Besides mate-
rials development, many studies have also explored rational
design of these novel electrode materials to enable scalable
energy storage material synthesis.115 Trial and error experi-
mentation has provided a majority of current efficient LIB
electrode materials,116 and DFT calculations have exposed
important rules for designing electrodes.117 However, the high
computational expense of DFT methods for modeling large
systems would be unreasonable for a vast number of mate-
rials.118,119 This motivates researchers to develop highly efficient
ML tools capable of providing fast and accurate performance
predictions for electrode materials.

Research on “beyond Li-ion” technologies like Na, K, Ca, Mg,
and Al-ion batteries has been gaining attention recently with
their potential to achieve lower costs and greater energy
density.120 Joshi et al. trained deep neural network, SVR, and
KRR models for the prediction of the voltage range with
a training set of 3977 electrode materials consisting of Li-ion
and several alternative metal ion compounds.121 PCA reduced
the feature vector dimensionality from around 237 to 80,
allowing all three ML methods to achieve test set MAE of 0.42–
0.46 V. Surprisingly, when the models were used to predict Na
electrode voltage ranges, MAE improved from 0.93–1.25 V when
using the entire training dataset to 0.62–0.70 V when using Li
materials only. Though Na materials were not contained in
either of these datasets, the dataset containing only Li materials
was more coherent than the dataset containing 6 different
materials that were comprised of 65% Li materials. This
demonstrates the importance of having a coherent training set,
and the detriment that can be caused by including sparse
material data. However, this may be an issue that can be
3918 | J. Mater. Chem. A, 2023, 11, 3904–3936
overcome through the use of transfer learning to predict prop-
erties of the sparser materials.

Houchins et al. trained a Behler-Parrinello neural network
model for predicting energy–volume curves, entropy, and Gibbs
energy of NMC cathodes with a dataset of 12 962 points, per-
forming in good agreement with DFT calculations and experi-
mental measurements.117 Then, using grand canonical Monte
Carlo simulations to simulate Li-vacancy ordering or
discharging/charging of the cathode, the neural network was
able to accurately predict the voltage proles of the NMC
cathode and several other cathode materials. Okubo et al.
investigated how well RF can predict the improvement of
cathode capacity retention based on coating, doping, electrolyte
additives, functional binders, cut-off voltage, and C-rate.122 The
test set achieved only R2 of 0.52, likely a result of the limited
dataset size. Most notably, the C-rate and cut-off voltage were
identied as having the largest inuence on capacity retention
improvement. Takagishi et al. developed an ANN regression
model for predicting the specic resistance of Li-ion electrode
structures, which performed with an R2 of 0.99 on validation
data.123 Then, BO was applied to solve the inverse problem of
optimizing the process parameters for manufacturing a battery
electrode with the minimum specic resistance, which was
predicted to be 47 U m. This framework is demonstrated in
Fig. 11.

Data from both successful and failed experiments can be
leveraged by ML to assist synthetic chemists in determining
optimal synthesis conditions. Moosavi et al. developed an
approach based on the combination of experimentation, ML,
and GA to determine the optimal conditions for synthesizing
metal organic frameworks (MOFs) by varying 9 parameters,
ultimately achieving a BET surface area of 2045 m2 g−1.124 The
idea behind this approach is to use GAs to guide the selection of
the 9 experimental parameters while analyzing crystallinity and
phase purity as the objective function. Aer collecting data from
over 120 failed and partly successful experiments, the
researchers trained a RF model on the 9 parameters to predict
crystallinity and phase purity. From this trained RF model, the
importance of each parameter was obtained and used as
a quantied form of chemical intuition to search the chemical
space more effectively in subsequent experiments. In other
words, by varying the most important parameters as deter-
mined by RF much more frequently than the least important
ones, the chemical space can be explored more efficiently
without sacricing sampling accuracy, signicantly increasing
the probability of successful synthesis conditions. This study
demonstrates the importance of utilizing both failed and
successful experiments in training ML models to obtain strong
chemical intuition and accuracy for searching chemical spaces
much more efficiently. However, researchers and journals
typically do not publish failed experimental data, wasting
valuable information that could be used in training less biased
and more useful ML models.

Quantum mechanical approaches aided by data-driven ML
have been proposed to discover structure–property relation-
ships in electrode materials. Deringer et al. utilized Gaussian
approximation potential (GAP) trained with DFT data to predict
This journal is © The Royal Society of Chemistry 2023
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Fig. 11 Workflow for predicting Li-ion battery electrode specific resistance by utilizing 3D physio-chemical simulations and an ANN model.
Further, Bayesian optimization was performed to identify the optimal electrode properties and processing parameters. Reprintedwith permission
from ref. 123. Copyright 2019 Multidisciplinary Digital Publishing Institute.

Fig. 12 Gaussian approximation potential-driven MD simulations used
to generate structural models of disordered carbon fragments with
varying porosity. Reprinted with permission from ref. 118. Copyright
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the energies of porous and graphitic carbon systems, with
accuracy within 2 kJ mol−1 of DFT calculations.118 Then, nuclear
magnetic resonance, pair distribution function, ab initio
random structure searching, and MD simulations were utilized
to understand the mechanism of Na intercalation useful for
both Na-ion batteries and supercapacitors. Fig. 12 illustrates
examples of the simulated porous carbon structures using the
researchers' proposed GAP-driven MD method. The smaller
boxes at the bottom provide a closer view of some examples of
porous structures. Dou & Fyta demonstrated the prediction of
adsorption energies of alkali elements on 2D transition metal
dichalcogenides using DFT-calculated energy features.125 An R2

of 0.97 was achieved using ordinary least squares regression,
which also revealed a strong linear correlation with the energy
of the lowest unoccupied state. Choi et al. utilized the 3D
distribution of electrostatic potentials (ESP) as features for an
ANN model capable of predicting discharge energy density,
capacity fading, and discovering novel inorganic crystalline
cathode materials for LIBs.116 PCA was utilized to reduce the
dimensionality of the ESP vectors, and the trained ANN model
achieved an average test set percent error of 12.1% and 19.6%
for predicting discharge energy density and capacity fading,
respectively.

The high accuracies achieved by DFT-driven ML models
demonstrate its feasibility for rapid electrode optimization and
providing insights into energy storage materials, with ANN
obtaining some of the highest accuracies. Further research
should explore ML potentials for atomistic simulations that can
be used to study electrode materials several orders of magni-
tude faster than quantum mechanical methods.126 ML poten-
tials is an emerging area of research that has gained extensive
This journal is © The Royal Society of Chemistry 2023
focus recently with its ability to provide atomistic insights into
complex materials and even generate new materials by
modeling the atomic energies and interatomic potentials.127
2018 Royal Society of Chemistry.
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However, there are still ongoing challenges that limit their
accuracy and transferability. One of these limitations is the
construction of ML potentials for molecules with several
different elements since the conguration space will grow
rapidly and to a prohibitively large conguration space.128 This
consequently requires approximations that limit the accuracy or
the transferability of the potentials. As with ML models in
general, a large dataset is necessary for training an accurate ML
potential model, where the dataset is typically generated by
computationally intensive DFT simulations.129 Another current
limitation is that ML potentials typically only take into account
local electrostatic interactions, and systems where long-range
interactions are prevalent are less accurate.130 The interested
reader is referred to state-of-the-art ML potentials
research.131–134

3.2 Designing and optimizing electrolytes

Several approaches for addressing the issue of Li electrodepo-
sition and dendritic growth involve modication of the elec-
trolyte. Electrolyte ionic conductivity, salt concentration, and
solvent effects are critical for designing energy storage devices
with a long lifespan, high energy density, high power density,
and good electrochemical stability.135

The ionic conductivity characterizes the mobility of ions
traveling through the electrolyte.136 This property is the main
bottleneck for realizing all-solid-state batteries, a technology
that presents signicantly enhanced energy density, charge
rate, and safety.137 Research on solid electrolytes has made slow
progress following the high-throughput DFT simulation
process.40 Sendek et al. utilized logistic regression to identify
solid-state superionic conductors from 21 knownmaterials with
Fig. 13 Scheme of three different ML approaches for predicting ionic
regression, kernel ridge regression using SOAP features, and a 3D CNN u
ref. 139. Copyright 2020 Springer Nature.

3920 | J. Mater. Chem. A, 2023, 11, 3904–3936
90.5% accuracy, while a guess and check method had 14.3%
accuracy, and predictions by a group of 6 PhD students had 25%
accuracy.40 The signicant improvement in prediction accuracy
demonstrates the potential of ML for accelerating the search for
solid electrolyte materials. It is worth noting that DFT-
calculated ionic conductivity may stray from experimental
values, as seen by Sendek et al., where uncharacterized factors
can inuence experimental measurements. Wang et al. utilized
BO to automate coarse-grained (CG) MD simulations of solid
polymer electrolyte (SPE) materials using a BO framework.138

The researchers were able to gain a strong understanding of
how each CG parameter individually and jointly inuences
ionic conductivity to identify SPE candidates with optimal ionic
conductivity, thus signicantly accelerating the search for
highly conductive SPE materials. In a study by Xu et al. to
predict the ionic conductivity of Li and Na-based superionic
conductors, the researchers rst selected 8 features from a set of
47 by calculating Pearson correlation coefficients.60 A logistic
regression model achieved 84.2% and 76.3% accuracy in test
sets of unseen NASICON and LISICON compounds, respectively,
while classifying ionic conductivities above and below 1 ×

10−6 S cm−1.
Wang et al. and Xu et al. both lacked structural features for

training their ML models, however, Kajita et al. incorporated
SOAP (smooth overlap of atomic position) and R3DVS (recip-
rocal 3D voxel space) features.139 In an approach employing an
ensemble of three ML methods, one using chemical and phys-
ical properties in a partial least squares regression (PLS) model,
the second using SOAP features in a KRR model, and the last
using R3DCS features in a 3D CNN, the researchers trained their
model to discover novel oxygen-ion conductors from a small
conductivities of oxygen-ion conductors. Partial least squares (PLS)
sing R3DVS features were developed. Reprinted with permission from

This journal is © The Royal Society of Chemistry 2023
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dataset with 29 oxygen-ion conductors. This approach is shown
in Fig. 13, where the average ionic conductivity from the three
models is output. Additionally, ve oxygen-ion conductor
compounds were successfully identied from a dataset con-
taining 13 384 oxides, demonstrating the efficiency of
ensemble-scope feature learning for use even with limited data.
Wheatle et al. performed BO to optimize the ionic conductivity
and viscosity of a polymer blend electrolyte simulated through
CG MD.140 However, the results of this study were not in
agreement with results from literature, demonstrating a limita-
tion for modeling polar molecules through CG simulations.

Gao et al. demonstrated the optimization of electrolyte
channel geometric structure for enhancing specic energy,
capacity, and power while reducing lithium plating in thick
electrode LIBs by using a deep neural network.141 Their nite
element method-veried results demonstrate a potential
78.73% increase in specic energy compared to conventional
cells. In Fig. 14a–d, the prediction results by their deep neural
network for specic energy, specic power, specic capacity,
and Ragone plot are demonstrated. Ahmad et al. employed
a series of ML models to screen inorganic solid electrolytes that
can suppress dendritic growth and achieve high ionic conduc-
tivity in Li metal batteries.142 First, a crystal graph CNN was used
Fig. 14 Deep neural network prediction of (a) specific energy, (b) spec
tapered width of electrolyte channels in Li-ion batteries. WEA and WEC a
permission from ref. 141. Copyright 2020 IOP Publishing.

This journal is © The Royal Society of Chemistry 2023
to predict shear and bulk moduli from structural features, then
utilized GBR and KRR to predict elastic constants, and nally
utilized the logistic regression proposed by Sendek et al. to
screen superionic conductors. With a dataset of over 12,950
solid electrolytes, 6 candidates were successfully screened,
demonstrating the ability of ensemble ML.

Suzuki et al. employed an RF recommender system to
propose unknown chemically relevant compositions of Li-
conducting oxides.143 The system demonstrated the ability to
discover novel materials in a third of the time compared to
a random material search. Liu et al. developed an automated
high-throughput screening method for determining the
optimal cations for doping a garnet-type Li7La3Zr2O12 (LLZO)
solid-state electrolyte to be used in a Li metal battery.144 The
researchers utilized a dataset of 100 doped-LLZO compounds
and up to 15 features mostly from DFT calculations. Using SVM
for classifying thermodynamically stable and unstable Li–LLZO
interfaces, the researchers were able to uncover the large
dependence on chemical bond strength between the dopant
and oxygen. Additionally, a KRR model was trained to predict
reaction energies at the Li–LLZO interface for the different
dopants, which achieved a test set R2 of 0.92.
ific power, (c) specific capacity, and (d) Ragone plot based on varying
re electrolyte channel width and WH is periodic width. Reprinted with
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In an approach that introduces complete automation of
experimentation through robotics guided by BO, Dave et al.
focused on optimizing aqueous electrolyte mixtures.145 The
researchers performed 70 experimental iterations in 2 weeks,
where the ML-guided optimization was completely responsible
for converging onto the Na and Li aqueous electrolyte blends
with the highest electrochemical stability window. As shown in
Fig. 15a and b, the highest stability windows for the Na and Li
electrolytes reached 3.04 V and 2.74 V, respectively.

Though most researchers train their ML models using DFT-
based and experimental data from published material data-
bases, there are still ndings in scientic literature not yet
published in any databases. Thus, to stay up to date with the
most recent ndings in literature, natural language processing
(NLP) is a method capable of keeping up with the rapid rate at
which scientic articles are published. Mahbub et al. utilized
NLP for extracting the processing temperatures used for
synthesizing Li solid-state electrolytes from various precur-
sors.146 Aer extracting data from 891 articles on solid-state
electrolyte synthesis, the researchers were able to reveal
trends in the processing temperatures utilized for synthesizing
different solid-state electrolyte materials, and also identify the
Fig. 15 Fully automated experimentation guided by Bayesian optimizat
electrolyte systems within 70 experimental iterations. The machine learn
converge on the blends that maximize electrochemical stability. Reprint
language processing text mined temperatures for processing of LLZO ga
publication year. Reprinted with permission from ref. 146. Copyright 202

3922 | J. Mater. Chem. A, 2023, 11, 3904–3936
resulting ionic conductivities of each of the synthesis parame-
ters, as shown in Fig. 15c and d. This technique is feasible for
revealing trends and ndings in thousands of published arti-
cles, which may prove especially useful for materials science
research due to its high-dimensional nature. By creating more
comprehensive training datasets, NLP can also prove useful for
improving ML model accuracy. Huang & Cole modied a NLP
toolkit called ChemDataExtractor for extracting inorganic
battery electrode and electrolyte material measurements
including capacity, voltage, electrical conductivity, coulombic
efficiency, and energy density.147 This project demonstrates the
rst automatically generated database of battery materials,
which is now publicly available. ChemDataExtractor extracted
292 313 data records from 229 061 academic papers published
between 1996–2019 related to batteries. However, text mining is
not perfect and requires creating specic rule-based phrase
parsers for extracting specic property-value pairs, which can be
tedious. The most common error encountered was the mis-
matching of property data to the chemical compound when
more than one compound or value occurs in the same sentence.
Another common error was the extraction of incomplete
composite material names or invalid chemicals. Overall, the
ion for identifying the optimal blend of (a) Na and (b) Li salt aqueous
ing guided system was able to search a wide design space and quickly
ed with permission from ref. 145. Copyright 2020 Elsevier. (c) Natural
rnet solid electrolytes and (d) sintering temperatures grouped by article
0 Elsevier.

This journal is © The Royal Society of Chemistry 2023
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database achieved a precision of 80%, which is relatively high
and could potentially be used to aid in training ML models for
battery materials design.
4. Applications for supercapacitors

Supercapacitors are attractive energy storage devices, demon-
strating longer cycle life, higher power density, and faster
charge/discharge rate compared to LIBs, but they suffer from
low energy density.148 The energy density of supercapacitors
depends on both the capacitance and potential window.
Signicant experimental efforts have been devoted to opti-
mizing the capacitance of carbon-based electrode materials, but
with little knowledge of how properties such as precursor
materials, pore size distribution, specic surface area (SSA),
surface chemistries, morphologies, and electrolytes simulta-
neously inuence overall performance.135,149,150 Thus, identi-
fying structure–property relationships is a key step in designing
novel materials for high-performance supercapacitors.
4.1 Capacitance

The capacitance of a supercapacitor can be determined accu-
rately through electrochemical modeling, but require complex
parameters that are expensive and time-consuming to
measure.151 Besides complex electrochemical models, equiva-
lent circuits,152 mathematical,153 and ML models have also been
proposed. Several recent studies have applied experimental data
to train ML models by using structural features as inputs, the
most common of which include SSA, pore size, pore volume
(PV), micropore surface area, ID/IG ratio, potential window, N-
doping, and O-doping. Su et al. performed regression analyses
on a dataset containing 121 carbon-based supercapacitors
using linear regression, SVR, regression tree (RT), and ANN.154
Fig. 16 (a) Relative contributions of features used to predict supercapa
capacitor as determined by ANN. SSA and PV were identified as having th
permission from ref. 154. Copyright 2019 Royal Society of Chemistry. (b
capacitance from porous carbon-based supercapacitors. Reprinted with

This journal is © The Royal Society of Chemistry 2023
RT achieved the highest R2 of 0.76, with potential window and
SSA having the highest relative contributions. By obtaining the
weights of each of the features used for predicting capacitance
in the ANN model, the relative contribution of each feature can
be identied as shown in Fig. 16a. Using these same four ML
algorithms trained on a dataset of 70 carbon-based super-
capacitors with 3 features (micropore surface area, mesopore
surface area, scan rate), Zhou et al. observed that ANN achieved
the highest R2 of 0.72.36 With micropore and mesopore surface
area, the researchers were able to determine the optimal pore
sizes for obtaining a maximum specic capacitance of 327 F
g−1. Fallah et al. were able to achieve higher accuracy of ANN by
employing Levenberg–Marquardt backpropagation, with the
test set R2 reaching up to 0.93.155 In this study, SSA and Boron
doping% had the greatest relative importance. With a dataset of
105 samples of porous carbon materials used for super-
capacitors, Liu et al. trained multiple linear regression, ANN,
SVM, RF, gradient boosting machines, and XGBoost models.156

With an initial 11 porous structural features, Pearson correla-
tion was used to reduce multicollinearity and select the 5
features with the highest correlation with capacitance. As
shown in Fig. 16b, all of the features had a weak linear corre-
lation with capacitance, revealing the demand for a nonlinear
model. XGBoost achieved the highest test set R2 of 0.80, with the
ratio of micropore surface area to SSA and SSA alone having the
greatest relative importance. Jha et al. utilized active material
weight ratios and cycle number as features for modeling the
variation of capacitance in lignin-based supercapacitors during
charge–discharge cycles.23 The researchers compared linear
regression, SVM, DT, and ANN for time series analysis, where
ANN achieved the best performance with an average test set R2

of 0.64. In addition, the ANN model had an average 84.4%
accuracy when predicting capacitance retention aer 600 cycles.
citor capacitance from structural features of a carbon-based super-
e highest relative importance for predicting capacitance. Adapted with
) Pearson correlation coefficient matrix for all structural features and
permission from ref. 156. Copyright 2021 Elsevier.
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Though previous studies have not demonstrated the high
accuracy of SVM when modeling capacitance with structural
features, Gheytanzadeh et al. were able to achieve a test set R2 of
0.90 with a dataset of 681 carbon-based supercapacitors.157 To
identify the best SVM parameters, the researchers used the grey
wolf optimization technique, a meta-heuristic algorithm. By
performing a local sensitivity analysis, the researchers were able
to identify SSA as the most important feature. This was attrib-
uted to the surface area of the electrode material having a direct
inuence on the adsorption capability of electrolyte ions, which
is important for capacitance.

In an optimization problem, Mathew et al. performed
particle swarm optimization from an ANN regression model to
identify the optimal process parameters based on the resulting
specic capacitance and equivalent series resistance of an
activated carbon supercapacitor.158 The model achieved an R2 of
0.998 and 0.979 for predicting specic capacitance and equiv-
alent series resistance, respectively. However, the optimized
synthesis parameters demonstrated no improvement over the
highest-performing supercapacitor generated during the
experimental trials. This demonstrates the limited ability of the
ANN model to extrapolate outside of the dataset.

Electrolytes are also important for determining super-
capacitor capacitance due to their inuence on ionic conduc-
tivity and the formation of the electrical double layer.135 In
a study performed by Yang et al. to uncover the relationship
between surface potential, pore curvature, and electrolyte
concentration on capacitance, an RT model was trained on
classical DFT calculations.159 RT, specically M5P, obtained an
R2 of 0.84 for capacitance prediction of supercapacitors and
generated an equation relating capacitance to pore radius,
potential window, and electrolyte concentration. This equation
allows for excellent interpretability, revealing that capacitance
increases with greater electrolyte concentration, smaller elec-
trode particle radius, and lower surface potential. Oladipo et al.
considered the effects of doping percentage and electrolyte on
the capacitance and energy density of biocarbon-based super-
capacitors.160 Several experimental samples were prepared and
Fig. 17 (a) ML workflow utilizing MLP and GA to determine optimal ope
activated carbon-based supercapacitor. Reprinted with permission fr
prediction using a GPR model with only 100 training cycles. Reprinted w

3924 | J. Mater. Chem. A, 2023, 11, 3904–3936
tested while varying S-doping, N-doping, electrolyte type, and
electrolyte concentration. An ANN model was trained with
Levenberg–Marquardt backpropagation, achieving an average
R2 of 0.96, where electrolyte type and concentration were the
most important features. Supercapacitor capacitance can be
enhanced through the addition of small solvent molecules, but
the underlying mechanisms are not well understood.161 Su et al.
used SVR, ANN, M5P, M5 rule, and linear regression to reveal
insights into the impact of solvent effects on the capacitance of
supercapacitors.162 This study used a dataset consisting of 13
different solvents used for supercapacitors collected from
a previous experiment by Hou et al.163 The M5P model achieved
the highest R2 of 0.79 and revealed that the solvent molecule
size, dielectric constant, and dipole moments have the greatest
importance for modeling capacitance. These ndings were then
followed up by classical DFT used to model the molecular
structure of the electric double layer. To demonstrate the
practicality of their ANN model, Rahimi et al. maximized the
performance of an activated carbon-based supercapacitor using
a GA, following the workow in Fig. 17a.164 A maximum specic
capacitance of 550 F g−1 at 1 A g−1 was achieved through opti-
mization of physiochemical and operational features. Surface
area and electrolyte properties are among the most important
features for determining capacitance. Further studies should
combine both structural and electrolyte properties to determine
how both inuence overall capacitance behavior.

Currently, only a limited number of ML models and
approaches have been proposed for use in supercapacitor
capacitance prediction. Researchers should continue exploring
the accuracy of other ML approaches and various optimization
strategies to improve model parameterization. Given the large
number of features that inuence capacitance, active learning
models such as BO could prove to be useful for researchers in
this area. Currently, few studies have applied this active
learning design process to supercapacitor experiments. Making
use of GPR uncertainty quantication and optimization algo-
rithms like BO in an active learning approach would thus be
highly impactful in supercapacitor materials research.
rational conditions, physical properties, and chemical features for an
om ref. 164. Copyright 2022 Elsevier. (b) Supercapacitor retention
ith permission from ref. 166. Copyright 2021 Springer Nature.

This journal is © The Royal Society of Chemistry 2023
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Table 6 Previous ML studies on carbon-based supercapacitor capacitance prediction and their best test set performancea

Model Features RMSE (R2) Ref.

RT Specic surface area, pore volume, pore size, voltage window, ID/IG, N-
doping%, O-doping%

67.62 (0.76) 154

ANN Specic surface area, B-doping%, electrolyte concentration, pore size,
voltage window

0.0089 (0.93) 155

XGBoost Micropore surface area percentage, specic surface area, pore size,
mesopore surface area, mesopore volume percentage

25.50 (0.80) 156

SVM (grey
wolf optimization)

Specic surface area, N-doping%, pore size, voltage window, ID/IG 39.22 (0.90) 157

ANN Electrolyte type, electrolyte concentration, S/N co-doping%, S-doping%, N-
doping%

0.385 (0.96) 160

ANN Current density, micropore volume, micropore surface area, oxidized N-
group%, pyrolytic-N group%, carboxyl-O group%, micropore volume/total
pore volume, nitrogen/oxygen%, potential window, micropore surface area/
specic surface area, hydroxyl-O group%, total pore volume, graphitic-N
group, nitrogen%, pyridinic-N group%

10.81 (0.97) 164

a The listed features are in descending relative importance.
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Capacitance prediction of supercapacitors through ML
models has achieved excellent accuracy and provided insights
into how various features impact performance. As demon-
strated through the collected studies in Table 6, SSA has widely
been one of the most important features for predicting specic
capacitance. This is due to the role that electrode porosity has in
promoting ion diffusion. However, electrochemical kinetics
based on pore size distribution is not straightforward. Different
pore sizes affect performance in various ways, thus making
optimization of pore sizes and the necessary processing
parameters to synthesize a specic pore size a critical issue.165

Further research should consider RT models for modeling
capacitance as a function of surface area and pore features. The
advantage of RT, like M5P, is its ability to generate equations
that relate features to the target property, making for easy
interpretation and target optimization.159 Besides surface area,
operational conditions, electrolyte type, and chemical features
Table 7 Performance of various ML models applied to predict supercap

Model Application Features

ANN Specic capacitance, power
density, and energy density

Mesopore surf
micropore sur
rate

RF Specic capacitance and
retention (classication)

Current collec
compositing, m
potential wind
morphology, o
specic surfac
density

ANN Specic capacitance and
retention

Cycle number
weight%, tran
oxide weight%
weight%

GPR Retention Cycle number
ANN Cyclic voltammetry Potential, oxid

reduction, dop
concentration

This journal is © The Royal Society of Chemistry 2023
are highly important for predicting capacitance. This can be
attributed to the inuence that the electrolyte system has on
ionic conductivity and operating voltage window, and thus
capacitance.135
4.2 Other properties

Few studies have focused on training ML models for predicting
supercapacitor properties other than capacitance values. The
studies collected in Table 7 highlight the results of attempts by
researchers to model power density, energy density, retention,
and cyclic voltammetry of supercapacitors. Even with limited
data for model training, researchers Ren et al. were able to
demonstrate a method based on a GPR model supplemented
with an implicit function.166 An example of the GPR-implicit
function approach is shown in Fig. 17b, where only 1% of the
data was used in training, with a forecasting error of <2%. Many
acitor behavior

Performance Ref.

ace area,
face area, scan

R2 = 0.956 (capacitance),
0.964 (power density), 0.921
(energy density)

167

tor,
aterial,

ow,
xide/nitride,
e area, current

R2 = 0.593 (capacitance),
RMSE = 0.44 (retention)

67

, lignin
sition metal
, binder

R2 = 0.859 (capacitance),
MAPE = 6.37% (retention)

23

RMSE = 0.0056F 166
ation/
ing

R2 = 0.95 168
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of the studies in Table 7 utilize ANN, which has notably ach-
ieved high accuracy among a range of supercapacitor
applications.

Current studies still lack an understanding of how super-
capacitor materials, pore size distribution, SSA, surface chem-
istries, morphologies, potential window, electrolyte, and
operating conditions together inuence energy storage. By
taking into account these features combined, a more general-
izable model that could provide more practical use in screening
materials could be achievable. Given that these studies rely on
data collected from literature, this would require researchers to
provide all of these details. For now, recent training and opti-
mization of ML models have demonstrated compelling
evidence of high accuracy, but are limited to specic datasets
containing few features.
5. Overcoming challenges of small
datasets

As demonstrated throughout this review, small datasets are
commonplace throughout materials databases, making appli-
cations of ML models for high-throughput screening and
materials design less feasible. The consequences of training on
small datasets include poor generalizability, high risk of over-
tting, and low prediction accuracy. To address these chal-
lenges, one method that researchers have developed is transfer
learning. Transfer learning has demonstrated potential for
improving neural network and RFmodel performances in many
applications, like character recognition,169 object recognition,170

structure–property prediction,171 and time series forecasting172

when data availability is an issue. The framework involves using
parameters from a pretrainedmodel to initialize the parameters
in a new model that performs a different task. Yamada et al.
demonstrated this framework by transferring parameters from
a pretrained RF on inorganic compounds to predict the
Fig. 18 Average RMSE of various ML models for cycle life prediction of L
ABC = artificial bee colony, GRNN = general regression neural netw
RT).177,179,180,199–201

3926 | J. Mater. Chem. A, 2023, 11, 3904–3936
properties of organic compounds.173 They observed an R2 of 0.69
and ∼92% reduction in MAE compared to a model trained on
inorganic compounds directly used to predict structure–prop-
erty relations in organic compounds. This highlights the
adaptability of and unobvious connections between models
across different material spaces that can be taken advantage of
through transfer learning. In materials science, this trans-
ferability could be extremely useful to researchers aiming to
achieve higher performance in situations where lack of data is
an issue. Yamada et al. have developed an open access library in
Python, XenonPy.MDL, containing thousands of pretrained
models on a wide range of material properties. This opens many
avenues of research pertaining to transferring knowledge
between materials databases. Jha et al. demonstrated a transfer
learning approach for a deep learning model trained on a large
dataset consisting of DFT-computed properties for ∼341,000
materials from OQMD to predict formation energies.174

Parameters from this pretrained deep neural network were then
ne-tuned on a smaller dataset consisting of DFT-computed
properties of 23,651 materials from Materials Project. The
results from this transfer learning approach illustrated a ∼77%
reduction in formation energy prediction MAE (eV per atom)
compared to a deep neural network trained directly on the
smaller Materials Project dataset. Other researchers have also
demonstrated how transfer learning can improve prediction
accuracy in models trained across different target proper-
ties.175,176 However, the lack of transparency with neural
networks makes interpreting the transfer of knowledge across
models and gaining insight from learned structure–property
relationships across materials datasets difficult.
6. Analysis plots

A battery's cycle life signies the amount of charge and
discharge cycles that a battery is capable of performing before
i-ion batteries (BL = broad learning, ELM = extreme learning machine,
ork, PSO = particle swarm optimization, GBRT = gradient boosted

This journal is © The Royal Society of Chemistry 2023
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its end of life, which is indicated by a SOH of 80%.177 The main
obstacle to accurately predicting the cycle life of a battery is due
to its nonlinear degradation.178 Predicting the cycle life of LIBs
through ML provides a method for quickly assessing battery
quality and reliability. Previous studies have demonstrated the
accuracy of these data-driven models, as shown in the bar chart
in Fig. 18. One of the highest performing ML algorithms was
a model based on a broad learning and extreme learning
machine (BL-ELM), which was able to achieve an average RMSE
of 75.8 cycles.179 This method avoids the use of time-consuming
and complex deep neural networks by utilizing extreme learning
machines, while also allowing for the use of high-dimensional
data through broad learning. The next model with consider-
ably high accuracy was the RF-ABC-GRNN model, which
Fig. 19 (a) Average RMSE of various ML models for predicting the state o
learning, NN = neural network).202–204 (b) Average RMSE of various mode
Autoregressive Recurrent GPR, R-GPR-2= Recurrent GPRwith 2-tap del
= Gaussian, 2G = 2 side Gaussian, RVM = relevance vector machine).204

This journal is © The Royal Society of Chemistry 2023
achieved an average RMSE of 76 cycles.180 This method utilizes
an RF for feature selection, ABC for parameter optimization,
and GRNN, a variation of the radial basis network. Without
selecting high-important features through RF, the model ach-
ieved an RMSE of 82 cycles.

SOC and SOH are important indicators of a battery's capacity
and are essential for battery management.181 The SOC is
calculated by dividing the battery's capacity at its current state
by the fully charged capacity. Understanding the SOC of
a battery is fundamental to calculating a battery's energy avail-
ability, analogous to a fuel gauge. This helps to protect the
battery from overcharging and discharging, therefore, opti-
mizing its performance and lifetime.182 Currently, electro-
chemical models (physics-based) and equivalent circuit models
f health of lithium-ion batteries (LR = linear regression, EL = extreme
ls for the prediction of state of charge for Li-ion batteries (AR-GPR =

ay, R-GPR-1= Recurrent GPRwith 1-tap delay, RGPR= Regular GPR, G
,205
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(empirical-based) are the most widely used for predicting
SOC.183 However, these methods are limited by high computa-
tional cost and low accuracy, respectively. For example,
Coulomb counting involves calculating the net charge of a cell
through the integral of charge and discharge currents over
time.184 This method is fairly accurate but does not account for
different operating conditions, self-discharge, coulombic effi-
ciency, and typically relies on sampled measurements of
current.185 These errors accumulate and lead to low accuracies
over time, especially as the battery capacity fades. Several ML-
based approaches have been explored for SOC prediction. The
main challenge is the large amount of training data necessary to
model different battery chemistries under varying operating
Fig. 20 (a) Boxplots of variousmodels' RMSE for RUL prediction of LIBs (R
SVR = support vector regression).187–189,206–212 (b) Violin plots of various m
term memory).190,191,213

3928 | J. Mater. Chem. A, 2023, 11, 3904–3936
conditions. ML methods are used to identify correlations
between these features and battery capacity. The ML algorithms
analyzed in Fig. 19a depict the difference in accuracy for pre-
dicting the SOH of LIBs. The gure illustrates how SVM had the
highest RMSE and XGBoost and RF had the lowest RMSE. In
other words, XGBoost and RF can predict the SOH with higher
accuracy than any other ML method. Therefore, the use of
decision trees utilized in both XGBoost and RF is what sets
them apart from other commonly used algorithms.

Several ML-based SOC estimation methods were compared
as depicted in Fig. 19b to determine the most robust model.
From our literature review, RVM had the highest RMSE and
GPR-based models had the lowest RMSE. Although both use the
VR= relevance vector regression, PF= particle filter, KF= Kalman filter,
odels' RMSE for RUL prediction of supercapacitors (LSTM = long-short

This journal is © The Royal Society of Chemistry 2023
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Bayesian approach to make predictions, GPR's nonparametric
form allows it to have simple training, while also generating an
accurate predictive function.186

Remaining useful life (RUL) prediction involves the fore-
casting of a battery's capacity as it degrades with continued
charge–discharge cycles. Recently, researchers have combined
ltering algorithm-based approaches with data-driven ML
models. Among the approaches explored in this study seen in
Fig. 20a, the models that have performed with the greatest
accuracy based on RMSE are RVR-KF,187 LSTM-GPR,188 and RVR-
PF.189 RVR-KF and RVR-PF both employ relevance vector
regression, a data-driven approach using Bayesian inference to
produce output in a probabilistic form.189 Kalman and particle
ltering are model-based methods that estimate the state of
a dynamic system using measurements from a battery model,
while data-driven RVR utilizes historical data to generate
a regression between the features and RUL.187 The fusing of the
model-based ltering algorithms and data-driven RVR results in
excellent forecasting accuracy by allowing RVR to perform
parameterization of the battery models used by the ltering
algorithm. Besides this approach, LSTM-GPR is a data-driven
approach that combines the benets of learning long-term
capacity degradation through LSTM and capturing local uc-
tuations from the capacity regeneration phenomena through
GPR.188 This approach demonstrated a signicant improvement
over using only GPR for LIB RUL prediction. Studies that
utilized ltering algorithms alone tend to have lower perfor-
mance compared to both data-driven and fusion methods.

Fewer models have been proposed for supercapacitor RUL
prediction, as shown in Fig. 20b, compared to battery RUL
prediction. Data-driven methods, particularly those based on
recurrent neural networks (RNN), have been widely explored by
researchers. LSTM and gated recurrent unit, both of which are
varieties of RNN, have demonstrated improved accuracy over
RNN. LSTM, a deep learning network with a memory unit
capable of capturing long-term dependencies, has also shown
high predictive accuracy when applied to offline data.190 Further
improvement of LSTM has been achieved through the use of
genetic and hybrid GA, which aid in parameter optimization as
well as signicantly speeding up global optimal convergence.191

Future studies should explore the application of hybrid data-
driven and ltering algorithms, similar to those proposed for
battery RUL prediction.

7. Summary

In this review, we discussed recent ML models reported for
energy storage materials and devices including batteries and
supercapacitors. Studies have demonstrated the successful
combination of ML and rst-principles approaches like DFT,
MD, and guided experimentation. These approaches have
successfully been used for accelerating the prediction of mate-
rial properties and device health. Specically, we examined and
evaluated state-of-the-art models trained to predict redox
potentials, crystal structures, dielectric breakdown strengths,
band gaps, formation energies, electrolyte properties, and
electrode material design. Furthermore, the accuracies of ML
This journal is © The Royal Society of Chemistry 2023
models developed to estimate battery and supercapacitor health
were assessed.

Currently, ML has become a promising route to many
computationally intensive or time-consuming problems in
materials research, but still lacks accuracy and generalizability.
For redox potential prediction, GPR has demonstrated one of
the highest accuracies, with the added benet of being able to
pair up with active learning for guided experimentation. Active
learning approaches, especially BO, have demonstrated prom-
ising results for accelerating material screening efforts by using
uncertainty quantication to quickly search for target proper-
ties much faster than trial and error experimentation and DFT
methods. Crystal structure prediction by random forest has
demonstrated high accuracy, while GNs have been gaining
signicant attention recently due to their unparalleled ability to
represent structural features in crystal graphs. However, GNs
are still relatively new and further research is needed to
implement them. Dielectric breakdown prediction through
least squares regression has demonstrated very high accuracy,
while also being a very simple method that can generate
a mathematical function relating the descriptors to dielectric
breakdown. In band gap prediction, GPR has achieved among
the highest prediction accuracies, even with high-dimensional
data. Formation energies prediction by kernel ridge regression
and support vector regression have achieved low prediction
error, but more studies are needed to compare their perfor-
mances. Based on these studies, there is exciting potential for
GPR for predicting properties beyond the ones studied so far,
due to its unique uncertainty quantication and ability to deal
with high-dimensional data. These advantages are particularly
advantageous in guiding experimentation, where optimization
of a large design space would be impractical.

In applications of materials design for battery and super-
capacitor electrodes and electrolytes, many studies have
demonstrated ML models for optimizing composition and
synthesis parameters in an inverse design approach. Once
a model has been trained for predicting a target property from
a set of features, solving the inverse problem involves identi-
fying the values for each feature that will achieve the targeted
property's output value. In materials design, for example, this
entails specifying a specic capacitance, and the trained model
will determine the synthesis parameters necessary to achieve
this target value.

There are still shortcomings of ML, including low data
availability, sparsity of data points, poor generalizability of
models to data outside the seen training set, and lack of pub-
lished data on unsuccessful experiments. Small datasets limit
a ML algorithm's ability to correlate features to a target output.
In addition, the extensive domain of materials data commonly
leads to diverse and sparse datasets, which can limit a model's
ability to identify patterns. The insufficiency of training data
can make generalizing to materials outside the range of the
training dataset less accurate. Moreover, the absence of valu-
able information pertaining to failed experiments oen prove
detrimental to model practicality, as this missing information
prevents key data-driven relationships to be uncovered. Pub-
lished datasets typically contain “islands” of successful
J. Mater. Chem. A, 2023, 11, 3904–3936 | 3929
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experiments and data points, which could introduce biases to
a model.192

One method for overcoming the challenge of small datasets
is transfer learning, which takes parameters from a pretrained
articial neural network or random forest model to initialize
a model for a related task. This approach has already been
demonstrated to improve performance over training from
scratch on a small materials dataset. However, more variety of
studies in transfer learning is currently needed. Also, the lack of
transparency and interpretability calls for further research to
demonstrate how to gain insights from the transfer of struc-
ture–property relationships between models. Transfer learning
has good potential for improving ML model accuracy in low
data availability situations common inmaterials research, while
also leveraging large publicly available databases. Another
promising tool for overcoming issues with small datasets is
NLP, which uses ML to extract data from text-based informa-
tion. This has exceptional potential in the future as it allows for
automatic and efficient dataset generation, like the Chem-
DataExtractor tool, by extracting data points from thousands of
published articles. However, further studies are still needed to
improve the accuracy of rule-based data extraction.

Predicting the cycle life of Li-ion batteries through ML
provides a highly efficient method for quickly assessing health
and reliability. It has been demonstrated that hybrid-based
models provided higher accuracies than ML models. General
regression neural network-based hybrid models have demon-
strated very high accuracies in predicting cycle life. One of the
highest performing ML algorithms is a model based on a broad
learning and extreme learning machine. This method avoids
the use of time-consuming and complex deep neural networks
by utilizing extreme learning machines, while also allowing for
the use of high-dimensional data through broad learning.

Hybrid models combining model-based ltering algorithms
and ML models have demonstrated very promising accuracy for
Li-ion battery remaining useful life prediction. Approaches that
use only model-based ltering algorithms are limited by their
ability to learn long-term dependencies due to the particle
impoverishment problem, demonstrating much lower perfor-
mance compared to utilizing a hybrid model-based and data-
driven approach. Using ML algorithms alone has achieved
greater accuracy than ltering alone, but is not able to outper-
form hybrid approaches. Few studies have explored the appli-
cation of ML to supercapacitor RUL prediction. Mostly
recurrent neural networks have been explored, the most accu-
rate of which have been based on LSTM optimized through
a genetic algorithm framework.

Carbon-based supercapacitors have been studied through
the application of ML methods, especially for capacitance
modeling. The highest accuracy models for predicting capaci-
tance have been ANN, RT, and SVM. Features including SSA,
pore size, electrolyte type, and electrolyte concentration have
repeatedly demonstrated high relative importance for ML
models. M5P models have been applied to supercapacitors and
provided useful insights through generated equations that
relate features, such as pore size, potential window, electrolyte
concentration, and solvent molecule properties to capacitance.
3930 | J. Mater. Chem. A, 2023, 11, 3904–3936
Linear regression models have also been widely used by
researchers for supercapacitor modeling due to their simplicity
but to little avail. Supercapacitor properties exhibit complex
nonlinear interactions that simple linear models are unable to
capture.

As future prospects, we envision several areas of high-impact
research in the near future related to ML-assisted materials
design and improvement of performance in batteries and
supercapacitors. One important area is the use of active
learning, such as the combination of GPR with BO, to guide
experimentation in the lab, when a prohibitively large number
of parameters need to be optimized. With this approach, an
expedited optimization process that balances exploitation and
exploration can enable much fewer iterations, reducing costs
and accelerating the search for target properties. Another
signicant area for research is NLP used for automatically
extracting data from text. This has huge potential in automati-
cally generated databases derived from published articles.
Additional research should focus on the continued develop-
ment of graph neural networks, which is currently a very fast-
growing topic. They are particularly useful in the representa-
tion of crystal structures with applications for property predic-
tions, but further research is needed on the development of new
material representations.

This review provided insights into the predictive accuracy of
recent ML-based approaches for predicting material properties,
and battery and supercapacitor health prognostics. By
combining rst principles and ML approaches, researchers
have been able to rapidly predict material properties and
accelerate the screening and discovery of novel materials. In
addition, the complex, high-dimensional data involved in
material property datasets and device prognostics are the ideal
conditions to use ML approaches.

8. Recommendations

This review has explored various MLmodels used for predicting
material properties, accelerating the discovery of energy mate-
rials, predicting battery capacity, cycle life, electrolyte perfor-
mance, and supercapacitor capacitance, retention, energy
density, and power density. Our recommendations for future
research are provided in the following:

� Automation of experiments through active learning needs
focus: active learning models like BO have already demon-
strated promising results for accelerating materials screening
efforts. By automating the learning process through posing
queries, active learning has proven to be especially advanta-
geous for accurately identifying trends with a small amount of
training data. The ability to learn from small datasets is crucial
in ML applications in materials science research. Further
research should focus on utilizing uncertainty quantication to
enable active learning models and perform guided experimen-
tation, which would signicantly reduce the time and cost of
carrying out trial-and-error experiments.

� Different variations of ensemble ML models need to be
developed: ensemble ML makes use of multiple models for
making predictions. This approach can be advantageous for
This journal is © The Royal Society of Chemistry 2023
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application in material datasets due to the high variation in the
accuracy of ML models based on available data, noise levels,
and input features. As demonstrated in this review paper, it is
difficult to pinpoint a single ML model that has the highest
accuracy for all applications. By employing multiple models, the
most accurate ones can be used for individual predictive tasks
that can later be combined in an ensemble approach. Future
research should further explore different variations of ensemble
ML for predicting material properties and gaining a better
understanding of how different material properties affect
a target property.

� Further research is needed to implement graph neural
networks: graph-based representations of molecules and crystal
structures have opened up a novel method for the application of
deep learning. Graph neural networks have already demon-
strated promising applications through their advanced ability
for learning material systems through both quantum chemistry
and solid-state physics.193 However, current challenges in this
emerging eld limit accuracy, scalability, and generalizability.
Future research should focus on the continued development of
novel architectures that incorporate physical principles and
additional material information, as well as the development of
a labeled materials dataset for model training.194

� NLP capabilities for data extraction need improvement:
NLP text mining has promising applications for energy mate-
rials research, especially for creating more comprehensive
training datasets that could improve ML model accuracy. NLP
greatly depends on the quality of the input text, which means
data labels and the amount of data that can be extracted from
articles depending on the details provided and terms used by
the authors. Therefore, a standardized method for reporting
experimental parameters and results would aid in improving
the efficiency of text mining methods. Further research should
consider how NLP models can be trained to understand syno-
nyms, all the possible meanings of a word, and context. This is
crucial for improving its accuracy and usefulness for
researchers in automating the collection of data from literature,
where the data cannot be found in a database.

� The viability of data augmentation for materials datasets
needs more exploration: data augmentation is a promising tool
for improving the predictive ability of ML models in unseen
domains, an especially critical challenge given the constraint of
low data availability in several materials datasets. A data
augmentation approach to improving a deep neural network
was performed by Kim et al., who were able to gradually expand
the domain of a dataset without affecting the degree of accuracy
of the model.195 Future studies should explore other approaches
to generative models to improve the generalizability of ML
applied to material datasets.

� More studies are needed on the optimization of super-
capacitor electrolytes by ML: the electrolyte system inuences
capacitance, pseudocapacitance, energy density, power density,
and cycle life, demonstrating its importance for electrochemical
performance optimization.135 There is a lack of studies on the
topic of optimizing supercapacitor electrolytes using ML
models. ML can be used to reveal the structure–property
This journal is © The Royal Society of Chemistry 2023
relationships of electrolytes to improve the performance of
supercapacitors.

� Hybrid models for supercapacitor RUL prediction need
more investigation: hybrid models fusing model-based and
data-driven ML approaches have demonstrated high accuracy
for RUL prediction of LIBs. However, current supercapacitor
RUL prediction approaches have been limited to ANN-based
models. Future research should investigate the accuracy of
ltering algorithms combined with data-driven models like
RVR or ANN.

� Selecting features for supercapacitor capacitance predic-
tion needs attention: future ML studies examining the inuence
of electrolytes on supercapacitor capacitance should use
features for ion concentration, size, and type, while simulta-
neously taking into account pore size distribution. This could
help provide insight into the interaction between the pore
structure and ion transport for tailoring surface area to
a specic electrolyte.165

� A convention for reporting model performance metrics is
needed: currently, there is no conventional method for report-
ing model performance. This makes it difficult to grasp how
model accuracies compare. Some inconsistencies observed
when conducting this literature review include the use of
performance metrics (e.g., R2, MSE, RMSE, MAPE, MAE), train/
test/validation split ratios, reporting train/test results, select-
ing the number of folds for cross-validation, reporting average
scores from cross-validation, specifying whether the reported
scores are from the train or test sets, and specifying whether the
reported scores are from standardized or normalized or original
values.

� Transfer learning from pretrained models in materials
science requires further exploration: neural network-based
models generally require large training datasets to achieve
reliable prediction accuracy, but the current bottleneck lies in
the commonly small and inhomogeneous datasets found in
materials databases. The approach of transfer learning has
been explored extensively for improving the learned structure–
property relationships in smaller datasets by using models
pretrained on larger, related materials datasets, or different
material properties. Researchers have already shown its excel-
lent potential for achieving high prediction accuracy in small
datasets. However, there is a lack of understanding on how to
gain insights into the relationships between the pretrained
model and the derived transfer learning model. This could
provide a stronger scientic understanding of the structure–
property relationships of different materials and properties.
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