Issue 12, 2020

Biohybrid robotics with living cell actuation

Abstract

As simulators of organisms in Nature, soft robots have been developed over the past few decades. In particular, biohybrid robots constructed by integrating living cells with soft materials demonstrate the unique advantage of simulating the construction and functions of human tissues or organs, thus attracting extensive attention and research interest. Here, we present up-to-date studies concerning biohybrid robots with various biological actuators such as contractile cells and microorganisms. After presenting the basic components including biological components and synthetic materials, the controlling methods and locomotion modalities of biohybrid robots are clarified and summarized. We then focus on the applications, especially the biomedical applications, of the biohybrid robots including drug delivery, bioimaging, and tissue engineering. The challenges and prospects for the future development of biohybrid robots are also presented.

Graphical abstract: Biohybrid robotics with living cell actuation

Article information

Article type
Review Article
Submitted
29 helmi 2020
First published
17 touko 2020

Chem. Soc. Rev., 2020,49, 4043-4069

Biohybrid robotics with living cell actuation

L. Sun, Y. Yu, Z. Chen, F. Bian, F. Ye, L. Sun and Y. Zhao, Chem. Soc. Rev., 2020, 49, 4043 DOI: 10.1039/D0CS00120A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements