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Multiplexed molecular imaging with surface
enhanced resonance Raman scattering
nanoprobes reveals immunotherapy response
in mice via multichannel image segmentation†
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Visualizing the presence and distribution of multiple specific

molecular markers within a tumor can reveal the composition of

its microenvironment, inform diagnosis, stratify patients, and guide

treatment. Raman imaging with multiple molecularly-targeted

surface enhanced Raman scattering (SERS) nanoprobes could help

investigate emerging cancer treatments preclinically or enable

personalized treatment assessment. Here, we report a comprehen-

sive strategy for multiplexed imaging using SERS nanoprobes and

machine learning (ML) to monitor the early effects of immune

checkpoint blockade (ICB) in tumor-bearing mice. We used

antibody-functionalized SERS nanoprobes to visualize 7 + 1

immunotherapy-related targets simultaneously. The multiplexed

images were spectrally resolved and then spatially segmented into

superpixels based on the unmixed signals. The superpixels were

used to train ML models, leading to the successful classification of

mice into treated and untreated groups, and identifying tumor

regions with variable responses to treatment. This method may

help predict treatment efficacy in tumors and identify areas of

tumor variability and therapy resistance.

Introduction

Molecular imaging is key to precision medicine.1 Today, ever
richer images are acquired by using multiple modalities to scan

a patient2 or by using multiplexed analysis methods to image
many target molecules in a single sample.3 Multiplexed mole-
cular imaging can prove especially beneficial for the advance-
ment of new cancer treatments, such as immunotherapy. In
particular, immune checkpoint blockade (ICB) therapy has
great potential as cancer treatment, however, the benefit of
therapy has been limited to a minority of patients.4 The ability
to detect the presence of important immune cells and other
crucial markers could predict treatment efficacy and elucidate
immunotherapy mechanisms.5–7 By imaging multiple markers
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New concepts
Imaging multiple molecular markers in vivo is crucial for revealing
therapeutic mechanisms and effecting personalized medicine. Raman
imaging with surface enhanced Raman scattering nanoprobes (SERS NPs)
can provide data-rich spectral images of multiple markers, owing to the
NPs’ distinct spectral signatures. Here, we present a comprehensive
methodology for developing, employing, and visualizing multiple
molecularly targeted SERS NPs to map the tumor microenvironment.
We demonstrate this technique via the in vivo administration of SERS NPs
and imaging in a mouse model of immune checkpoint blockade therapy.
The multi-channel images are color-coded to produce molecular maps of
the tumor microenvironment, and subsequently analyzed using a super-
pixel segmentation approach with supervised machine learning, to
classify tumor areas as responsive or naı̈ve to immunotherapy. This
work provides a generalized guideline for multiplexed SERS imaging
that may be applied to preclinical studies and personalized treatment.
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in vivo, namely immune cell infiltration and activation markers
directly in the tumor, it may become possible to overcome these
challenges.8 A promising approach is multiplexed IHC, where
immunity-associated targets (typically immune cell infiltration)
are imaged in excised fixed tumors, and the spatial distribution
and colocalization of the markers have been shown to predict
treatment outcome.9–11 Newer imaging techniques based on
mass spectrometry, such as multiplexed ion beam imaging
(MIBI), image hundreds of biomarkers on a sample.12,13 How-
ever, these techniques require excised samples, limiting their
potential for in vivo imaging. A method that provides com-
parable features (i.e., high-resolution imaging of multiple
molecular markers) while being amenable to in vivo use, will
be useful for preclinical research and patient care alike.

An emerging optical imaging method has shown great
promise in preclinical oncology imaging, namely Raman
spectroscopy with surface enhanced Raman scattering (SERS)
nanoparticles.14

The phenomenon of SERS, was discovered in the 1970s15,16

and has since proved beneficial in many fields.17 SERS nano-
particles typically used in biomedical imaging rely on a plas-
monic metal core that enhances the light inelastically scattered
by Raman reporter molecules adsorbed on its surface. The core
is encapsulated within a silica shell, on which antibodies or
other targeting moieties can be attached to produce a molecu-
larly targeted nanoprobe. The multiplexing capacity of the
technique has been known for years. Proof-of-concept imaging
of 10 distinct nanoparticles (each with a distinct Raman
reporter but no targeting) has been shown18 along with
various examples of tagging and imaging of several targets
in excised tissues.19–22 Recently, SERS-based multiplexed
imaging has enjoyed renewed interest. Multiplexed imaging
of 5 untargeted nanoparticles at different ratios simulta-
neously in vivo has been reported,23 as well as the spatial
encoding of 26 distinct nanoparticles with targeting shown for
5 targets in vitro.24

Here, we report a general framework for employing the
technique for imaging the tumor microenvironment. Specifi-
cally, we present how to select Raman reporter molecules for
SERS nanoprobe synthesis, a quantitative way of imaging
formation by color-coding the multichannel pixel-wise spectra,
an example application of 8-plexed imaging in a mouse
model of cancer immunotherapy, and an algorithmic approach
for parsing and classifying the multiplexed images based on
machine learning (ML).

Results and discussion
Raman reporters

The Raman reporter molecule is a critical component of the
nanoprobe. Although a handful of commercial dyes can be
employed, we pursued a systematic custom reporter synthesis
approach, which can provide many new distinct Raman nano-
probes, greatly augmenting the multiplexing capacity of the
platform. Chalcogenopyrylium infrared (ChPIR) dyes have been

shown to be effective SERS reporter molecules.25,26 The absorbance
wavelength maximum of these synthetic molecules can be tuned,
as it is proportional to the molecule’s length27 and sequential
bathochromic shifts are produced with the incorporation of
heavier chalcogens in the order of oxygen, sulfur, selenium, and
tellurium.28 This versatility in tuning the absorption maxima
allows for structural variety without sacrificing the resonance
enhancement effect that arises from having the absorption wave-
length close to the excitation wavelength.29 Variability in structure
enables different Raman signatures to be incorporated into
different dyes, augmenting multiplexing capacity. An additional
benefit to using chalcogenopyrylium-based Raman reporters is
that substituents can be introduced at the 2- and 6-positions with
high affinity for the gold and silver surfaces, which are used
as typical SERS substrates.30–32 With these tools at our disposal,
we have produced a library of ChPIR Raman reporter molecules.
The synthesis and characterization of dyes are described in the
electronic supplementary information (ESI†). Their structures and
UV/Vis absorbance spectra are shown in Fig. S1 (ESI†).

Raman nanoprobe characterization

To determine the best candidate dyes for the synthesis of SERS
nanoprobes and produce a panel of SERS nanoparticle contrast
agents, we followed a comprehensive screening approach using
20 ChPIR and 8 commercial NIR dyes – all using the same
synthesis methodology33,34 with minor modifications as
described in Table S1 (ESI†). After synthesis, the nanoparticles
were characterized to determine morphology, stability, and
yield. Transmission electron microscopy (TEM) images of the
synthesized nanoparticles and their absorbance spectra are
shown in Fig. S2(a) (ESI†). The wide absorbance profile of
the nanoparticles allows plasmonic excitation with the
785 nm laser and intense signal, consistent with our previous
work35,36 and reveals that the plasmonic core contributes
most of the extinction, while the absorbance of the reporter
molecules is negligible.

The SERS signal of the nanoprobes is shown in Fig. 1, after
baseline subtraction, and the raw spectrum including the
fluorescence background in Fig. S2(b) (ESI†). The nanoparticles
were placed in a plastic 1536 well plate vertically in order of
chemical similarity of the reporter molecules37 (Fig. 1a) and
horizontally in increasing concentrations from left to right
(Fig. 1b), and Raman scanned to establish limits of detection.
We observed that not all reporters provided strong SERS signals
(Fig. 1c). The signal intensity depends on many parameters,
including plasmonic enhancement, the reporter affinity to the
gold core, and colloidal stability of the core during silica
encapsulation. Chemical similarity appears to be a predictor
of signal intensity and also, it can be seen that chemically
similar dyes exhibit related spectral features. The reporter dyes
can be clustered into four classes, based on chemical similarity,
namely, (I) commercial cyanine-type dyes with moderate to
good intensities and complex spectra, (II) ChPIR dyes with
high intensities and single peak in the high-wave region,
(III) ChPIR dyes with weak to moderate intensities and more
complex spectra, and finally (IV) ChPIR dyes with very low
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intensity, likely due to poor interactions with the gold sub-
strate, e.g., zwitterionic compounds and compounds with ali-
phatic sidechains. Chemical similarity can help in directing the
selection of reporter dyes for curating a multiplex panel, or for
the rational design of new reporter molecules. The Raman
intensity of the best performing nanoparticles can quantify
the nanoparticle concentration over at least three orders of
magnitude, at least down to about 200 femtomolar, as shown
in Fig. 1d.

Image formation

Linear regression with a least-squares fit was used for spectral
demultiplexing, as it can readily decompose a complex spec-
trum into its constituents based on a set of known reference
spectra. Here, we use non-negative least squares (nn-LS) to
assign a set of scores on each point spectrum from the image,
using reference spectra derived from pure nanoparticle popula-
tions. By using the constrained (non-negative) fitting algo-
rithm, we avoid having negative scores, as this would not be
physically meaningful. This process yields a set of positive
scores for every pixel indicating the contribution of each of
the reference spectra as is demonstrated in Fig. 2, where SERS
nanoparticles with four distinct Raman reporters were imaged
in a microwell plate, in different concentrations and ratios
(Fig. 2a). Here, the nn-LS scores on each point were calculated
using the reference spectra shown in Fig. 2c (see Methods for
preprocessing). The point-wise derived scores (Fig. 2d) show the
distribution for each tag, clearly separated and quantified, as
well as the background signal of the plastic plate. The intensity
before spectral processing follows a clear increasing trend
(Fig. 2e); the derived nn-LS scores for each dye correspond to
the maximum intensity of the analyzed spectrum after baseline
subtraction (Fig. 2f).

To visualize multiplex images in a standardized, consistent,
and meaningful fashion, we have developed a quantitative and
generalizable way of color-coding the Raman signatures of the
nanoprobes after spectral unmixing, where each set of scores is
assigned a pseudocolor based on radially projected coordinates
on a color wheel. Our method was inspired by RadViz,38 a
method for visualizing similarities in samples after dimensional
reduction, by projecting them onto a new radial coordinate system
where basis vectors (anchors) are placed around the circum-
ference of a circle. To generate a single image summarizing the
measurement, the calculated scores for each pixel are projected
onto a new coordinate system, where they are assigned a pseu-
docolor. The new coordinate system is circular, with radial basis
vectors that correspond to any number of the reference spectra.
In this way, the scores are now reduced to a 2D disk space, which
can be superimposed on a color wheel (Fig. 2g). Here, we opted for
a modified HSV wheel with full saturation; we used a different hue
to mark each channel and the intensity to encode the magnitude
of the scores. This method can be used to generate single-channel
images corresponding to each tag (Fig. 2h) each with a unique
color assigned to its maximum value and black for the minimum
value or a single image with all the channels of interest (Fig. 2i).
As the coordinate system depends on the superposition of

Fig. 1 SERS nanoparticle library based on 8 commercially available IR
dyes and 20 ChPIR dyes as Raman reporters. (a) Raman reporters are
ordered by chemical similarity for a systematic approach to developing a
SERS nanoparticle library, forming four classes with related signal intensity
and complexity. (b) SERS nanoparticles synthesized with the 28 reporters
and imaged in a standard plastic 1536 well plate at various concentrations.
Compounds grouped by chemical similarity demonstrate similar spectral
features and intensities. (c) Each nanoparticle type provides a uniquely
identifiable spectrum, shown here after baseline subtraction and averaging
of 98 point spectra. (d) Peak signal intensity for each of the 22 brightest
nanoparticles at various concentrations shows the dynamic range of the
SERS signal.
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radial vectors, diametrically opposite components add to zero.
To differentiate such points from points of actually low signal,
we assigned a transparency threshold, based on an absolute
summation of the score magnitudes. In this way, the well-plate
scan is rendered as shown in Fig. 2i, with the point projections
shown on the color wheel (Fig. 2g), and the corresponding
pixels colored accordingly. Channels with irrelevant informa-
tion, like the plastic plate here or paraffin in histology blocks,
can be seamlessly excluded from the visualization. This method
goes beyond traditional methods that show only the presence
of a nanoprobe or the ratio of two, and it allows quantification
and visualization of mixtures.

Imaging the tumor immune microenvironment

We selected a panel of targets that can reveal information about
the immune profile of a tumor, the state of the tumor cells, and
their response to therapy, as well as non-specific nanoparticle
uptake controls. We synthesized SERS nanoprobes functiona-
lized with antibodies (Fig. S3, ESI†) against the following
targets: CD8a (cytotoxic T lymphocytes); CD4 (helper T-cells);
GITR and 4-1BB (T-cell activation/costimulatory receptors);
CD11b (myeloid phagocytes implicated in immunotherapy
and nanoparticle opsonization); NKp46 (natural killer cells);
PD-L1 (expressed by tumor cells and implicated in PD-1
mediated immune suppression); and a non-targeted IgG iso-
type control. All of these markers are actively investigated in
various studies of ICB.39–41 SERS nanoprobes (7 targeted + 1
untargeted control) were synthesized with reporter molecules
and targeting antibodies as stated in Fig. S3 and Table S2
(ESI†). The Raman reporters were selected to yield high inten-
sities when interrogated with the 785 nm laser, and to have
sufficiently distinct spectral features to facilitate unmixing.
The hydrodynamic diameter was measured via Dynamic Light
Scattering (DLS) at 69 nm for the star core, at 146 � 16.5 nm for
the silicated nanoparticles (all configurations), and 166 �
13.8 nm after antibody functionalization.

A mouse model of cancer immunotherapy was employed to
test our imaging approach in a preclinical in vivo scenario.
To induce the tumors, BALB/c mice were injected subcuta-
neously with CT26 (colon) and 4T1 (breast) murine cancer cells
on opposite flanks. We selected this model because the BALB/c
mice are immunocompetent and the cancer cell lines are widely
available and have been used previously to assess the effects of
immunotherapy.42–45 The animals were randomly divided
into two groups: the treatment group received ICB treatment
(anti-CTLA-4 and anti-PD-1), and the control group received
sham treatment (PBS), as described in Fig. S4a (ESI†).
We elected to perform the imaging before any therapy-
induced reduction in tumor size was observed, to discern the
initial effects of the treatment. After only two rounds of
treatment, we proceeded to nanoparticle administration and
imaging. Tumors from another cohort of mice, subjected to the
same conditions (treatment and control) were examined via
flow cytometry. The results (Fig. S4b, ESI†) suggest that early,
yet not robust, changes are occurring in the activation markers
(GITR, 4-1BB) and tumor expression of PD-L1.

The nanoprobes were administered to the tumor-bearing
mice as a cocktail bolus and allowed to circulate overnight. The
mice were subjected to Raman imaging of the tumor regions,
simulating a non-invasive imaging scenario through the intact
skin and an intraoperative scenario with the skin removed and
the tumors imaged in situ (Fig. 3a and d). Subsequently, the
tumors were excised, fixed with 4% paraformaldehyde, and
embedded in paraffin. The paraffin blocks were subjected to
Raman imaging at high resolution to produce Raman multiplex
images (Fig. 3b and e). The SERS signal of the injected nano-
probes remained detectable in the excised tumors at least for
several days after fixation. Single-channel images were com-
pared to histologically stained sections from the same blocks

Fig. 2 Spectral unmixing and visualization for multiplex Raman imaging.
(a) Four SERS nanoparticle configurations featuring distinct reporter mole-
cules were placed in a well plate, at various concentrations and ratios.
(b) Raman image showing the intensity at a single wavenumber cannot
separate the signals. (c) Reference spectra from pure populations used for
spectral unmixing. (d) The nn-LS score obtained for each reference at each
pixel unmixes the signals spatially. (e) Raw Raman intensity of representa-
tive peaks. (f) The nn-LS score for each configuration (dashed line)
matches the corresponding Raman signal intensity after baseline subtrac-
tion at the characteristic peak (dotted line). (g) Radial coordinate system
where the references are spaced angularly on the circumference of a
modified HSV color wheel. The color of each pixel is determined based on
its projection onto the color wheel coordinates. Spectra from pure
populations are projected on lines from the center (low intensity) towards
the direction of their reference (high intensity), whereas mixtures lie in
areas between the corresponding references (e.g., blue is a 1 : 1 mixture of
purple A and cyan B). The signal corresponding to ‘‘plastic’’ was excluded
from the coordinate system. (h) Single-channel images show the signal
quantitation for each nanoparticle configuration. (i) Final image showing
the distribution and intensity of the four nanoparticle configurations. In the
central well, an equal mixture of all four dyes yields a small vector sum
(assigned to black). Pixels with signal (from the included references) below
the threshold are rendered transparent. For panels (e–f) the values
reported are averages of 648 spectra, with error bars showing the standard
deviation from the mean.
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(Fig. 3c and f). Our first observation was that there was no
detectable nanoprobe signal from tumor areas that showed
necrosis or hemorrhage. Such areas were identified by the H &
E stain and were typically in the central regions of 4T1 tumors
(Fig. S6, ESI†). This observation was expected, as the necrotic
areas are poorly vascularized preventing nanoprobe delivery via
the bloodstream; which produces imaging contrast between
viable and necrotic areas of the tumor, irrespective of targeting
moiety. This creates a complication when comparing the multi-
plexed Raman images to IHC stains: IHC stains are applied to
thin tissue sections of the tumor, and, as such, are naı̈ve
to blood flow, staining necrotic and viable areas alike. This
observation is exemplified in Fig. S5 (ESI†) where IHC for
CD11b, for example, stains necrotic areas more strongly than
viable positive areas, and for PD-L1 where practically no

contrast appears between viable positive and necrotic areas.
The physiological differences between the different tumor
regions are clearly seen with the H & E stain. Conversely, the
images obtained with our method reveal the presence of the
target molecules in the viable regions alone, without confound-
ing signals from necrotic areas.

When examining the viable tumor areas, IHC staining
corroborated the Raman images well, as the spatial patterns
of all the markers are similar between the two techniques.
Some spatial discrepancies were expected due to image sam-
pling parameters. For example, in the IHC images, cells that
appear in low numbers (such as CD8+ cells seen in Fig. 3c and f)
can only be detected at high magnifications and are not
discernible in low magnification images; whereas in the Raman
scan, the larger pixels allow for the signal to be detected even

Fig. 3 Raman imaging of tumor immune composition with histological validation. Tumors were scanned in different settings to simulate potential
clinical scenarios such as non-invasive and intraoperative imaging (a and d) and histological analysis (b and e). Validation of imaging efficacy was
performed by comparing subregions (indicated with the box in b and e) of single-channel Raman images (for the 7 targets + control) to histological stains
of the same subregions with related antibodies (c and f). The histological stains were quantified as percentage of stained pixels for clarity. Raman imaging
reveals the relative abundance of different markers in the tumors, in agreement with IHC. Scale bars signify 500 mm.
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though their exact location of the cells within the pixel is not
revealed. An additional hurdle to the direct comparison of the
two techniques is the innate variability of IHC stains, as the
affinity of different antibodies used in the immunostaining
process yields different background levels and contrast for
every IHC image. Overall good agreement between the Raman
images and IHC was noted in areas of viable tumor tissue: both
Raman imaging and IHC reveal high expression of some
markers (CD11b, PD-L1), moderate (NKp46, CD4), and lower
of others (CD8, GITR, 4-1BB). The non-targeted control NP (IgG)
provided low signals in areas correlated to the expression of
CD11b, which may indicate non-specific uptake by phagocytes,
but in low numbers. Although CD8, GITR, and 4-1BB are
detected at similar intensity levels as the non-targeted control,
their spatial distribution is distinct, and it is likely not attri-
buted to the same (non-specific) uptake mechanism.

Tumor treatment response assessment

The imaged tumors demonstrated heterogeneous morphology;
typically, with a necrotic center and proliferative areas in the
periphery or the vicinity of blood vessels, while immune cells
infiltrated the tumor in different areas and to different extents.
A few consistent changes in expression level and localization
were observed between the treatment group versus control,
which agree with the expected effects of ICB on the tumor
microenvironment.5–7,46,47 For example, moderately increased
levels of CD8 and GITR and higher levels of PD-L1 were
observed in the periphery of 4T1 tumors of treated animals
around areas of necrotic tumor, indicating T-cell infiltration
and activation, as well as an increased immune-suppressing
response from the tumor, respectively. Conversely, for the
control group, these markers are dispersed throughout the
viable tumor area and do not point to an active immune
response. A similar pattern was noted for CT26 tumors but to
a lesser extent. These qualitative differences can be seen in the
tumors shown in Fig. S6 and S7 (ESI†), where tumors from
animals that received immunotherapy exhibited, in certain
areas, elevated PD-L1 (and moderately increased CD8 and
GITR) compared to their PBS-treated counterparts. However,
when averaged for the whole tumor without considering their
spatial distribution, the unmixed scores of the markers were
found to not show any statistically significant differences
(Fig. S8, ESI†), similar to flow-cytometry analysis. A spatially
aware approach (taking into consideration marker distribution
and co-localization) can provide more useful information than
simply averaging the signal of the markers in bulk.48,49

Segmentation and classification of tumor regions

To take into consideration morphological features of the imaged
tissue, a suitable method must be employed to segment the tumor
in subregions with similar features. We selected to follow a
superpixel clustering algorithm (SLIC),50 which groups pixels by
minimizing the distance in the 8-dimensional space span by the
nn-LS scores derived on the markers as well as in the two-
dimensional physical space of the image. The scores on each
channel were mean-centered and normalized to unit variance.

The spatial coordinates were also scaled, as described in Methods,
to control the superpixel compactness. The results of the super-
pixel segmentation are shown in Fig. 4a and b.

After SLIC-based segmentation, the superpixels were used to
train classification models based on different ML approaches,
to classify the superpixels into categories. The complete
analysis procedure from raw Raman spectra to classification
is demonstrated in Fig. S9 (ESI†), and described in more detail
in Methods. Approximately 150 superpixels were generated per
tumor (plus the adjacent paraffin region), as seen in Fig. 4a.
The nn-LS scores were averaged within each superpixel, to
provide the mean superpixel nanoprobe uptake image (Fig. 4b).

Fig. 4 Segmentation and classification of tumor regions. (a) Superpixel
clustering was used to group together adjacent pixels with similar nano-
probe uptake profiles into superpixels. (b) The superpixels colored based
on their average Raman signal. (c) Example nanoparticle uptake profiles
from the 4 superpixels indicated in (b). The bars show the mean signal on
each of the markers from the constituent pixels, and the whiskers the
standard deviation from the mean. Each superpixel contains about
100 pixels. (d) Classification of the superpixels using ANN. Tumors from
treated mice are classified overwhelmingly as ‘‘ICB Tx’’ whereas control
tumors as ‘‘No Tx’’. Necrotic areas are classified as ‘‘No tumor’’. (e) Mean
expression profile from the 4T1 tumor shown in (d) according to class. The
bars show the mean profile of the superpixels in each class, and the
whiskers the standard deviation. A total of 1100 superpixels were con-
sidered. (f) Same for the CT26 tumor shown in (d). (g) Expression profile of
superpixels from (d) based on experimental condition. (h) Overall expres-
sion profile based on class for all superpixels representing all of the
20 tumors examined in this study.
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Each superpixel is characterized by a nanoparticle uptake
profile, four exemplary superpixel uptake profiles are shown
in Fig. 4c.

The superpixels were then used as training data to calibrate
several models based on supervised machine learning (SML).
Classes for calibration were assigned as ‘ICB’, ‘No treatment’,
and ‘No tumor’ based on whether the superpixel was from a
treated animal, a control animal, or an area without a tumor,
respectively. We elected that intra-tumoral variation not be
taken into consideration for model calibration, meaning that
areas within a tumor (either from a treated or control animal)
were assigned to the same class, regardless of being viable,
necrotic, or distinct in any other way. This decision reduces the
bias introduced to the model during training by limiting input
from a human user but leads to decreased goodness of fit
statistics because varied tumor regions are treated as the same
class. Several SML methods were assessed, including artificial
neural networks (ANN), support vector machines (SVM), partial
least squares discriminant analysis (PLS-DA), and boosted
gradient trees (XBG). In all methods cross-validation was
performed, to avoid over-fitting of the data, by leaving a set of
4 tumors out of calibration and using it for validation. This was
performed for all tumors in the dataset (in five iterations).
The classification results are summarized in Fig. S10 (ESI†).

The resulting classification is shown in Fig. 4d for one set of
tumors, and in Fig. S10 (ESI†) for the whole dataset. Superpixels
classified as ‘ICB’, ‘No treatment’, or ‘No tumor’ are shown in
green, pink, and black, respectively. Almost all models classi-
fied areas from naı̈ve and treated CT26 tumors correctly, but
indicated that ICB-treated 4T1 tumors contained areas more
closely resembling the ‘‘No Tx’’ group. This indicates that 4T1
tumors are more resistant to ICB therapy compared to CT26,
consistent with reports in the literature.51

Overall, the ANN model performed adequately, with class
error of cross-validation around 0.10, and root mean square
error of cross-validation (RMSECV) around 0.26, while XBG
performed better, with class error of cross-validation of 0.07.
As expected, most of the error stems from intra-tumoral
variability, as necrotic areas provided negligible signal and
were classified as ‘No tumor’. Even so, our methodology was
able to classify the tumors appropriately based on the multi-
plexed SERS signal, and indicate if any (and which) tumor areas
are not aligned with the expected outcome. We expect that by
fine-tuning the calibration data, or using morphological image
processing approaches, better models can be generated, where
necrotic areas and areas of effective treatment or emerging
resistance can be identified.

Other SML models corroborated the results of the ANN
model, indicating that the approach is model-independent.
PLS-DA identified the variables with the most descriptive
power as PD-L1 and GITR with T2 weights of 0.77 and 0.59,
respectively, compared to CD4 and CD11b, which were the least
important for classification with weights of 0.27 and 0.19,
respectively. XBG also identified PD-L1 expression as the single
most important predictor for classification, with a gain of 95,
compared to 13 for the weakest predictor, 4-1BB.

Conclusions

New techniques with high multiplexing capacity, such as the
one we present here, can greatly benefit the field of molecular
imaging. Today, the detection and visualization of a single mole-
cular target can help the physician reach a diagnosis and monitor
disease progression. By detecting a panel of multiple relevant
targets, the physician can gain access to synergistically more
information, which also can be used for computer-aided diagno-
sis via ML.

In this work, we present a comprehensive methodology for
multiplexed molecular Raman imaging with SERS nanoprobes,
demonstrating the high potential of this modality. Initially, we
examined how to discover and select new Raman reporter
molecules. For in vivo applications, lasers in the IR are advan-
tageous, and reporters with resonances close to the excitation
wavelength are preferable as they provide higher signals,
creating a need for good Raman reporters in the IR. Another
important consideration is the affinity of the molecule to the
gold core, as the plasmonic enhancement rapidly decays with
distance. These effects may be predicted from the structure of a
reporter molecule by using a chemical similarity metric.
This approach can indicate whether a molecule will yield
high-intensity SERS signal, as well as whether the spectrum
will be distinct from other molecules in a multiplexed
imaging panel.

Once we assembled a library of 8 distinct and bright nano-
probes, we were able to perform molecularly targeted multi-
plexed imaging. The data-rich images acquired, consisting
of 8 channels or data, are not easily interpreted visually. It is
established that ratiometric approaches can be used to show
the relative prevalence of one probe vs. another. We generalized
this philosophy to accommodate arbitrary numbers of markers,
and provide the relative prevalence of one marker vs. all others
based on a circular coordinate system. We then used this
approach to assign colors based on these relative abundances.
In this way, we were able to generate images that convey
information from 8 channels (or more) in a single snapshot.

Our multiplexed imaging approach showcases that the
immune microenvironment is not uniform throughout a
tumor, with different areas exhibiting different profiles, that
change drastically with certain treatments, as shown here for
ICB. The local complexity within the tumor can only be effec-
tively observed with a multiplexed imaging approach that
highlights the variations in biomarker expression and immune
infiltration. By visualizing this variability and identifying
regions that do not fit the expected phenotype it may become
possible to predict therapeutic efficacy and guide the treatment
approach.

The multichannel images (Fig. S6 and S7, ESI†) can serve as
a first description of the tumor microenvironment, indicating
the spatial abundance of immune cells or the expression of
PD-L1. However, a single image is only a qualitative visual
indicator of the cellular composition of the tumor, and does
not convey the complete quantitative information obtained
through the scan. The complete multi-channel dataset can be
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analyzed algorithmically to provide a guiding model encom-
passing all the relevant information. A pixel-by-pixel approach
has several disadvantages, as it is prone to random noise
stemming from the distribution of a small number of nano-
particles in the tumor. Subsampling the image and averaging
the signal over many pixels can lead to better statistics. How-
ever, to preserve physiological features we must segment the
multichannel image in a way that reflects the signal of the
multiple nanoparticles as well as their relative positions. We
did this by using a superpixel algorithm to segment the image,
grouping pixels together in clusters, that are spatially cognate,
and similar in molecular expression. These clusters provide
improved signal statistics and correspond to physiologically
similar regions within the tumor microenvironment, allowing
us to classify them algorithmically into responsive and naı̈ve
regions, after ICB.

Multiplexed imaging with SERS nanoparticles has now matured,
and provides a new way of thinking about molecular imaging. Even
though nanoparticle contrast agents are still a long way from clinical
use, this versatile method can be applied readily in preclinical
studies as well as ex vivo, using excised tissues. Overall, multiplexed
molecular imaging, with SERS nanoprobes or another agent
with comparable multiplexing capacity, can usher in a new era of
high-capacity, computer-aided, and personalized imaging.

Materials and methods
ChPIR synthesis

All reagents were purchased from commercial sources and,
unless otherwise stated, were used without further purification.
Reactions run under anhydrous and/or inert conditions are
noted in the procedure as such. All other reactions were
performed exposed to atmospheric conditions. Tetrahydro-
furan (THF) was distilled from a sodium benzophenone ketyl,
and other anhydrous solvents were dried over 4 Å molecular
sieves before use. Concentration in vacuo was performed on a
rotary evaporator. NMR spectra were recorded on either a 300
MHz Gemini or a 500 MHz Varian Inova spectrometer for
1H NMR spectroscopy and a 300 MHz Gemini spectrometer
operating at 75.5 MHz for 13C NMR spectroscopy. Residual
solvent signal was used as the internal standard. If a mixture of
CD2Cl2 and CD3OD was used, the residual peak for CH2Cl2 was
used as the internal standard. UV/VIS-near-IR spectra were
recorded in quartz cuvettes with a 1 cm path length on a
PerkinElmer Lambda 12 spectrophotometer. Melting points
were determined with a Büchi capillary melting point apparatus
and are uncorrected. 13C NMR spectra were not recorded for
some pyrylium dyes due to limited solubility in common NMR
solvents. Detailed synthesis for each is presented in the ESI.†

SERS nanoprobe synthesis

SERS nanoparticles were synthesized as reported previously,
with a gold nanostar core encapsulated by a silica shell.33

Briefly, gold nanostars were synthesized by quickly adding
10 mL of 20 mM tetrachloroauric acid (HAuCl4) solution per

1 L of 60 mM ascorbic acid under vigorous stirring at 4 1C. The
resulting nanostars were concentrated 160-fold (to approxi-
mately 1 nM) via centrifugation (20 min, 3220 g) and dialyzed
(MWCO 3.5 kDa) against DI water at 4 1C for at least three days.
The silica shell was formed via a modified Stöber reaction,
during which the Raman reporter molecules (commercial IR or
ChPIR dyes) were also introduced to yield the various SERS
spectra. In a 500 mL plastic bottle 90 mL isopropanol, 4.5 mL
tetraethylorthosilicate, 1.8 mL DI, and the corresponding
Raman reporter were mixed. All nanoparticle configurations
were synthesized using the same procedure with different
amounts of reporter molecule (at a concentration of 20 mM
in dimethylformamide), as listed in Table S1 (ESI†). In a 50 mL
conical tube, 27 mL ethanol, 10.8 mL nanostars from dialysis,
and 1.8 mL ammonium hydroxide were mixed quickly and then
poured into the plastic bottle under vigorous stirring. The
reaction was allowed to proceed for 15 minutes and was then
quenched by adding ethanol to a final volume of 400 mL.
The nanoparticles were collected via centrifugation (20 min,
3220 g), concentrated 250-fold to approximately 3 nM, and
washed repeatedly via centrifugation (3 min, 11 000 g) followed
by aspiration of the supernatant and redispersion (via ultra-
sonication) in fresh ethanol. For antibody conjugation, the
silicated nanoparticles were dispersed in a solution of 10%
(3-mercaptopropyl)trimethoxysilane and 5% DI in ethanol, for
one hour at room temperature. Antibodies (as listed in Table
S2, ESI†) were reacted with 10�molar excess of a heterobifunc-
tional PEG crosslinker ((poly(ethylene glycol)(N-hydroxysucci-
nimide 5-pentanoate) ether N0-(3-maleimidopropionyl) ami-
noethane (CAS: 851040-94-3)) in HEPES buffer (pH 7.1) for
30 min at room temperature. Excess crosslinker was removed
by centrifuging the antibody-PEG solution using a centrifugal
filter (MWCO 100 kDa). The thiolated nanoparticles were
washed (2� in ethanol and 2� in DI) and finally resuspended
in HEPES buffer (pH 7.1) and mixed with the antibody-PEG
conjugate. The solution was allowed to react overnight at 4 1C.
The functionalized SERS nanoprobes were washed one last
time to remove unreacted antibodies, and the different config-
urations were mixed prior to injection.

The nanoparticle morphology was tested at every step of the
synthesis via TEM. A droplet of the suspension was placed on a
carbon film-coated copper grid (300 mesh, Electron Microscopy
Sciences) and allowed to air-dry. Images were acquired at
250 000� magnification using a JEOL JEM-1400 (JEOL USA,
Inc.) operated at 100 kV. The concentration and size of the
nanoparticles were monitored via nanoparticle tracking analy-
sis (NanoSight NS500, Malvern Instruments). DLS was used to
measure the size distribution, zeta-potential, of the nano-
particles before and after silication and functionalization, and
establish successful conjugation and stability of each sample.
For DLS measurements, the nanoparticle samples were diluted
1 : 1000 or 1 : 500 in HEPES buffer at pH 7.1.

SERS nanoprobe characterization

Aliquots of each of the synthesized nanoparticle configurat-
ions at varying concentrations were scanned in a 1536 well

Communication Nanoscale Horizons

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

0 
lo

ka
ku

ut
a 

20
22

. D
ow

nl
oa

de
d 

on
 3

.1
1.

20
25

 2
3.

57
.3

7.
 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d2nh00331g


1548 |  Nanoscale Horiz., 2022, 7, 1540–1552 This journal is © The Royal Society of Chemistry 2022

microplate via Raman imaging. The scan results are shown in
Fig. 1, where the signal from the nanoparticles is detected using
a non-negative Least Squares (nn-LS) fit (see Methods) (Fig. 1b).
The distinct spectra of each of the configurations at the highest
concentration (Fig. 1c) were used as references for the mathe-
matical fitting model.

For in vivo administration, eight of the best performing
nanoparticle configurations were selected and surface-
functionalized with antibodies to yield 7 targeted (and one
non-targeted control) SERS nanoprobes. The antibodies used
(Table S2, ESI†) were validated independently via flow-
cytometry for these targets in live cells. Successful functionali-
zation of the nanoparticles was confirmed by dynamic light
scattering (DLS), revealing changes in size and z-potential for
all nanoparticle-antibody pairs (Fig. S3, ESI†).

Cell culture

The murine cancer cell lines CT26 and 4T1 were obtained from
ATCC and were maintained in RPMI medium supplemented
with 7.5% FCS and penicillin with streptomycin. All of the cell
lines were tested and found to be negative for mycoplasma
contamination. The cell lines were not reauthenticated after
their receipt from the original sources.

Animal model/treatment

All animal studies were conducted under a protocol approved
by the Institutional Animal Care and Use Committee of Mem-
orial Sloan Kettering Cancer Center following the NIH guide-
lines for the care and use of laboratory animals (NIH
Publication No. 85–23 Rev. 1985). BALB/c mice (female, 4–6
weeks) were acquired from Jackson Labs. Bilateral flank CT26
and 4T1 tumors were established by subcutaneous implanta-
tion of 106 and 3 � 105 cells, respectively. The mice were
randomized into a treatment group (n = 5) and a control group
(n = 5). The treatment group received intraperitoneal injections
of anti-CTLA-4 (9H10, 100 mg) and anti-PD-1 (RMP1-14, 250 mg)
antibodies in PBS on days 8 and 11 post tumor inoculation,
whereas the control group received intraperitoneal injections of
pure PBS. For the 8-plex experiment, all animals were adminis-
tered a bolus of the SERS nanoprobes mixture (200 mL, 3 nM each
configuration, in HEPES buffer pH 7.1) on day 13 via tail vein
injection. The mice were observed for an hour after nanoparticle
injection, noting no abnormal behavior or signs of major discom-
fort. The animals were sacrificed approximately 12–16 hours after
injection via carbon dioxide asphyxiation.

Flow cytometry

Each tumor was extracted, mechanically cut, enzymatically
lysed and processed for surface labeling. The lysates were
stained for CD8, GITR, 4-1BB, CD11b, NKp46, CD4, and PD-
L1. Data were acquired using the LSRII Flow cytometer (BD
Biosciences) and analyzed using FlowJo software (Treestar).

Raman imaging

Raman imaging was performed on a Renishaw InVia Raman
imaging microscope, via the Wire software v4 interface. The

mice were imaged twice, once through the intact skin and once
after surgical exposure of the tumor area, with alternating order
between control and treatment groups. One animal at a time
was fastened on a platform and mounted on the microscope’s
mechanized stage. Prior to each Raman scan, the focal plane
was selected to intersect the tumors using white-light parfocal
optics, and a widefield image was acquired. The tumor areas
were selected, and scanned with the Raman laser (wavelength
785 nm, objective �5, power 161 mW, acquisition 0.5 s,
resolution 300 mm). The platform was then removed from the
microscope, the tumors exposed surgically, and the imaging
procedure repeated with the same settings. After imaging each
animal, the tumors were excised and processed for histological
analysis as described below. Prior to sectioning, the paraffin
blocks were subjected to Raman imaging (wavelength 785 nm,
objective �20, power 134 mW, acquisition 100 ms, resolution
40 mm) to acquire the high-resolution images for histological
comparison.

Histology

Tumors were excised, fixed in 4% paraformaldehyde in PBS
overnight, processed, and embedded in paraffin. Sets of four
tumors (from two animals) were placed in each block to
represent all experimental conditions (4T1-treated, 4T1-
control, CT26-treated, CT26-control). The blocks were trimmed
to reveal the four tumors and subjected to Raman imaging as
described above. Next, the blocks were sectioned (5 mm thick)
and stained with H&E for histological comparison (Fig. 3b and
e). Additional sections were subjected to immunohistochemical
staining against the same targets as the SERS nanoprobes, but
using antibodies for different epitopes, independently titered
and tested (Table S2, ESI†). EDTA-based antigen retrieval was
used on a Ventana Discovery XT (Roche diagnostics). Optical
imaging of the stained sections was performed on a Mirax
digital slide scanner (Zeiss). Image quantitation was performed
in MATLAB (Mathworks). RGB histological images were con-
verted to the L*a*b* colorspace and segmented to three chan-
nels (white, blue, and brown) using a K-nearest neighbor
algorithm based on the a* and b* values alone. The image
was divided in square subareas and the percentage of pixels
classified as ‘brown’ was counted.

Computational – spectral processing

Data analysis was performed using MATLAB (Mathworks) and
PLS Toolbox (EigenVector Research Inc.). Raman images were
subjected to spectral unmixing using non-negative least
squares (nn-LS) regression. Reference spectra for the regression
analysis were acquired from suspensions of each nanoparticle
configuration in a well plate. The reference spectra underwent
baseline subtraction (Whittaker filter, l = 200) and normal-
ization by the maximum value. The spectral data from the
image were subjected to pointwise baseline subtraction (Whit-
taker filter, l = 200), but no normalization was performed.
Regression analysis provided a score on each of the N reference
spectra, corresponding to the unmixed signal of that spectral
component for every point. Specifically, for Fig. 1, N = 29 (28
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reference spectra of the various nanoparticles plus the spec-
trum of the plastic well-plate); for Fig. 2, N = 5 (four nano-
particle spectra plus for the plastic well-plate); for Fig. 3 and
Fig. S5–S9 (ESI†), N = 9 (8 nanoprobe spectra + paraffin). In all
cases, as the reference spectra were normalized but the sample
spectra were not, the scores retain their natural units and can
be used as such for quantitative analysis, or normalized for
visualization via pseudocolor assignment.

Computational-visualization

For pseudocolor representation, a color wheel was constructed
as a 201 � 201 � 3 matrix using the HSV color model. Hue was
set to change with the azimuth, saturation as an all-ones
matrix, and value increasing radially, with 0 at the center. This
matrix was then converted to a 201 � 201 � 3 RGB matrix to
display the color wheel. For each visualization, the N radial
reference vectors were placed evenly along the circumference of
the wheel (r = 100), and their cartesian coordinates (xi, yi) were
calculated.

For each point spectrum, the color was computed as follows:

the coordinates on the disk were calculated as ðxp; ypÞ ¼

ðS1;S2 . . .SNÞ �
x1 y1

..

. ..
.

xN yN

0
B@

1
CA where Si are the scores of the

spectrum on each reference. Since all scores were constrained
between 0 (non-negative fit) and 1 (normalization) the resulting
coordinates were within the bounds of the color wheel (xp, yp

between �100 and 100). The coordinates for each point were
then rounded to the nearest integer, and assigned a color
corresponding to the position of the point on the wheel.
In this way, each point of the Raman scan was converted into
a pixel on the pseudocolor image.

Computational – machine learning models

The images derived from nn-LS scores were used as input for
the ML models. Initially, each of the 8 data channels was mean-
centered and standardized (m = 0 and s = 1). Then, a SLIC
algorithm was followed to group individual pixels from the
Raman scans into superpixels. The same constraints and super-
pixel density were used for all images. The algorithm mini-
mized the distance

d ¼ a xspn � xpi
� �

þ yspn � ypi
� �2� �

þ
XN
k¼1

scorekspn � scorekpi

� �2

for each pixel i and each superpixel n, with coordinates (x,y)
and the corresponding normalized scores on each of the N = 8
multiplexed image channels. The compactness parameter a,
used for weighing physical distance (in 2D space) against score
distance (in 8D space), was determined empirically as a = 5 �
10�3 m�2. The process was repeated for 20 iterations, each time
recalculating new coordinates and mean scores for the n super-
pixels. Each of the resulting superpixels represented the aver-
age of similar pixels within its vicinity. To create the dataset,

each superpixel was assigned to a class (Tx, C, or none) based
on whether the physical location of its center was located
within the tumor boundaries.

For the classification models, the physical location of the
superpixels was ignored, and only the aggregate nn-LS scores
and the assigned class of the superpixel were considered. For
cross-validation, a set of 4 tumors was excluded from training
and was used as validation. Training with cross-validation was
performed 5 times to include all 20 tumors for validation.
Several SML methods were tested. After classification, the
predicted class (of calibration) with the highest probability
(most likely class) was used to set the color of each pixel in
the image, based on the superpixel classification. The main
results are presented in Fig. 4 and Fig. S10 (ESI†).
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