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In times of a warming climate due to excessive carbon dioxide production, catalytic conversion of carbon
dioxide to formaldehyde is not only a process of great industrial interest, but it could also serve as a means
for meeting our climate goals. Currently, formaldehyde is produced in an energetically unfavourable and
atom-inefficient process. A much needed solution remains academically challenging. Here we present
an algorithmic workflow to improve the ruthenium-catalysed transformation of carbon dioxide to the
formaldehyde derivative dimethoxymethane. Catalytic processes typically optimised by
comprehensive screening of catalysts, substrates, reaction parameters and additives to enhance activity
and selectivity. The common problem of the multidimensionality of the parameter space, leading to only

are
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from machine learning, optimisation and experimental design, tripling the turnover number of 786 to
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Introduction

In this century, our ecosystem faces severe problems such as
global warming, environmental pollution and resource depletion.
The negative impact of humankind as well as its responsibility in
solving these problems can no longer be ignored."* Besides the
necessity for future-oriented global politics,>* both the scientific
community and the chemical industry must provide answers to
crucial questions regarding sustainable process development,
alternative energies as well as recycling of waste and pollutants.>*
In this context, more efficient techniques must be developed and
applied in research to reduce time, cost and resources.'**?

In catalytic investigations, system optimisation is typically
approached by one-factor-at-a-time (OFAT) methods, succes-
sively screening along one parameter axis. Once optimised,
a parameter is kept constant for the subsequent experiments. In
this univariate analysis, variables are treated as being inde-
pendent of each other. Beside the vast number of experiments
that must be performed, local maxima with higher perfor-
mances might be missed. Consequently, algorithm-based
screening and optimisation techniques have been among the
fastest growing research areas in recent years.'*** Considering
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parameters leading to a turnover number of 3874, exceeding by far those of known processes.

the interactions of parameters, optimised results can be ach-
ieved with minimal experimental effort.>*>¢

Recently, we applied a univariate optimisation approach
including several hundred catalytic reactions to improve the
selective ruthenium-catalysed transformation of carbon dioxide to
dimethoxymethane (DMM) reaching a turnover number (TON) of
786 (Scheme 1).>** The product DMM itself is a high value feed-
stock for biofuels, but can also be hydrolysed yielding formalde-
hyde and methanol or directly employed as a formaldehyde
synthon.”**® Beside the desired product, only methyl formate (MF)
was formed with TONs of up to 1290 (Scheme 1).*” Previously, two
studies on the selective hydrogenation of CO, by the group of
Klankermayer showed the formation of DMM and MF by using
a homogeneous ruthenium catalyst** with TONs of 214 and 104 or
a cobalt catalyst®* with TONs of 157 and 37, respectively. Further
selective reductions toward the formaldehyde oxidation state were
reported utilising hydroboration,*” hydrosilylation,**?° and frus-
trated Lewis pairs,*>** however, being mainly of academic interest
due to the stoichiometric use of reducing reagents.
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Scheme 1 Reductive transformation of CO, towards the formalde-
hyde oxidation level yielding methyl formate (MF) and dimethoxy-
methane (DMM).
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Inspired by previous reports, which underline the impor-
tance of a holistic view on the results obtained,*' we now
utilised multivariate analysis*>** to further optimise the inves-
tigated catalysis. Based on the large amount of experimental
data and the dependency of the catalytic system on seven
different parameters, we envisioned to increase its performance
by modelling and predicting conditions optimally accounting
for parameter interaction. For this purpose, we devised a multi-
step process combining elements from machine learning,
optimisation and experimental design (design of experiments,
DoE). Fig. 1 gives a schematic overview of the easy-to-use algo-
rithmic workflow, which was developed in this work and is
applicable for any catalytic screening. Experimental data
(Fig. 1(I)) was modelled using the random forest (RF) algorithm
(Fig. 1(I1)) to identify promising subspaces with high catalytic
performance (Fig. 1(III)). To better understand the origin of the
exceptional activity and to extend the amount of data for further
modelling, the subspace was augmented (Fig. 1(IV)) by addi-
tional experiments (Fig. 1(V)) that were based on experimental
design. Starting from these first experiments, an iterative
workflow - consisting of DoE (Fig. 1(V) and (VI)), optimisation
(relaxation; Fig. 1(VII) and (VIII)) and evaluation (Fig. 1(IX)) -
was applied until the final optimum was reached (Fig. 1(X)).

Results and discussion
Catalytic system

The selective transformation of CO, to DMM was performed using
the ruthenium catalyst [Ru(N-triphos™)(tmm)] (tmm =
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Fig. 1 Outline of the algorithm-based workflow combining experi-
mental data analysis, DoE and optimisation.
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trimethylenemethane dianion) for hydride transfer and Al(OTf);
to facilitate the acetalisation with methanol (Scheme 1). Benefi-
cially, the robust catalyst can be obtained on a large scale in
a simple three-step procedure, which underlines its suitability for
industrial and large scale applications.”” The catalysis is mainly
affected by the reaction temperature (7), partial pressure of H,
(pu,) and CO, (pco,), reaction time (¢), the amount of catalyst (71ca¢)
and Lewis acid (1,44) as well as the reaction volume (V).

Experimental data analysis

Following the rationale outlined in the previous section, the
optimisation started with a corpus of 49 unique settings of the
seven process factors (X: X, X,, ..., X; =T, P, Pco,s s Neats Nadd)
V), two responses (Y: Y;, Y, = TONpyym, TONygp) and 144
observations, which are measured values of the responses
(Table 1, Fig. 1(I), ESI Table 11).>” Each setting was run as
a triple replicate, except for three settings that were realised as
simple replicates, thus making up the 144 cases of the dataset.
Goal of the optimisation was finding reaction conditions
X" X;, X; e X:, that maximise TONpyv (for a theoretical
introduction on this approach, see the Methods section). As
process factors, six of the previously investigated parameters,
namely temperature, partial pressure of H, and CO,, reaction
time as well as the amount of catalyst and Lewis acid, proved
suitable for the optimisation. The influence of varying the
nature of the Lewis acid was neglected here, because statistical
analysis of the dataset revealed Al(OTf); as the only promising
candidate. Instead, the volume of the catalysis solution was
considered for the multivariate analysis to account for mass
transfer phenomena and gas solubility effects (concentration
effects) potentially influencing the performance of the catalyst.

Modelling and analysis of datasets based on empirical
optimisation (e.g. OFAT) is complex and more difficult than
estimating parametric surrogate models from well-designed
data. The difficulties arise primarily from non-linearities,
which simple parametric models cannot appropriately
describe. Furthermore, OFAT variations often and inadvertently
lead to co-varying and thereby confounding the effects of
process parameters. For instance, in the present dataset the
process parameters n.,e and n,qq were found to be highly
correlated with a Pearson correlation coefficient 7{fcae — Maqq) =
0.895, rendering the data non-informative in terms of the
independent effects of n., and 71,44.

Table 1 Factors and responses of the dataset?

Entry Variable Mean Median Min Max
1 T (°C) 89.2 90 20 120
2 Pu, (bar) 82.1 90 40 100
3 Do, (bar) 17.9 20 5 40

4 t (h) 26.5 18 1 168
5 Neae (pmol) 1.3 1.5 0 3

6 Naga (umol) 5.4 6.25 0 12.5
7 Vv (mL) 0.5 0.5 0.25 0.5

8 TONppvm 275 263 0 906
9 TONwmp 145 71 0 1377

Chem. Sci,, 2019, 10, 10466-10474 | 10467
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Next, the problem for these datasets is finding an appro-
priate functional representation, f(), of the target response as
a function of the process factors X;, that is TONpyy =
AT pu,pco,tiicanllada,V) + &, without making any prior
assumptions about the analytical form of the ‘true’ function f{).
Here, we used RF as a powerful non-linear and easy-to-use
method for the empirical model building of complex datasets
(Fig. 1(I1)).***

The RF models describe 79% of the responses’ variance on
average (R*(TONpypy) = 0.83; R*(TONyg) = 0.74), which is
a good result given the heterogeneous nature of the dataset.
Further, tuning the RF hyperparameters using 10-fold cross
validation with consecutive blocks (mtry* = 2 with R*> = 0.83)
revealed that the default RF hyperparameters describe the data
appropriately. The effect structure of the models can be
conveniently explored by plotting the RF model predictions f(X)
against the process factors X, X;, ..., X5. Fig. 2 shows the effects
of the process parameters T, pco, Ncar and N,qq4, given the
median values py, = 90 bar, ¢ = 18 h and V = 0.5 mL, as
a conditional trellis plot.

As a tree-based ensemble method, RF splits and mean-
aggregates the experimental space into hyperrectangles, the

View Article Online
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consequence being that the RF model surface becomes non-
smooth (Fig. 2). This property of RF is a particular strength
when it comes to identifying promising domains of the exper-
imental space and was another motivation for choosing RF as
modelling technique.

Evidently, n.,: and n,qq exert strong non-linear, step like
negative effects on the process performance (TONpy),
dividing the nc X n.qq space into domains of different
performance. The pressure, pco, reveals a positive and
temperature, 7, a small convex effect, both, however, negligible
compared to the dominant effects of 7., and n,4q. At this point,
the erroneous impression may arise that the heuristic inter-
pretation of the experimental data could lead to a further
improvement by a trivial reduction of the amount of catalyst,
which is often reduced to minimise catalyst deactivation.
However, a closer look at the experimental data shows that
a reduction in the amount of catalyst without changing other
parameters leads to a decrease in catalytic activity with respect
to DMM. This case shows exemplarily how important multi-
variate analytical methods can be, because they can easily
identify complex correlations of process parameters that are not
detectable by a univariate analysis of the scientist.

120

— 600

Temperature (°C)
~
o

CO, pressure (bar)

Fig. 2 Trellis plot of the random forest predictions f(T,sz,pcoz,t,ncat,nadd,\/) with py, = 90 bar, t = 18 h and V = 0.5 mL. Note the difference of
max(TONpmm) in the experimental data (Table 1, entry 8) and the model. The RF values are predictions causing the range of the z-axis to be

smaller than the range of the empirical data.
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With the condition TONpyps > 400 deduced from the land-
scape of TONpy OVET Meae X Maqq (Fig. 2), a subset of 26 obser-
vations with 9 unique settings was selected from the data
(Fig. 1(II0)). In this subset, the parameters T, py,, pco, and ¢ were
found constant at T = 90 °C, py, = 90 bar, pco, = 20 bar and ¢ =
18 h, thereby suggesting to conditionally optimise #1¢,¢, 7agq and V
first, while keeping T, py,, Pco, and ¢ constant for the time being.

First DoOE

These 9 candidate points (identified unique settings mentioned
above) were subsequently augmented by an additional number
of 6 points to fully support all second order effects of 7¢a¢, Mada
and V (Fig. 1(IV)). The intention behind this augmentation was
to render the formerly confounded effects of n.,c and n,qq esti-
mable as well as, assuming high complexity, to allow for inter-
actions and non-linearities of the process parameters as a solid
basis for further optimisation (Fig. 1(V)).

The 6 augmentation trials were realised as triple replicates in
the lab, added to the 9 settings already available and the
responses (TONpyv, TONyr) were modelled as a function of the
least square parameters with stepwise ordinary least squares
(OLS; Fig. 1(VI)). Both models accurately describe the data
within the replication error and explain 91% (R*(TONpyp) =
0.91; DF = 37) and 97% (R*(TONyg) = 0.97; DF = 35) of the
responses’ variance with DF denoting the degrees of freedom
(number of data points minus number of estimated model
parameters).

The local effects of nc,e, na4q and V are depicted in Fig. 3A as
response surface trellis plot. Again, there is a strong negative
effect for n.,c along with positive effects for n,qq and V. Together
with the positive, synergistic effect between n,5q and V, the
effect structure suggests to decrease 7., and to increase 7,qq
and Vto further maximise the catalytic performance beyond the
best result of the first DoE (Fig. 4A, entry 4).

First relaxation

To optimise towards the direction of maximal improvement,
following the procedure outlined in the Methods section [eqn
(5)], the experimental space was relaxed with 10% step size. The
triple obtained from relaxing the design space together with the
achieved experimental results are listed in Fig. 4B (Fig. 1(VII)
and (VIII); see the Methods section).

The joint condition max(TONpym), max(TONy) was best
met by the 20% relaxation trial (Fig. 4B, entry 2), and the factor
setting n,,, = 0.075 umol, n,4y =3.576 pmol and V* =
0.550 mL thus became the reference point for further optimi-
sation. The 30% relaxation trial was very poor, indicating that
a local maximum had been exceeded (Fig. 4B, entry 3). The
pronounced drop in activity, resulting most likely from the
reduced catalyst loading, indicates a molecular deactivation
pathway of the catalytically active species due to potential
inhibitors, such as carbon monoxide, moisture and oxygen,
which are probably present in low concentrations.

At this point, there were two alternatives to proceed: (1)
create an experimental design around n,,,, 1,44 and V* to fully
identify the topology around the relaxation point at the desired

This journal is © The Royal Society of Chemistry 2019
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resolution (complexity). (2) Consider 7., = 0.075 pumol,
n.4q = 3.576 pmol and V* = 0.550 mL as locally optimal and
switch to optimising the candidates T, py, pco, and t, which
had so far been kept constant.

The poor outcome of the third relaxation trial (Fig. 4B, entry
3) showed that not much was to be expected from exploring the
three-dimensional environment of the 20% relaxation trial any
further. Therefore, option 2 was chosen and the 20% relaxation
trial became the reference point for optimising the candidates
T, Pu,, Pco, and t.

Second DoE

A small linear design [eqn (2)] with 5 runs in the ranges listed in
Fig. 4C was created with the reference point n,,, = 0.075 pumol,
n.4q =3.576 pmol and V* = 0550 mL, T* = 90 °C,
Py, = 90 bar, pio, = 20 bar bar, t* = 18 h at the design centre
as replicate (Fig. 1(V); see the Methods section). The experi-
ments were realised in the lab as triple replicate to provide
a measure of accuracy (Fig. 1(VI)).

The measured responses (TONpywm, TONyp) were linearly
modelled as a function of the process parameters with stepwise
OLS. The models explain 92% (R*(TONpyy) = 0.92; DF = 16)
and 78% (R*(TONys) = 0.78; DF = 18) variance of the responses
thus indicating a large signal-to-noise ratio for TONpyp and to
a lesser extent for TONyy.

Fig. 3B shows the linear effects of the process parameters on
TONpymM as trellis response surface plot. The factors T and py,
both have strong positive effects on TONpy, Whereas ¢ reveals
only a small positive and pco, a moderate negative effect on
TONpwmm- Optimal conditions were found in the upper left panel
and these are the conditions of the top candidate found in the
design list with 7, py, t at the upper and pco, at the lower
bound, yielding respective TONs for DMM and MF of 2610 and
2356 (Fig. 4C, entry 4).

Second relaxation

Following eqn (5), the experimental space was relaxed in 25%
and 50% steps and the relaxation trials were experimentally
realised in the lab (Fig. 4D and 1(VII); see the Methods section).

Again, we saw a small improvement of the 25% relaxation
trial (Fig. 4D, entry 1) compared with the best candidate from
the second DoE (Fig. 4C, entry 4), whereas the 50% relaxation
candidate performed comparatively poorly (Fig. 4D, entry 2;
Fig. 1(VIII)). With these relaxation trials, we reached the tech-
nical limits of our setup regarding hydrogen gas pressure, and
therefore, the conditions of the 25% relaxation experiment can
be considered locally optimal given the constraints of technical
feasibility (Fig. 1(IX) and (X)). We would like to point out that
the catalytic conditions optimised by the here presented
strategy may still represent a local maximum. Modification of
the catalyst and the additive might also result in further
improvement, but as demonstrated in this work the identifica-
tion of high-performance catalytic conditions should be
a prerequisite for a design strategy of new catalysts.

A complete overview of the results obtained at each step of
the optimisation project is given in Fig. 4E, overall tripling the

Chem. Sci., 2019, 10, 10466-10474 | 10469
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A Response surface trellis plot for g,(n..,Mn.qaV)
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Fig.3 Calculated response surfaces. (A) Trellis plot of the response surface for gz(NcawNada.V) from OLS modelling with T = 90 °C, py, = 90 bar,
Pco, =20 barand t = 18 h. (B) Response surface trellis plot of the linear OLS model for g;(T.py,.pco,.t) with n:at =0.075 pumol, n;dd =3.576 umol
and V* = 0.550 mL. For a mathematical definition of the polynomial parametric surrogates, g; (), see the Methods section.

initial TONpMmym value of 786 to a final value of 2761. As illus-
trated, the standard deviation (SD) of TONpy tends to increase
with increasing mean value of TONpyy (Fig. 4E), which might
be a joint effect from decreasing 7., and increasing both 7,44
and V over the course of the optimisation project. Decreasing
nea and increasing Vis equivalent to reducing the concentration
of the catalyst, which presumably renders the system more

10470 | Chem. Sci., 2019, 10, 10466-10474

susceptible to random disturbances by catalyst deactivation,
thereby providing an explanation for the observed increase of
the standard deviation. Simple Spearman rank correlation
analysis of the relationship between SD(TONpy), SD(TONp)
and the process parameters X; supports this hypothesis by
revealing a negative and a positive association of SD(TONpym)
with 7., and V, respectively (ESI Table 261).

This journal is © The Royal Society of Chemistry 2019
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entry e M (mvl_) TONowm  TONyr entry (O(T:) B e (r“) TONoww  TONur
1 0750 0781  0.250 204 90 RS1T 90 90 20 18 1310 2858
2 0750 0781  0.500 119 205 1 80 100 25 20 889 3281
3 0750 1953  0.375 342 116 2 100 80 25 20 1181 2036
4 0188  3.125 0250 1116 437 3 80 80 15 16 466 1996
5 0750  3.425  0.250 314 79 4 100 100 15 20 2610 2356
6 0469  3.425  0.375 617 201 5 100 100 25 16 1788 3189

B r D second relaxation

entry (p':ﬁaé i (p’:;ldgl) (mvl_) TONpyw  TONye entry (02) ({)’gf_) (‘:,caorz) (r:) TONpyw ~ TONye
1 0131 3359 0525 1374 1560 RS2 100 100 15 20 2563 2401
2 0075 3576 0550 1375 2762 1 105 105 125 21 2761 1769
3 0019 3659 0575 180 1040 2 10 110 10 22 2209 1276

E Scatter plot TON,; versus TON
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Fig.4 Optimisation summary. Process parameters and TONs for DMM and MF at different optimisation steps: (A) first DoE. (B) First relaxation (10,
20 and 30%). (C) Second DokE. (D) Second relaxation (25 and 50%). (E) Scatter plot TONw versus TONpum SUmmarising the outcome of the
optimisation project. The results of each optimisation step are marked according to the colour code. Replication studies (RS): the circled data
points label the best hit of the first relaxation and the respective replication trials in the second DoE (RS1) as well as the best hit of the second DoE

and the respective replication trials in the second relaxation (RS2).

Another interesting result in Fig. 4E refers to the indepen-
dent replication error. The linear design of the second DoE
includes two independent settings of the 20% reference as
centre points with each point measured as triple replicate (ESI
Tables 11 and 171). This sextet from the second DoE (Fig. 4C,
entry RS1) excellently matches the 20% relaxation triple (Fig. 4B,
entry 2) indicating good repeatability and reliability of the
system (Fig. 4E, ESI Tables 27 and 28%). In a similar way, the
best candidate from the second DoE (Fig. 4C, entry 4) has been
independently replicated when running the second relaxation
sequence (Fig. 4D, entry RS2) and both replicates turned out

This journal is © The Royal Society of Chemistry 2019

identical within the experimental error (Fig. 4E, ESI Tables 29
and 307).

Technical adaption

The results of the non-biased mathematical modelling
approach presented in this study revealed that a better catalytic
performance is inter alia strongly correlated to a combination of
lower catalyst loadings and higher reaction volumes. The
heuristic interpretation of this finding indicates that the poor
solubility of hydrogen gas in methanol and mass transfer might
be limiting factors within our experimental setup. We antici-
pated that a larger reaction volume, a higher surface to volume

Chem. Sci,, 2019, 10, 10466-10474 | 10471
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ratio and improved mixing would lead to better mass transfer
and thus designed an experimental setup accordingly to
enhance the catalytic performance. With this upscale autoclave,
the TON for DMM increased to 3874, while the TON for MF
reached a value of 1445, resulting in a higher selectivity toward
DMM (ESI Table 21%). The result of this technical adaption
shows that while the reaction is already optimised to a high
degree with respect to reaction parameters, further improve-
ments can be expected by focusing on engineering aspects of
the reaction setup.

Conclusion

We demonstrated the power of multivariate optimisation for
catalytic processes over the usually applied cumbersome one-
factor-at-a-time method. In the homogeneously catalysed
transformation of CO, to DMM (dimethoxymethane) and MF
(methyl formate) using the ruthenium-triphos complex [Ru(N-
triphos™)(tmm)], the TON (turnover number) for DMM was
drastically increased to 2761 (with it: TONyr 1769) by an easy-to-
use algorithmic workflow combined with only a small number
of catalytic experiments. Given the complexity of the trans-
formation, which depends on seven parameters, conventional
OFAT screening techniques would have been very costly and
time-consuming, with uncertain outcome.

Starting from catalytic data using RF (random forest) for
empirical model building, an experimental subspace was
identified and subsequently augmented to render the effects of
a first set of three process factors estimable. Modelling and
optimisation, followed by relaxation led to a sequence of
relaxation trials with one candidate assumed to be locally
optimal. With this candidate as reference, a linear design of the
remaining four variables yielded another substantial improve-
ment. Relaxation of the second design further enhanced the
catalytic performance, thereby reaching the technical limits of
the setup.

The optimised conditions were used in a specifically
designed experimental setup and the highest TON for DMM of
3874 (with it: TONyr 1445) was obtained, which is, to the best of
our knowledge, the by far highest value reported in the inves-
tigated catalysis.

Methods

Theoretical introduction

Experimental design (design of experiments, DoE) methods can
be used to study the joint effects of several parameters X: Xi, X,,
..., X on response Y.”**>* This can formally be written as:

Y=/ +e o)

f{) denotes the true, however unknown function, linking the
responses Y with the process conditions X: X;, X5, ..., Xj,
whereas ¢ is a random element taken from a normal distribu-
tion with variance ¢, ¢ ~ N(0,0%) to account for experimental
uncertainties. Conceptually, nature evaluates in an experiment
the function f{) known to her only at reaction conditions X, then
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adds some random noise ¢ and returns the experimental results
Y [eqn (1)].

Under the weak assumption that f{) is smooth and contin-
uous, f{) can be locally approximated as polynomial parametric
surrogates, g1 3(), of increasing complexity, formally:

f(X)Egl(X):ao+Zain (2)
SX)=gX)=a + Zain + ZaiiXin (3)

S =gs(X) = a0+ Y kit Y aiki +)_a; XX, (4)

Jj>i

These are linear [eqn (2)], bilinear [eqn (3)] or quadratic [eqn
(4)] parametric surrogates of the true function f{). With the
experimental values Y, X, X, ..., X; available, the unknown
parameters a;, a;, a; can be estimated from the data using
ordinary least squares (OLS).*

Given process factors Xj, X,, ..., Xj, their ranges X; € {LB,UB}
with LB, UB denoting the lower and upper bounds of the
process factors X; and, depending on the expected complexity,
the parametric form of the surrogate model, the design points X
(experimental design) optimally supporting the chosen model
can be calculated. However, in an early project phase it is often
unclear which factors X; and ranges should be chosen and what
levels of complexity must be assumed for the domain under
investigation. Therefore, DoE can benefit from experimental
data analysis, with the latter helping to answer the questions
arising in the former.

After first optimisation by an experimental design,
ascending in the direction of maximal improvement can be
easily achieved by increasing (relaxing) the experimental space
in discrete steps and by solving a maximisation problem subject
to a sequence of hypercubical constraints, that is

max(g(X)) subject to LB — kAX < X < UB + kAX (5)

with AX being the step size of the relaxation, here taken to be
10% of the initial factor ranges, that is AX = 0.1[UB — LB], and
LB, UB denoting the lower and upper bounds of the process
factors X;. Varying k = 1, 2, ..., K leads to a sequence of relax-
ation trials X;, X,, ..., Xy to be realised in the lab.

Additional information

The detailed description of all experiments, the performed
multivariate analysis, the spectroscopic data of compounds as
well as the NMR spectra of compounds and catalysis samples
can be found in the ESLf In order to improve comprehensi-
bility, simplified names were used in some cases rather than
using exact IUPAC names.

All calculations were done using the statistical software R.*”
Random forest modelling was performed with the R-package
‘randomForest’.*® Experimental designs were calculated with
the D-optimal criterion of the function optFederov() in the R-
package ‘AlgDesign’.* Optimisation was achieved with the

This journal is © The Royal Society of Chemistry 2019
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augmented Lagrange method from the R-package ‘Rsolnp’.
Graphics were produced with the R-package ‘lattice’.>*

All catalyses and the corresponding analyses were performed
following a procedure previously reported by our group.>” The
catalysis was also performed in the absence of a catalyst, a co-
catalyst or both to demonstrate the need of the catalytic
system for the formation of DMM and MF. In all cases, no
significant conversions for both of these compounds were

observed (ESIT).

Reproduction of modelling results

The R-code used as well as the catalytic data analysed (Excel
sheet) are available online. The multivariate analysis can be
reproduced by following the instructions in the ESL
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