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Predicting the phase diagram of titanium dioxide
with random search and pattern recognition†

Aleks Reinhardt,a Chris J. Pickardbc and Bingqing Cheng*ade

Predicting phase stabilities of crystal polymorphs is central to computational materials science and

chemistry. Such predictions are challenging because they first require searching for potential energy

minima and then performing arduous free-energy calculations to account for entropic effects at finite

temperatures. Here, we develop a framework that facilitates such predictions by exploiting all the

information obtained from random searches of crystal structures. This framework combines automated

clustering, classification and visualisation of crystal structures with machine-learning estimation of their

enthalpy and entropy. We demonstrate the framework on the technologically important system of TiO2,

which has many polymorphs, without relying on prior knowledge of known phases. We find a number of

new phases and predict the phase diagram and metastabilities of crystal polymorphs at 1600 K,

benchmarking the results against full free-energy calculations.

I. Introduction

Predicting the properties of solid materials requires an under-
standing of how atoms are arranged, which in turn necessitates
the determination of the relative stabilities of possible crystal
polymorphic phases under various conditions. Advances in
crystal structure prediction,1 including random structure
search (RSS),2 particle-swarm optimisation,3 Monte Carlo simu-
lations with variable box shapes4 and basin hopping,5 allow us
to find minima on the potential-energy surface (PES) and thus
to identify potentially competitive polymorphs. However, in
these approaches only the enthalpy H at 0 K is typically
computed and used to determine phase stability, even though
the difference in entropy S between polymorphs can play a
significant role.6,7 Relative Gibbs energies (G = H � TS), which
in actuality dictate thermodynamic (meta)stability, are seldom
computed, despite their importance for phases that can be
synthesised at one thermodynamic condition but remain meta-
stable under other conditions.

Although Gibbs energies can be computed using free-energy
methods such as thermodynamic integration (TI),6,8,9 such

calculations are non-trivial and usually require long simula-
tions, making them both expensive and tedious if one wants to
use the PES computed from first-principles methods such as
density-functional theory (DFT).10 Moreover, crystal-structure
prediction schemes typically result in a multitude of structures.
It can be challenging to rationalise how the structures are
related to one another and which ones are promising candi-
dates under given thermodynamic conditions.

In this study, we propose an approximate method that
combines RSS and machine learning (ML) to estimate free
energies of solid phases and hence the thermodynamic phase
behaviour of a system of interest with relatively little computa-
tional effort and without relying on prior knowledge of the
known phases. We have selected titanium dioxide at ambient
and high pressures to benchmark the method because it is a
widely used metal oxide with a large number of polymorphs
(see the ESI†), many of which may have interesting optical,11

mechanical12 and electrochemical13 properties. Furthermore,
high-pressure TiO2 phases can also serve as analogues of the
structures adopted by many other important AX2 systems that are
of particular interest in geology, such as high-pressure silicas.14

II. Methods
A. Calculations using empirical potential

For RSS and accurate free energy calculations, we focus on the
simple MA empirical pair potential for TiO2

15 because of its low
computational cost.9

We performed RSS at 0 GPa, 20 GPa, 40 GPa and 60 GPa using
the AIRSS16,17 package interfaced with Lammps.18 For each RSS
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run, we first chose a reasonable cell shape at random, and added
2, 3, 4, 6, 8, 9 or 12 formula units TiO2 of into the simulation cell
at random positions while keeping the initial density of the cell
close to the typical density range of this system. We set a lower
bound on the interatomic distance for each pair of atomic species,
but otherwise imposed no additional constraints or symmetries
on the initial structures. We then relaxed each structure using a
second-order conjugate gradient algorithm until the forces on
atoms and the difference between the target and actual pressures
both became negligible.

To benchmark how well our approximate framework can
predict the phase behaviour TiO2 of at ambient and high pressures
as described by the MA potential, we also performed free-energy
calculations for both the known phases and the new phases
obtained from RSS. Specifically, we computed the chemical
potentials of the polymorphs using Frenkel–Ladd integration8,19

and subsequent TI along isobars and isotherms, as detailed in ref. 9.
All the necessary input files for performing the above-

mentioned calculations using AIRSS and Lammps are provided
in the ESI.†

B. DFT calculations

For the metastable polymorphs identified with the MA potential,
we performed geometrical optimisation and computed the enthal-
pies at the DFT level over a pressure range of 0 GPa to 70 GPa in
steps of 10 GPa. We separately employed three common func-
tionals, LDA,20 PBE21 and PBEsol,22 using the CASTEP ab initio
simulation package.23 Full details of the DFT set-ups and configu-
rations can be found in the input files supplied in the ESI.†

The key value of the current study lies in the data analysis,
which we describe in the following section. A Python notebook
implementing the machine learning and data processing steps,
input and data files are available on the public repository
https://github.com/BingqingCheng/TiO2_random_search_pattern_
recognition.

III. Results and analysis
A. Characterisation of structures found by RSS

At each pressure, RSS using the MA potential produced thousands
of distinct TiO2 structures with different atomic co-ordinates,
cell shapes and numbers of formula units in the cell. Even
though knowledge of the space groups, molar volumes and
energies of the structures provides hints on how to classify
them, it is still a formidable task to sort through them manu-
ally. In recent years, ML-inspired approaches have been used
for the classification and visualisation of atomic structures,24–28

but they have not been systematically exploited in the context
of recognising the metastable polymorphs from RSS, especially
for the purpose of determining the phase behaviour of crystal-
line systems. We have therefore developed and employed a
ML-based method to compare and cluster the structures
automatically.

a. Similarity measurements. This pattern recognition task
is built around the construction of a kernel matrix {K(A,B)} that

measures the similarity between each pair of structures A and B
in the data set. The kernel matrix should be positive-definite
and normalised. If it is not already normalised by construction,

then K(A,B) should be divided by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KðA;AÞKðB;BÞ

p
. The kernel

function K(A,B) can be formulated as an inner product of the
features of A and B,

KðA;BÞ ¼ FðAÞTFðBÞ ¼
XM
i¼1

fiðAÞfiðBÞ; (1)

where F = {fi} denotes the set of global fingerprints associated
with the whole structure, rather than with individual atomic

environments XA
n that are centred on each atom n in the

structure A. A straightforward way of obtaining these global
fingerprints from the local ones is to take the average,26

FðAÞ ¼ 1

NA

XNA

n¼1
CðXA

n Þ; (2)

where NA denotes the total number of atoms in the system A if it
only contains one element. If the system contains multiple
atomic species and if the local fingerprints are specific to
atomic species, the average in eqn (2) should be taken over
atoms of the same atomic species a and the resulting vectors
associated with each species are then concatenated. Apart from
the average kernel used here, one may also use the MATCH or
RE-MATCH kernel of ref. 26, although we did not notice a
significant improvement during the subsequent analysis.

We employ the Smooth Overlap of Atomic Positions (SOAP)
framework that was introduced in ref. 29 to construct the local
fingerprints CðXÞ. SOAP has been used together with Gaussian
Process Regression in numerous applications, including
metals, semiconductors, molecular crystals and small organic
molecules,26,30–33 as well for structural identifications of bulk
materials, including ice25,27 and TiO2.28 The SOAP representa-
tion is specific to atom species. For atoms of species a inside a
local environment X , it uses a smooth atomic density function

raXðrÞ ¼
X
i2Xa

exp � r� ri½ �2

2s2

 !
(3)

by summing over Gaussians centred on each atom i of species a
that has a displacement ri within a given cutoff rc of the central
atom of the environment X . The density raXðrÞ is invariant to
translations and permutations of identical atoms, but not to
rotations. The SOAP representation addresses this by first
expanding with a set of orthonormal basis functions on radial
direction g(|r|) and spherical harmonics of angular directions
r̂ as

raXðrÞ ¼
X
nlm

canlmgnðjrjÞYlmðr̂Þ; (4)

and then taking the power spectra that characterise the
rotational-invariant arrangement of atoms of species a inside
the local environment X26,29

kann0lðXÞ ¼ p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
8

2l þ 1

r X
m

ðcanlmÞ�can0 lm: (5)
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The vector fkann0 lg constructed in this way up to certain cutoffs
lmax and nmax can then be used as the local fingerprint CðXÞ in
eqn (2), which in turn leads to the kernel matrix. In practice, we
use the recently implemented DScribe Python package for
constructing descriptors and kernels.34

b. Low-dimensional maps. The kernel matrix {K(A,B)} pro-
vides distance measurements between structures in a high-
dimensional space. To visualise such distances, we project
them onto a two-dimensional map using kernel principal
component analysis (KPCA),35 which amounts to projecting
{K(A,B)} onto its two eigenvectors with the largest eigenvalues.
Fig. 1 shows such 2D maps for the structures found during the
RSS at 20 GPa.

c. Clustering. For the set of structures generated by RSS at
each pressure, we clustered them based on the similarity
measurements {K(A,B)} in order to find which structures belong
to the same crystallographic family using the Density-Based
Spatial Clustering of Applications with Noise (DBSCAN)
algorithm.36 In this approach, the density of data points around
a given data point is first estimated and then points with a
density above a certain threshold are identified as clusters.
Input data points that are not ascribed to regions of high data
density are classified as noise. The most important DBSCAN
parameter is the maximum distance between two samples for
them to be considered neighbours. In our case, there is a very clear
separation between similar and dissimilar structures obtained
from RSS due to the absence of thermal noise, so the clustering
outcome is insensitive to this DBSCAN parameter.

As an example, in Fig. 1 we show such clustering results.
Even though the information on space groups, molar volume and
enthalpy is not explicitly included in the construction of the kernel
matrix {K(A,B)}, this agnostic pattern recognition approach is able
to group together structures with similar properties extremely well.

d. Identification of known and new phases. In the KPCA
map of Fig. 1, we also project the location of previously found
crystal structures of TiO2, and, in an ad hoc manner, the new
structures found in the present study. If a cluster that contains
several structures found in RSS also includes a previously
known phase, it is given the label of this phase, otherwise it
is regarded as a new phase. In this way, we found 15 phases
which have not to our knowledge previously been considered in
studies of titanium dioxide in this pressure range. In the
remainder of this manuscript we label them with a standard
format P-a-SYM, where P gives the pressure in gigapascals at
which the structure was found in RSS, a is a lowercase letter
purely used for labelling, and SYM gives the space group of the
structure. These new structures are illustrated and described in
the ESI† (Fig. S1). One of the new phases (60-d-P%62m) is in fact
the Fe2P phase of TiO2 that was previously considered at higher
pressures than we have focused on here.11,37

e. DFT calculations. Although the MA potential satisfactorily
predicts many properties of TiO2,38,39 it does not give a perfect
description of interactions, so the fact that a new phase is
found using the MA potential does not necessarily mean that
the same holds for TiO2 in experiment. To check whether the
new structures may be of experimental relevance, we computed

Fig. 1 Output after KPCA and clustering analysis. The structures obtained from RSS at 20 GPa are projected onto the first two principal vectors of the
kernel matrix {K(A,B)}. The known and new phases of TiO2 are indicated on the KPCA plot using solid markers if found during RSS, and hollow markers
otherwise. The colours of the points in the main graph and the inset vary according to their enthalpy and volume per TiO2 formula unit, respectively. The
area of each marker is proportional to the logarithm of the number of the structures in that cluster.
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the lattice energies and enthalpies of all the phases at the DFT
level over a pressure range of 0 GPa to 70 GPa (see Methods).
We used three functionals, LDA, PBE and PBEsol, and the
results are shown in the ESI† (Fig. S3). Although a recent
study40 shows good agreement in the ranking of static-lattice
energies of phases at low pressure between diffusion quantum
Monte Carlo and a number of DFT functionals, the DFT
calculations for TiO2 should be approached with a degree of
caution particularly at low pressure,37 since for example rutile is
not predicted to be the stable phase at sufficiently low pressures
for any of them. The results for the known phases are consistent
with previous work.7,41–43 At high pressures (B60 GPa), the three
functionals gave consistent results, suggesting that the results are
robust under such conditions. Although none of the newly
reported phases have the lowest enthalpy, several phases are very
competitive. In particular, 60-d-P%62m and 60-e-P21/m have enthal-
pies very close to the ground-state phase of cotunnite at high
pressures (P Z 40 GPa), and the 60-a-R%3 phase, which, as we
discuss below, is particularly favoured for the MA potential, has
an enthalpy only a few kcal mol�1 per formula unit larger than
cotunnite. The difference in relative enthalpy between different
levels of theory highlights the importance of capturing metastable
phases, as in general the enthalpies predicted by empirical
potentials or density-functional approximations may not be accu-
rate enough to determine the true ground-state enthalpy.

B. Approximation of entropy using frequency of appearance

In this section, we investigate whether it is possible to approxi-
mate the entropies of different phases solely from the informa-
tion one can obtain from RSS. The RSS scheme, which involves
performing energy minimisation of random structures, is rather
similar to the direct enumeration method44 that can be used to
find the basin of attraction of granular or glassy systems,44–46

although RSS is somewhat more complicated as variable cells with
different numbers of atoms are used (see Methods). The entropy
associated with the (dimensionless) volume v of a basin of
attraction, S = kB ln v, has been of considerable recent interest.47

It would therefore be intriguing to explore whether in this case, we
can find an estimate for the basin volume and whether the
corresponding basin entropy is related to the thermodynamic
entropy that enters the Gibbs energy.

To estimate the entropy of the basin of the crystal structures
found in RSS, we assume that (i) Sb of a crystal structure is
extensive with respect to its system size, Sb = nsb, where n is the
number of TiO2 formula units; and (ii) when performing energy
minimisation with the same number of TiO2 formula units, nsb

is proportional to the logarithm of the frequency of finding a
certain crystal structure. With these strong assumptions, we are
able to infer the relative basin entropy for each crystal structure
considered. The value of sb obtained in this way depends on the
frequency of occurrence of each structure for a given choice
of n. However, for structures whose unit cells do not have
compatible numbers of formula units, we can nevertheless infer
the difference in sb between two such polymorphs provided that
they are found in searches together with other structures that
have a well-defined sb for both values of n.

To test our assumptions, and to compare the basin entropy
sb of the crystal structures and the thermodynamic entropy S,
we plot them against each other in Fig. 2. Given that the two
sets of entropies were estimated using completely different
approaches, it is remarkable how similar their spread is. The
Pearson correlation coefficient (PCC) is estimated to be r E 0.3,
and the root mean squared error (RMSE) is 0.2kB. The value of
the PCC may at first glance seem low, but note that the entropy
difference between different phases of this system is itself
relatively small, so even a rather small RMSE can significantly
reduce the PCC. Moreover, we can notice that low enthalpy
structures tend to have sb larger than S: low enthalpy phases are
found more frequently in RSS than one might expect from their
thermodynamic entropies. This may be because the way the
initial structures are prepared and the subsequent enthalpy
minimisation is performed during RSS can introduce a bias
towards locating deeper minima, which is advantageous if one
aims to find stable phases over high energy ones. The trend of
finding more frequently the low enthalpy structures has been
observed in a previous study that also involves sampling poly-
morphs of ionic solids.48 To achieve a better estimate of S, one
can thus use a linear combination such as sb � aH, where a is a
parameter to the fit aH + constant = sb � S over all data points.
We show a comparison between this adjusted entropy sb � aH
and S in Fig. S4 of the ESI,† which shows a much stronger
correlation (r E 0.7; see Section S4, ESI†). Of course, determining
the value of a requires prior knowledge of S, so such a correction
scheme is less useful in practice.

Fig. 2 A comparison between the basin entropy sb = kB ln(v)/n and the
thermodynamic entropy S = (H � G)/T per formula unit of TiO2. Diamonds
show results at 700 K and circles show results at 1600 K. Results obtained
at all four pressures considered are all included, and the label of each point
can be found in the ESI† (Fig. S4). Each data point is coloured according to
the relative enthalpy of a structure compared to the ground state at the
same pressure. As only the relative entropy under a given thermodynamic
condition between different phases matters, we centred the data about
the origin.
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Nevertheless, the results here demonstrate that the fre-
quency of finding a structure in RSS does encode some infor-
mation about its entropy. Furthermore, the correlation between
sb � S and H means that the difference in sb is a better
estimator of the actual entropy difference between structures
with similar enthalpies than for pairs with large enthalpy
differences. Since we are typically interested in phases in the
vicinity of the most favourable structure, this may be sufficient.

In order to demonstrate the level of approximation one can
achieve in estimating the free energy using only RSS results,
whenever we discuss ML-based approximations of G, we use sb

to estimate the true entropy. To obtain a more accurate
estimate of S, one can use the harmonic approximation,6 or if
resources allow, the TI method.6,8,9

C. Machine-learning prediction of enthalpy and entropy

As the number of local minima in the PES grows exponentially
with increasing system size, it is difficult to ensure that all the
important structures have been found during RSS. Indeed, not
all the previously characterised or new structures of have been
found at each pressure considered. There may also be situa-
tions where a certain crystal structure is known for an analo-
gous system, but may not have been considered for the system
of interest. In all such cases, we may wish to predict the
enthalpies as well as the free energies of such structures. Of
course, for a certain lattice arrangement, one can choose to
perform energy minimisations and free-energy calculations,
but it would be convenient to have a surrogate model that
can quickly assess its enthalpy and basin entropy.

We developed such an approximate model using the kernel
ridge regression (KRR) approach. In the following, we only
discuss estimating H; the estimation of Sb follows the same
workflow. For a given pressure, an enthalpy estimate function
defined on a given structure A is represented as a linear sum
over kernel functions

HMLðAÞ ¼
X
B2M

wðBÞKðA;BÞ; (6)

which are summed over a representative set of structures M.
The M representative structures are selected from the total
N structures that are generated from RSS at each pressure.
For this selection, we exploited the farthest-point sampling
(FPS) approach, which is a greedy algorithm that aims to
select reference structures that are as diverse as possible by
successively selecting a new point that is farthest from the
ones already selected. The set of weights {wM} can be
determined using

wM = (KMM + KMNL
�1KT

MN)�1KMNL
�1HN, (7)

where KMM, KNN, KMN denote the kernel matrix between the M
representative set, between the N complete set, and between the
representative and the complete set, respectively; L is an N � N
diagonal matrix that is commonly used in the KRR framework
to regularise the fit; and HN is the enthalpy per formula unit of
the N structures found by RSS. To estimate the statistical error
due to the finite size of the training set N, we employed a

subsampling technique:49 we created an ensemble of KRR
models using a subset of the training data and used the
variance of these model predictions to infer the uncertainties.
More details of the KRR model can be found in the ESI.†

We plot the predictions of the KRR model alongside values
obtained in direct energy minimisation simulations in the ESI†
[Fig. S2]. The agreement of the prediction with the calculated
enthalpies is excellent, demonstrating that the ML model is able
to capture the fundamentals of the interactions based on local
environments, even though long-range coulombic terms are pre-
sent in the empirical potential. The ML predictions for the basin
entropy are less good, perhaps due to the intrinsic errors in the
estimation of sb for systems of small sizes, or because descriptions
of equilibrium configurations cannot fully capture the basin
volume. We note that representations other than the average
SOAP kernel used here, as well as a different choice of the
regression, can also be used for the predictions.50–52

D. Phase behaviour and phase diagram estimation

In Fig. 3(a), we show chemical potentials (i.e. Gibbs energies per
formula unit) computed using TI at a relatively high temperature of
1600 K. We chose this temperature because entropic effects have
become important, but the majority of the phases of interest are
still metastable across the pressure range considered.53 The bad-
deleyite phase and several of the newly considered phases [namely
0-c-I41/a, 0-e-C2/c, 60-c-Pc and 60-e-P21/m] do not appear in Fig. 3(a),
because they are no longer metastable at such high temperatures.
Baddeleyite, for example, spontaneously converts into pyrite at
approximately 1150 K when heated at 20 GPa. One particularly
interesting transition is that between rutile and the new phase 40-a-
Pnnm (see ESI† (Fig. S1)), which are structurally particularly similar.
The transition between them appears to be continuous as the
system is pressurised: while the space group changes, there does
not seem to be any change in density or enthalpy. In a sense, the
40-a-Pnnm polymorph is thus merely a high-pressure analogue of
the rutile phase. Intriguingly, Fig. 3(a) shows a new phase, 60-a-R%3,
is the most stable phase above B60 GPa, even though for some of
this pressure regime, its enthalpy is not the lowest. This example
highlights the importance of properly accounting for the entropy
of the polymorphs. A number of other new phases also have free
energies lower than some of the known structures of, demonstrat-
ing the power of the RSS approach in successfully locating
possible candidate phases for consideration.

To circumvent extensive and laborious free-energy calcula-
tions, we can approximate the chemical potential using solely
the data obtained from RSS. If a structure is found in RSS at
a particular pressure, we use h(0 K) � Tsb to approximate its
chemical potential, where h is the enthalpy per formula unit.
For structures that are not found, we first use the ML schemes
outlined in Section IIIC to estimate the enthalpy and basin
entropy, and then estimate the chemical potential using the
same expression. These chemical potentials are plotted in
Fig. 3(b); phases found in RSS are indicated by solid lines
and phases not found by dashed lines. As RSS was performed at
four pressures, linear interpolations were used between the
intervals. Alternatively, if one has data at only one pressure,
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a simple linear approximation G(P + DP) E G(P) + DPV for
extrapolation to nearby pressures can be considered.2

The agreement with the calculations of Fig. 3(a) is rather
remarkable, with broad consistency of both the shape of the
curves and the ordering of the structures (within error bars). In
part, this is because of the excellent prediction of the enthalpy
(ESI,† Fig. S2); in addition, we note that the approximate
approach is also able to account for example for the fact that
the OI phase has a low enthalpy, but a narrow basin of attraction,
and becomes less favourable at sufficiently high temperatures.

We note that Fig. 3 encodes the information required for
constructing phase diagrams: the phase with the lowest chemical
potential at a given pressure is the most stable for this potential at
this temperature, and the crossover of the chemical potential
curves is a point of phase coexistence. Using either the full free-
energy calculation approach or the ML-based approximation, we
can repeat the procedure at several temperatures and can thus
determine the phase diagram of this system [see ESI,† Fig. S7].
However, it ought to be borne in mind that a phase diagram hides
much of the underlying thermodynamic behaviour, particularly

for metastable phases, so the prediction of chemical potentials, as
illustrated in Fig. 3(b), is thus a rather more rigorous test of the
ML approach. Furthermore, since the free energies of many of the
phases considered are similar to one another and many phases
are metastable under certain conditions, predicting the meta-
stabilities of all relevant polymorphs is particularly important.

IV. Conclusions

This paper presents a framework that uses a combination of
ML methods to help extract information from random crystal
structure searches. This framework allows automatic classifica-
tion and characterisation of possible solid phases, as well as
providing an estimate of the phase diagram and metastabilities
of solid polymorphs. The framework does not use any prior
knowledge of the phase behaviour of the system and instead
relies only on data obtained directly from a random structure
search. Starting from the thousands of structures obtained
from RSS, we first employ a pattern recognition approach to

Fig. 3 Chemical potential at 1600 K expressed per formula unit and relative to the pyrite phase. Left panel: Results obtained using free-energy
calculations. Right panel: Predictions using solely data obtained from RSS. If a structure is found during RSS at a given pressure, solid lines show the
approximate chemical potential based on its enthalpy and basin entropy. If a structure is not found, dashed lines indicate the machine-learning prediction
as described in Section IIIC. In each case, in panel (i), only the previously known phases are shown, and in panel (ii), new phases obtained from RSS are
shown, with the structures from panel (i) repeated in grey. In (b), the error bar of potentially competitive phases is shown as a coloured band, and where a
phase was not obtained at a given pressure from a random search, the marker is hollow and connected to other points by a dashed line. Note that the
pressure axis covers different ranges in (a) and (b); dotted lines in (a) indicate the range of panel (b).

Paper PCCP

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

2 
to

uk
ok

uu
ta

 2
02

0.
 D

ow
nl

oa
de

d 
on

 1
2.

11
.2

02
5 

15
.0

2.
12

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d0cp02513e


This journal is©the Owner Societies 2020 Phys. Chem. Chem. Phys., 2020, 22, 12697--12705 | 12703

cluster similar structures with little manual input. We then
estimate the basin entropy of the crystal structures found by
assuming that their basin of attraction is related to the number
of times each structure is found. Moreover, we use a machine
learning approach to predict the enthalpy of unknown struc-
tures based on ones that are observed. Combining all these, we
can estimate the free energies of solid phases and hence the
thermodynamic phase behaviour of a system of interest with
relatively little computational effort.

We tested the framework on the rather complicated system
of TiO2 at ambient and high pressures. We predicted a number
of possible phases and estimated their chemical potentials at
finite temperatures. Even though we only explicitly showed the
chemical potentials at a moderately high temperature, the
framework that we present can be used for any reasonable
temperature. Pair potentials similar to the ones used for our
RSS are widely used for other binary oxides,54,55 so the new
phases we found and the methodology introduced may be
relevant to other oxides as well.

The methods we propose are transferable to other systems
with many solid polymorphs, such as high-pressure solid
hydrogen,56 perovskites,57 different phases of water-ice25 and
molecular crystals.58 A useful strategy for predicting the phase
diagram is first to use the framework to select competitive
polymorphs using the data generated from crystal structure
searches, and then to compute explicit free energies only of
those phases. Such an approach would make the determination
of phase behaviour of systems exhibiting many solid poly-
morphs using accurate free-energy calculations considerably
more straightforward and computationally tractable.
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