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Blood transfusion remains a cornerstone of modern medicine, saving countless lives daily. Yet the quality

of transfused blood varies dramatically among donors—a critical factor often overlooked in clinical

practice. Rapid, benchtop, and cost-effective methods for evaluating stored red blood cells (RBCs) at the

site of transfusion are lacking, with concerns persisting about the association between metabolic signatures

of stored RBC quality and transfusion outcomes. Recent studies utilizing metabolomics approaches to

evaluate stored erythrocytes find that donor biology (e.g., genetics, age, lifestyle factors) underlies the

heterogeneity associated with blood storage and transfusion. The appreciation of donor-intrinsic factors

provides opportunities for precision transfusion medicine approaches for the evaluation of storage quality

and prediction of transfusion efficacy. Here we propose a new platform, the surface acoustic wave

hemolysis assay (SAW-HA), for on-site evaluation of stored RBCs utilizing SAW hemolysis temperature

(SAWHT) as a marker for RBC quality. We report SAWHT as a mechanism-dependent reproducible

methodology for evaluating stored human RBCs up to 42 days. Our results define unique signatures for

SAW hemolysis and metabolic profiles in RBCs from two of the six donors in which high body mass index

(BMI) and RBC triglycerides associated with increased susceptibility to hemolysis. Metabolic age of the

stored RBCs – a recently appreciated predictor of post-transfusion efficacy – reveal that RBCs from the

two low SAWHT units were characterized by disrupted redox control, deficient tryptophan metabolism,

and high BMI. Together, these findings indicate the potential of the SAW-HA as a point-of-care analysis for

transfusion medicine.

Introduction

Blood transfusion is a life-saving medical intervention for
millions of recipients worldwide. Packed red blood cells
(pRBCs) – the most widely transfused blood product – are stored
for up to 42 days under refrigeration in additive solutions.
However, stored RBCs undergo progressive metabolic and
structural changes, collectively termed storage lesions.1 These
lesions, driven by oxidative stress and metabolic alterations,

ultimately result in membrane damage, reduced deformability,2

and hemolysis, along with an impaired capacity to deliver
oxygen,3 contributing to inflammatory sequelae and vascular
dysfunction.4 Notably, RBC deterioration does not occur
uniformly; donor-specific factors such as sex, age, body mass
index (BMI), genetic background, and metabolism significantly
influence how RBCs respond to storage.5–9 Current transfusion
practices rely on the chronological storage age of RBCs, a metric
that fails to capture metabolic age10—a function of RBC
biophysical and biochemical integrity—which varies widely
among donors. Without a benchtop assay that is easy for
medical personnel to learn, use, and interpret quickly,
transfusions may be non-optimized, potentially leading to poor
outcomes in vulnerable patients.

Recent advances in -omics technologies, especially
metabolomics, have provided new insights into RBC storage
quality.7,11–13 These approaches have identified potential
biomarkers for transfusion effectiveness by characterizing
metabolic changes in stored RBCs. For instance, biomarkers of
oxidative stress (glutathione (GSH) and its synthetic
intermediates) correlate strongly with oxidative hemolysis
within stored RBCs.14–16 Hypoxanthine, a marker of oxidant
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stress, accumulates nonlinearly through the shelf-life of stored
RBCs and is linked to adverse transfusion outcomes as
determined by chromium-51-labeled (51Cr) post-transfusion
recovery (PTR) studies in autologous donors (gold standard to
determine RBC storage quality per European Council and US
Food and Drug Administration guidelines).11 Energy currencies
such as ATP and NAD are also reduced during the storage
period, the latter as a result of the activity of enzymes such as
ADP ribose hydrolases (e.g., CD38).17 Accumulation of lipid
peroxidation products and depletion of L-carnitine pools to
repair such damage via the lands cycle are also negative
predictors of post-transfusion efficacy in mouse models and
humans.13,18

Current blood bank quality control relies on hemolysis testing
of only ∼1% of monthly production via visual assessment and
spectrophotometric methods.19 Between assessment and
transfusion, units may age in the refrigerator without individual
evaluation, while storage lesions progress unpredictably due to
donor-specific factor. This single-parameter approach
inadequately correlates with post-transfusion recovery and
effectiveness.20,21 While the 51Cr-labeled PTR method is the gold
standard for assessing stored blood quality and measuring
transfusion outcomes, it remains prohibitively expensive due to
radioactive handling requirements, specialized infrastructure,
and costly disposal, limiting their clinical utility.22 Emerging
approaches include ultra-high throughput metabolomics, which
has identified predictive biomarkers but has so far remained
confined to research settings due to sophistication and cost.
Functional assessment methods also show promise, including
RBC morphology evaluation using scanning electron microscopy
(SEM)23 and differential interference contrast (DIC) microscopy,24

and more recently, high-throughput imaging flow cytometry for
single-cell classification.2,25,26 Emerging photoacoustic
microscopy27 and Raman spectroscopy28 techniques assess
morphological changes of blood cells with potential for non-
invasive clinical applications through blood storage bags or
human skin. RBC deformability has also been recognized as a
sensitive indicator of RBC functionality. Microsphiltration assays
have recently been used to show that the sub-populations of
RBCs that accumulate the bulk of the storage lesion are also the
ones that are less deformable in vitro, and most likely to be
sequestered in the spleen and erythrophagocytosed upon
transfusion.2,26 Deformability is commonly measured using
micropore filtration,29 micropipette aspiration,30 and
ektacytometry (e.g., LORRCA).24,31 However, these approaches are
inadequate for widespread clinical implementation due to high
cost, specialized expertise requirements, and-in some cases-low
throughput. Rapid, cost-effective, bedside technologies that
correlate with metabolic profiles and predict transfusion efficacy
are urgently needed to enable personalized transfusion medicine
and improve clinical outcomes.5

To improve accessibility and throughput, lab-on-chip
(LOC) technologies have emerged as promising tools for RBC
quality assessment. These platforms offer portability, speed,
and high-throughput capabilities. Many recent LOC
techniques focus on miniaturizing traditional techniques,

including imaging systems integrated with machine learning
to profile the morphological heterogeneity of blood products
with the goal to implement precision transfusion medicine
practices.32–35 Microfluidic adaptations of ektacytometry,36

velocity-based deformability tracking,37 ratchet-based cell
sorting,38 and capillary-mimicking deformability assays39,40

have further enabled evaluations of RBC rigidity. These
approaches typically generate multidimensional datasets that
require expert interpretation or complex operation workflows.

Here, we present the surface acoustic wave hemolysis assay
(SAW-HA), an acoustic-integrated LOC platform that introduces
a new biophysical biomarker for assessing RBC storage quality.
The SAW-HA offers several practical advantages including
minimal sample volume (<2 μL), rapid results (under two
minutes), and straightforward quantitative output without
complex data analysis. SAW technologies are known for their
precise fluid control and high biocompatibility.41–45 Acoustic-
induced heating has been used to precisely control on-chip
temperatures,46,47 with demonstrated applications in protein-
ligand interaction screening and in distinguishing healthy from
sickle cell disease samples.48 Building on these capabilities, our
assay leverages both acoustic forces and acoustic-induced
heating to induce hemolysis, using the SAW hemolysis
temperature (SAWHT) as a biomarker for storage-induced
changes in RBC quality. Measuring SAWHT at weekly intervals
during storage enables a quantitative assessment of RBC quality
across a spectrum—from optimal to severely degraded units—
supporting decisions on transfusion suitability. When
integrated with metabolomics data, this platform provides new
insights into donor-specific differences in stored RBC aging and
introduces a biomarker to support the advancement of
personalized transfusion medicine.

Experimental methods
Device fabrication

The SAW device was fabricated using a 500 μm thick, 76.2
mm diameter, 128° Y-cut X-propagating lithium niobate
(LiNbO3) substrate. Two identical interdigital transducers
(IDTs) were patterned on either side of a PDMS microchannel.
The IDTs were fabricated using standard photolithography,
starting with spin-coating a positive photoresist (S1813, Dow,
USA) on the wafer. After UV exposure and development with
MF319 developer (Dow, USA), layers of chrome/gold (Cr/Au,
10/100 nm) were deposited using e-beam evaporation, and
excess photoresist was removed via lift-off (Remover PG,
Kayaku, Japan). Each IDT comprised 30 electrode pairs with
50 μm spacing and a 10 mm aperture, yielding a frequency of
≈20 MHz for the propagating SAW.

For the polydimethylsiloxane (PDMS) channel, a negative
SU8 mold was prepared by spin-coating SU8 2025 photoresist
(MicroChem, USA) on a silicon wafer and patterning it with
optical lithography. PDMS (Sylgard 184, Dow Corning, USA)
was poured onto the mold, cured at 65 °C for 35 minutes, and
punched with 0.75 mm diameter inlet/outlet holes and a 0.35
mm diameter temperature measurement hole. The PDMS
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microchannel (80 μm height, 1 mm width, and 10 mm long)
was bonded to the LiNbO3 substrate using air plasma (PDC-
001, Harrick Plasma, USA) and baked at 65 °C for 18 hours.

Samples and materials

Leukodepleted pRBCs in ACD-A/AS-3 were collected via
apheresis at Vitalant Blood Donation Center (Denver, CO, USA)
from six healthy donors (3 males, 3 females, aged 35–40) with
appropriate informed consent and institutional review board
(IRB) approval as specified in the Vitalant research materials
agreement. All experiments were performed in accordance with
the guidelines of the Declaration of Helsinki and the U.S.
Federal Policy for the Protection of Human Subjects (Common
Rule, 45 CFR 46), and experiments were approved by the ethics
and biosafety committees at University of Colorado Boulder.
Informed consents were obtained from human participants of
this study. RBC units were stored at 1–6 °C and aseptically
sampled weekly from day 1 to day 42. Each week, 100 μL of RBC
units were frozen for future metabolic and lipidomic analysis.
For weekly experiments (SAW-HA, EHC, and temperature-
matched SAW-HA), RBC units were diluted 1 : 10 in PBS (v/v).

Device operation

For each set of experiments (n = 3), the PDMS channel was filled
with PBS, with additional PBS droplets placed at the inlet and
outlet ports. The device was then placed in a vacuum desiccator
connected to a standard laboratory house vacuum line for 20
minutes for air bubble removal and temporary hydrophilicity
treatment of the PDMS walls. Before each individual
experiment, air bubbles were removed with ethanol, followed by
manual injection of PBS into the inlet hole of the channel using
a micropipette. Diluted RBC samples (∼5 μL) were injected,
ensuring the channel remained bubble-free. After each
experiment, the channel was cleaned with bleach followed by
water washing in preparation for the next experiment. The SAW
device was mounted on a custom 3D-printed holder and imaged
using an inverted microscope (Eclipse Ti2, Nikon, Japan), a
CMOS camera (Orca-Flash 4.0, Hamamatsu, Japan), and
HCImage Live software. Videos were recorded at 2.5 fps with a
10× objective in brightfield, capturing 2048 × 2048-pixel images
at 50% brightness and minimum aperture. The same channel
area was imaged for consistency. Temperature inside the PDMS
channel was monitored using a digital thermocouple (5TC-TT-
K-36-36, Newark, USA) connected to a data acquisition (DAQ)
system (cDAQ-9171 and NI TB-9212, NI, USA) and controlled via
LabVIEW (NI, USA), with measurements taken for each image
frame. All thermocouples were calibrated using the National
Instruments data acquisition system by measuring ice-bath
temperature (0 °C reference) to confirm measurement accuracy
within ±0.01 °C.

An RF signal generator (33500B, Keysight, USA) and two
power amplifiers (403LA, E&I, USA) were used to apply signals
to the IDTs via bayonet coupling adapter (BCA) cables to printed
circuit board (PCB) connectors (Fig. S1A). Three SAW devices
were used throughout the experiments. For donor 1, all three

devices were used at each weekly time point to establish device-
to-device reproducibility (three technical replicates per time
point). After confirming device consistency, one device was
selected for donors 2–6 experiments. Each SAW device was
individually characterized by measuring SAW resonant
frequency using a network analyzer (E5061B, Keysight, USA).
Resonant frequencies typically ranged from 19.56 to 19.58 MHz.
For SAW-HA, the SAW was operated at about 1.2 W for 2
minutes. For temperature-matched SAW-HA, the SAW power
started at 0.8 W and manually increased by 0.2 W about every
10 s to align with the heating profile of eletrical heating control
(EHC). For EHC, a transparent heating plate (BT-I55D, Cell
MicroControls, Norfold, VA, USA) with a microscope stage
adapter (MSA-WELLP, Cell MicroControls, Norfold, VA, USA)
were used (Fig. S1B). The temperature of the heating stage was
controlled using a micro-temperature controller (mTC3-HT, Cell
MicroControls, Norfolk, VA, USA) with the following parameters:
band limit (Bnd) set to 100, final temperature set to 80 °C, with
all other parameters at factory defaults.

Metabolomics/lipidomics by UHPLC/MS

To extract metabolites, either cold 5 : 3 : 2 MeOH : ACN :H2O
(v/v/v) solution (metabolomics) or cold MeOH (lipidomics)
was added in a 10 : 1 ratio to 5 μL of stored RBCs. Samples
were vortexed vigorously for 30 minutes at 4 °C, then
centrifuged for 10 minutes at 18 213 rcf. Using 10 μL
injection volumes, the supernatants were analyzed by ultra-
high-pressure-liquid chromatography coupled to mass
spectrometry (UHPLC-MS – Vanquish and Orbitrap Exploris
120, Thermo). Metabolites were resolved across a 1.7 μm, 2.1
× 150 mm Kinetex C18 column using a 5 minute gradient
previously described.49 Using 10 μL injection volumes, non-
polar lipids were resolved using UHPLC coupled to ddMS2

using a 5 minute gradient method as previously described.50

Following data acquisition, .raw files were converted to
.mzXML using RawConverter. Metabolites were then annotated
based on intact mass, 13C natural isotope pattern and retention
times in conjunction with the KEGG database and an in-house
standard library. Peaks were integrated using El-Maven
(Elucidata). Quality control was assessed as using technical
replicates run at the beginning, end, and middle of each
sequence as previously described. Lipidomics data were
analyzed using LipidSearch 5.0 (Thermo Scientific), which
provides lipid identification on the basis of accurate intact
mass, isotopic pattern, and fragmentation pattern to determine
lipid class and acyl chain composition.

Metabolomics and lipidomic data were analyzed using R
Package (R Core Team) utilizing the following packages:
shing, dplyr, plotly, ggplot2, circlize, and zip.

Image capture and analysis

All video and image processing were carried out using ImageJ.51

For image analysis, a single rectangular region of interest (ROI)
measuring 1400 × 2000 pixels was selected to cover the entire
channel area. Cell lysis and protein denaturation curves were
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generated by utilizing the “plot z-axis profile” function in
ImageJ, which calculated the average grayscale intensity within
the ROI for each frame throughout the image stack. The
SAWHT of the RBCs was identified by aligning the rightmost
peak of the curve with the corresponding temperature (refer to
Fig. 1).

Statistical analysis

Statistical analyses were performed using Excel (Microsoft, USA),
OriginPro (OriginLab, USA), and GraphPad Prism (GraphPad
Software, USA) software. For comparisons between datasets, a
two-sided, unpaired student's t-test was used. Significance levels
were set as follows: *P < 0.05, **P < 0.01, ***P < 0.001.

Results and discussion
Device design and working principle

The schematic and working principle of the SAW-HA are
shown in Fig. 1. The system consists of a PDMS microfluidic

channel bonded onto a piezoelectric LiNbO3 substrate. Two
gold IDTs are patterned symmetrically on either side of the
10 mm long, 80 μm high, and 1 mm wide channel. The
device is placed in a custom-built holder fitted to a
microscope stage and connected to BCA cables via a custom
PCB connector (Fig. S1A). Upon activation with radio
frequency (RF) signal, the IDTs generate SAWs that
propagate toward each other, forming a one-dimensional
standing SAW field.52 As the standing SAW interacts with
the fluid inside the channel, acoustic energy radiates into
the fluid due to the mismatch in sound velocity between the
fluid and the substrate. This interaction induces pressure
waves and acoustic heating effects caused by the viscous
dissipation of acoustic energy into the fluid.46 The pressure
waves create alternating pressure nodes (regions of
minimum pressure) and antinodes (regions of maximum
pressure). Particles suspended in the fluid are driven toward
these nodes or antinodes depending on acoustic contrast
factors – their density and compressibility relative to the
surrounding medium. The heating profile induced by the
acoustic heating effect can be precisely tuned by altering
parameters such as the standing SAW frequency, power
input, duty cycle, and phase.

The standing SAW was applied to induce lysis of RBCs
suspended in the microfluidic channel. The lysis process was
tracked using high-resolution imaging and thermocouple-
enabled temperature measurements, with grayscale intensity
extracted from video data (Movie S1). The intensity was
plotted as a function of temperature to quantitatively
represent the process (Fig. 1B). When the standing SAW was
applied at 19.5 MHz and 1.2 W, RBCs aggregated at the
pressure nodes due to acoustic radiation forces. This
aggregation led to a noticeable increase in image grayscale
intensity, which corresponded to the initial steep rise in the
intensity-temperature graph. As the temperature increased
from approximately 40 °C to 75 °C, the structural and
mechanical properties of the RBC membranes began to
change.53 These changes included alterations in cell density,
compressibility, and acoustic contrast factors. The intensity-
temperature graph showed oscillations during this phase,
which could potentially be attributed to morphological
transitions in the cells. The peak in the graph at
approximately 80 °C represents the point of maximum image
intensity, corresponding to the rupture of RBC membranes.
We define this temperature as the SAW hemolysis
temperature (SAWHT), which serves as a biomarker for RBC
storage quality assessment. Following membrane rupture,
intracellular proteins (predominantly hemoglobin) undergo
denaturation, aggregation, and precipitation, which is
reflected in the declining portion of the curve.

SAWHT as a biomarker evaluating RBC storage quality
change

We quantified the SAWHT of each donor's RBCs as a
function of storage time (Fig. 2A). Two distinct trends are

Fig. 1 Working mechanism of SAW hemolysis assay (SAW-HA). (A) (i)
Schematic representation of the four sequential phases of RBC
behavior in the microfluidic chamber under the standing SAW
application: dispersed RBCs (22 °C), cell alignment (28 °C), RBC lysis
(80 °C), and protein aggregation (83 °C). Cell and protein illustrations
were created using BioRender. (ii) Representative high-contrast images
correspond to the key phases outlined in (i). The scale bar represents
100 μm. Raw, unaltered images used for analysis are included in the
supplementary materials (Fig. S2A). (B) Quantitative analysis of average
grayscale intensity as a function of temperature from RBC samples of
six donors using SAW-HA (n = 126). The curve highlights distinct
phases of cell behavior. Points corresponding to images in (A) are
annotated. Note that the temperature at the third point corresponds to
the biomarker SAW hemolysis temperature (SAWHT). (C) Photograph
of the experimental microfluidic device used for the SAW-HA. The
device features integrated SAW transducers and sample chamber with
thermocouple probe hole in the middle, with a scale bar of 5 mm.
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apparent. Four donors (donors 1, 3, 4, and 6) maintained an
unchanged acoustic signal over the 42 day storage period,
with SAWHT showing minimal variation. In contrast, two
donors (donors 2 and 5) exhibited significant decreases in
SAWHT. For the unchanged acoustic signal group (donors 1,
3, 4, and 6), the average change in SAWHT over 42 days was
−0.19 ± 0.61 °C (Fig. 2B). In contrast, the changed acoustic
signal group (donors 2 and 5) displayed significant declines
in SAWHT starting at specific time points. Donor 2 showed a
noticeable decrease from day 28 onward, while donor 5
experienced a similar reduction starting from day 35. Both
donors exhibited stabilization in SAWHT after the initial
decrease, with no further significant changes observed
through day 42. The average decrease in SAWHT for this
group was −2.12 ± 0.41 °C, significantly greater than that of
the unchanged group (Fig. 2B).

It is well established that the melting temperatures of
proteins are highly sensitive to heating rates, particularly in
traditional thermal shift assays.54,55 To ensure the reliability
and comparability of results across storage periods and
between donors, it is crucial to maintain a consistent heating
rate during each trial. This approach minimizes variability
arising from heating rate dependencies and allows for
accurate assessment of stability changes in RBCs. Fig. 2C
illustrates the heating profiles of RBC samples obtained from
six donors over a 42 day storage period. The profiles
remained consistent across different weeks for individual

donors, confirming that heating conditions were precisely
controlled and uniform.

Acoustic effects play an important role in detecting RBC
storage quality change

To isolate the role of acoustic waves beyond thermal
contributions, we first conducted an electrical heating control
(EHC) experiment. This control employed electrical heating
under identical experimental conditions to the acoustic
method, including channel dimensions, RBC concentrations,
and video parameters (Fig. S1B and S3A, & Movie S2). The
purpose of this experiment was to determine whether heating
alone could account for the observed variations in SAWHT
and to evaluate the effects of heating alone on detecting RBC
storage quality change. The intensity versus temperature
profiles obtained from the EHC (Fig. 3A) revealed distinct
thermal transitions compared to the SAW-HA. An intensity
decrease around 49 °C likely reflects morphological changes
in RBCs due to denaturation of the cytoskeleton spectrin.56

The rightmost peak in these profiles corresponds to the peak
hemolysis point induced by electrical heating, which is
followed by protein denaturation and precipitation. The
average hemolysis temperature measured by the SAW-HA was
significantly higher than that of the EHC (79.55 °C vs. 71.95
°C; Fig. 3D). Moreover, while donors 2 and 5 showed storage-
dependent reductions in SAWHT using the SAW-HA, no such

Fig. 2 SAW hemolysis temperature (SAWHT) serves as a biomarker for detecting donor-specific, storage-induced changes in RBC quality. (A) Weekly
tracking of SAWHT for six biological samples (individual donors) throughout 42 days of cold storage. To establish device-to-device reproducibility, donor
1 was measured using all three SAW devices at each weekly time point (n = 3 technical replicates per time point). After confirming device consistency,
donors 2–6 were measured using a single device. Each data point represents the mean ± s.d. of three technical replicates. (B) Comparison of SAWHT
changes during storage between two donor groups. Each data point represents one donor's change in SAWHT from day 1 to day 42 (ΔSAWHT = day 42 −
day 1). The horizontal bar represents the mean of each group. Unchanged acoustic signal group: donors 1, 3, 4, 6; changed acoustic signal group: donors
2, 5. (C) The average temperature profile of the SAWHT across all six donors, demonstrating consistent temperature rise over time and its reproducibility
(n = 126). The shaded region represents the standard deviation. The student t-tests of independence were performed in the above figures. *P < 0.05, **P
< 0.01, and ***P < 0.001; two-sided, unpaired t-test. NS, not significant.
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trend was observed in the EHC (Fig. 3E). This contrast
highlights the importance of acoustic effects—beyond
heating alone—in detecting storage-induced changes in RBC
quality.

To further confirm the role of acoustic waves and rule out
potential confounding factors, we conducted an additional
control experiment (Fig. S4). In this experiment, the heating
profile of the SAW-HA was adjusted to closely replicate that
of the EHC (Fig. S4A). By gradually increasing the acoustic
power by 0.2 W every 10 seconds, we ensured that the
temperature rise in this temperature-matched-to-EHC SAW-
HA mirrored the slower heating profile observed in the EHC.
The only key difference between this temperature-matched
SAW-HA and the EHC is the presence of acoustic waves. The
intensity versus temperature curves for the temperature-
matched SAW-HA closely resembled those of the SAW-HA
(Fig. S4C). Both acoustic assays exhibited higher hemolysis
temperatures (∼80–82 °C) compared to the EHC

(approximately 72 °C). Moreover, both assays detected
storage-dependent shifts in hemolysis temperature for
donors 2 and 5, a trend absent in the EHC. This finding
demonstrates that the temperature difference in the initial of
the heating profile or heat-shock effects (above 37 °C effect
to cells) does not account for the observed donor-specific
changes by the SAW-HA; rather, the presence of acoustic
waves is essential for detecting these shifts.

Metabolite correlations with SAWHT can differentiate storage
duration and donor phenotypes in RBCs

The relative abundance of metabolites central to energy and
redox metabolism across all samples were correlated with
storage duration (Fig. S5). Similar to previous reports, we
observed accumulations of RBC storage biomarkers
hypoxanthine, 5-oxoproline, and lactate over the storage
duration,11,12 and glycolysis intermediates strongly negatively

Fig. 3 Electrical heating control (EHC) shows that acoustic effects are critical for detecting changes of RBCs quality during cold storage. (A)
Grayscale intensity versus temperature analysis of RBC samples from six donors under electrical heating reveals two key phases: (1) hemolysis
point and (2) subsequent protein denaturation and precipitation (n = 126). Representative images with enhanced contrast for these phases are
included in Fig. S3. Raw, unaltered images used for analysis are included in Fig. S2B. (B) Average temperature profile of EHC from all six donors,
demonstrating consistent and controlled temperature progression over time (n = 126). The shaded region represents the standard deviation. (C)
Weekly tracking of hemolysis temperatures across 42 days of cold storage for six biological samples (individual donors) under EHC. Each data
point represents the mean of three technical replicates for each donor at each time point. Individual donor plots with mean ± s.d. and statistical
significance tests are shown in Fig. S3B. (D) Comparison of the hemolysis temperatures across all donors and weeks between SAW-HA and EHC (n
= 42). (E) Comparison of the change in hemolysis temperature (day 42 minus day 1) between SAW-HA and EHC for two donor groups: donors 1/3/
4/6 (unchanged acoustic signal) and donors 2/5 (changed acoustic signal). Each data point represents one donor's change in SAWHT/EHC
hemolysis temperature from day 1 to day 42, and the horizontal bar represents the mean value. The student t-test of independence was
performed. ***P < 0.001; two-sided, unpaired t-test.
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correlated with storage duration, in keeping with the body of
literature on the metabolic changes of aging RBCs in vitro.57

We first correlated the change in metabolite abundance with
SAWHT across all storage days (Fig. 4A and S6A). The top
positive correlates were several essential amino acids
(leucine, glutamine) and energy metabolism substrates
(AMP). Negative correlates include dicarboxylates (citrate,
fumarate) and hydroxybutyrylcarnitine (acyl-C4:OH).

Next, we correlated the abundance of metabolites on day 1
with the SAWHT over storage duration to identify features that
predict decreased lysis temperatures on day 42 (Fig. 4B and S6B).
Here, positive correlates represent metabolites that stabilize
SAWHT and include glycine, AMP, S-adenosylhomocysteine
(SAH), and 8-methoxykynurenate. Negative correlates include
ribose and biliverdin but are not as strongly correlated.

We then correlated the change in abundance of metabolites
(day 42 minus day 1) with the SAWHT over storage duration
(Fig. 4C and S6C). This analysis identified cysteine as the top
negative correlate, with the two donor samples that showed
decreased lysis temperature accumulating cysteine. Pyridoxal,
an antioxidant and the active form of vitamin B6, is also
strongly negatively correlated. Anthranilate, a tryptophan
metabolite like kynurenine and marker of oxidative stress, was
also negatively associated, as well as long-chain fatty acids (FAs).
Allantoate, a purine metabolite, showed the strongest positive
correlation. In this sense, positive correlation demonstrates
metabolites that are decreased in donors with decreased lysis
temperature. Citrate, a carboxylic acid that abounds in citrated-
anticoagulants, was also identified positively correlated along
with fumarate, a catabolite of purine salvage and malate/
aspartate metabolism.58,59

To further interrogate the metabolic profiles during
storage between the SAWHT-defined two groups of donors,
we performed separate correlations of metabolite and lipid
levels against change in SAWHT (Fig. 5A and B and S8).
These analyses revealed several key pathways that are

selectively altered in donors with reduced SAWHT (Fig. 5C
and S7). Donors 2 and 5 showed loss of correlation in
glutamine and its downstream metabolites such as GSH,
while the other donors showed positive correlations and
stabilization of SAWHT glutamate and GSH. Spermine, a
critical polyamine that negatively correlates with SAWHT in
other donors, shows a lack of correlation in donors 2 and 5.
Of major importance, tryptophan metabolism is drastically
altered across multiple nodes in donors 2 and 5, with
kynurenine, anthranilate, and serotonin showing reduced
abundance and association with SAWHT. Furthermore, these
donors show elevated triglycerides (TGs) concentration across
all temperatures. Together, these results suggest that BMI
may be tightly correlated with the SAWHT depression over
time, as elevated TGs and disrupted tryptophan metabolism
are associated with high BMI.60–62

Current FDA guidelines permit refrigerated RBC storage up
to 42 days, requiring a mean 24 hour autologous transfusion
recovery rate of at least 75% across tested samples.22 However,
statistical modeling of existing recovery data suggests only
67.3% of blood unit samples would meet this standard at 42
days, revealing significant variability in stored RBC quality that
remains undetected in clinical practice due to the high cost and
specialized expertise required for PTR testing.63 A major
contributor is donor-to-donor differences, with some
individuals consistently producing better-storing RBCs than
others.64 Factors impacting the heterogeneity in the quality and
post-transfusion efficacy of stored blood products include
genetics,8,65 biology (sex, age, ethnicity),6 BMI,7 and
recreational, professional, environmental, or other exposures.66

Such variability poses significant risks for transfusion-
dependent patients—such as those with thalassemia, sickle cell
anemia, or trauma—who require frequent or massive
transfusions. RBC units from poor storers can undergo rapid
clearance, leading to iron overload,4 which in turn promotes
inflammatory complications such as acute respiratory distress

Fig. 4 A Spearman correlation analysis was performed between metabolite peak intensity (A.U.) and SAWHT. Metabolic correlates were graphed
against p-value. Top correlates are labelled for (A) metabolite abundance versus SAWHT (N = 42), (B) correlates of day 1 metabolite abundance to
change in SAWHT over storage duration (day 42 − day 1, N = 6), and (C) correlates of the change in metabolite abundance (day 42 − day 1) to
changes in SAWHT over storage duration (day 42 − day 1, N = 6). Selected metabolite scatter plots for top correlates in A, B, and C are shown in
Fig. S6.
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syndrome and cardiorenal dysfunction67,68 and increases
susceptibility to infections by siderophilic bacteria.69 Identifying
high-quality RBC units based on donor characteristics may
improve transfusion strategies, patient outcomes, and reduce
healthcare costs.

Several technologies have been developed to assess RBC
quality in high throughput and reveal donor–donor differences,
including metabolic biomarkers,7,13,64,70 morphology
analysis,25,26,32,33 and deformability-based microfluidic tests.37,38

While emerging methods have demonstrated success in

Fig. 5 A Pearson correlation analysis was independently performed between metabolite peak intensity (A.U.) and SAWHT within the two donor
groups. Top correlates are labelled for (A) donors 1, 3, 4, and 6 (N = 28) and (B) donors 2 and 5 (N = 14). (C) Select features were graphed with
significance marked for features with significantly different slopes between two donor groups by simple linear regression ( p < 0.05 *, p < 0.01 **,
p < 0.001 ***). Additional metabolites and lipids correlates of SAWHT are shown in Fig. S7. (D) A neural network analysis centered around
metabolites that correlate to SAWHT (N = 42).
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research settings, they face distinct challenges for clinical
translation. Morphology-based methods using imaging flow
cytometry or automated microscopy systems require
sophisticated optical setups and complex computational
algorithms that generate multiple output metrics (e.g.,
morphological index, spherocyte percentage, echinocyte
percentage), requiring expert interpretation of
multidimensional data. Deformability-based microfluidic
approaches have demonstrated high sensitivity but are
susceptible to channel clogging (particularly with stored blood
containing debris and microparticles) and involve complex
operation protocols with multiple pressure adjustments and
manual calibration steps.

One of the key innovations of our method is the introduction
of the SAW hemolysis temperature as a biomarker for RBC
storage quality. Unlike traditional assays where lysis is a
preprocessing step for intracellular content analysis,71 our
results demonstrate that the temperature at which RBCs lyse by
acoustics provides valuable insights into membrane integrity
and biomechanical resilience. In contrast to existing
approaches, our SAW hemolysis assay offers several practical
advantages: (1) simple operation with single quantitative output
that does not require expert interpretation; and (2) potential for
integration into cost-effective miniaturized PCB-based devices
supporting simultaneous operation of multiple SAW-HA units
with on-board power management for portable, point-of-care
deployment. This multi-device platform could address
throughput requirements for routine blood quality monitoring.
Additionally, sterile sampling innovations using interconnected
primary and aliquot bag systems could enable representative
testing without compromising transfusable unit integrity. These
features position SAW-HA as a clinically viable platform for
high-throughput blood product quality assessment in blood
banking applications.

After confirming here that donor RBCs stored in a manner
consistent with the literature (Fig. S5), our correlation analyses
identified several SAW-specific metabolites associated with
major changes in SAWHT (Fig. 4A and S6A). Metabolites
strongly positively correlated to SAWHT represent potential
biomarkers for healthy membrane stability. This list includes
many amino acids, each contributing to a multitude of vital
cellular functions. For instance, glutamine is a conditionally
essential amino acid and player in erythropoiesis, as well as the
precursor to the vital endogenous antioxidant glutathione.72,73

Tryptophan, the amino acid precursor to kynurenine and
serotonin, was also observed to maintain healthy membrane
stability.74 Coincidentally, tryptophan metabolism has been
shown to be dysregulated in obesity and metabolic dysfunction
across multiple tissues.75–77 Additionally, the tryptophan
metabolite kynurenine is a top metabolic correlate to osmotic
stress and hemolysis despite a lack of storage-mediated
changes.12 In the realm of fatty acid metabolism, membrane
stabilizer carnitine and hydroxylated acyl-carnitines were strong
negative correlates, a potential double-hit to FA equilibrium.78

We identified several metabolites as potential predictors of
decreased lysis temperature over the storage duration (Fig. 4B

and S6B) including ribose and oxoadipate. While oxoadipate is
an intermediate of tryptophan metabolism, D-ribose is a
protein-glycation substrate, another critical process for
membrane proteins as well as a player in oxidative stress and
energy metabolism.79 Inversely, we identified a few potential
predictors of stable lysis temperature over the storage duration.
AMP was decreased in the donor samples with reduced SAWHT.
ATP is associated with erythrocyte membrane response to high
pressure through alterations in phosphorylation and
dephosphorylation of membrane proteins.80 Glycine was the
top correlated metabolite, most likely due to its role in
glutathione synthesis and regulation of oxidative signalling and
damage.81

Finally, we highlight metabolites that correlate with changes
in SAWHT (Fig. 4C and S6C). Cysteine shows the strongest
negative correlation, with the two donors with decreased
SAWHT accumulating cysteine over the storage duration. While
cysteine has been implicated in blood fluidity in vitro, it is most
likely a marker of impaired glutathione synthesis.82,83 Thus, it is
unsurprising that features involved in redox balance are also
implicated, such as pyridoxal, anthranilate, and allantoate.
Pyridoxal, an aldehyde of vitamin B6, is implicated in FA
synthesis and acts as an ROS scavenger.84 Anthranilate is
another tryptophan metabolite and observed marker of donor
age in stored RBCs.85 Purine metabolite allantoate is also a
biomarker of donor age and an established marker of oxidative
stress.86

Separation of the donor groups based on SAWHT over
storage duration reveals that tryptophan and arginine
metabolism over time are significantly altered over several
nodes (Fig. 5A–C and S7). Additionally, glutamate, glutathione,
and glutathione disulfide show downward trends. These
pathways appear to be the most influential when predicting
SAW hemolysis performance. A neural network analysis further
identified L-carnitine, pyruvate and hydroxylated acyl-carnitines
as associated players (Fig. 5D). Urate metabolism was identified
as a nearby node to SAWHT, which has been shown to be
associated with high BMI and increased hemolysis.87

Although these pathways are important in blood aging,
donor statistics also play an important role in the stability
of the blood sample. Donors 2 and 5 have the highest BMI
among the group (Table 1). There is a significant overlap
between the biomarkers associated with hemolysis and
those associated with high BMI. For instance, the high
correlation of SAWHT with abundance of leucine and
isoleucine could indicate insulin resistance associated with
high BMI.88 Additionally, TGs are among the lipid correlates
to SAWHT (Fig. S7 and S8B). Elevated TGs are not only
observed in obesity and associated with high BMI but are
also a critical component of the RBC membrane.60,61 Upon
further review of donor statistics, it was discovered that
donors 2 and 5 were of Hispanic heritage (Table 1).
Ethnicity has been shown to be a significant factor in RBC
membrane-lipid profile, median BMI, and hemolysis in
larger population studies. One such study in over 16 000 US
Hispanic/Latinos found an overall prevalence of
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dyslipidemia in Hispanics at 65% and noted high incidences
of elevated low-density lipoprotein cholesterol (LDL-C) and
TGs.89 When evaluating ethnicity as a variable in the
determination of insulin resistance via TG levels, Mexican
Americans had higher prevalence of syndromes associated
with insulin resistance than African Americans despite
similar occurrence of obesity, hypertension, and diabetes
between the two groups.90 Of interest to our SAW-HA,
Hispanic blood donors exhibited higher markers of oxidative
hemolysis than other donor populations.91 However, we
report an altered metabolic profile for this SAW hemolysis
when compared to either oxidative or osmotic hemolysis
markers previously observed.12 Thus, with the interplay of
ethnicity, BMI, lipid profile, and hemolysis; we cannot single
out one factor as the main contributor to our observed
decrease in SAW-hemolysis temperature. Rather, we can
conclude that these factors may combine to alter membrane
stability during storage, and our method can identify donor
samples that may have decreased efficacy as transfusion
medicine. Finally, deficient tryptophan metabolism and
reduced serotonin are also associated with high BMI,
potentially explaining the lack of correlation in our donor
set.62,75

The SAW-HA provides a uniquely sensitive method for
evaluating subtle changes in RBC membrane stability during
cold storage. The mechanisms underlying this capability can
be explained by the complex interactions between acoustic
forces and cellular structures. Standing SAW imposes cyclic
mechanical stresses (shear stresses, coupling with rapidly
changing acoustic pressure fields and radiation pressures47)
that actively probe membrane fragility, revealing donor-
specific mechanical vulnerabilities masked under thermal
conditions alone. Our data demonstrates that acoustic
methods produce significantly higher hemolysis
temperatures than heat-only controls (79.55 °C vs. 71.95 °C),
suggesting that acoustic forces fundamentally alter the cells'
response to thermal stress. This effect likely occurs through
multiple pathways: 1) acoustic forces may transiently
reorganize lipid packing, as molecular dynamics simulations
show that ultrasound can induce oscillatory pressure changes

that alter lipid tail ordering;92,93 2) mechanical stimulation
may modify membrane protein conformations through
hydrophobic mismatch mechanisms, where small changes in
bilayer thickness alters proteins toward new functional
states;94 and 3) acoustic perturbations likely engage the
spectrin-actin cytoskeletal network, potentially strengthening
membrane-skeleton coupling through mechanosensitive
channel activation (e.g., Piezo1) and calcium-dependent
pathways.95

Our data highlights several metabolic correlates with the
new SAWHT metric described. However, high BMI and the
associated metabolic phenotype seem to be an influential
factor in our limited donor group. Still, the LOC protocol
identified donor samples with decreased membrane stability,
thus predicted to have decreased transfusion efficacy. As the
transfusion field moves toward personalized medicine,
assessing donor-specific factors such as BMI may be critical
for optimizing blood storage and recipient outcomes. Our
SAW-integrated device provides a scalable, rapid, and
accessible approach to RBC quality assessment, offering a
promising on-site tool for improving transfusion practices
while addressing critical concerns about donor variability.
Future objectives include larger scale, follow-up studies in
combination with current non-bedside assays of transfusion
efficacy.

Conclusions

In summary, we have developed the surface acoustic wave
hemolysis assay (SAW-HA), a microfluidic platform that
introduces SAW hemolysis temperature (SAWHT) as a
quantitative biomarker for evaluating stored red blood cell
quality. The SAW-HA differentiated donor-specific storage
behaviours across six donors over 42 days, identifying two
distinct phenotypes: donors with stable SAWHT (−0.19 ± 0.61
°C) and those with declining SAWHT (−2.12 ± 0.41 °C).
Integration with metabolomics revealed that donors with
decreased SAWHT were characterized by disrupted redox
control, deficient tryptophan metabolism, and elevated
triglycerides—metabolic biomarkers indicative of decreased

Table 1 Donor demographic information. Donors are arranged in order of increasing BMI. Note that donors 2 and 5 exhibit the highest BMI values
(36.9 and 33.0 lbs in−2 respectively), classified as class II and class I obesity according to CDC guidelines60
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membrane stability—with high BMI emerging as a potential
predictor of poor storage quality. Even in such a small
sample group, SAWHT measurement was able to separate
donor samples displaying markers of decreased membrane
stability independently of donor ethnicity or metabolomics
profile. This proof-of-concept platform addresses critical
limitations in transfusion medicine by providing rapid (<2
minutes), sample-efficient (<2 μL), and cost-effective point-
of-care analysis. It should, however, be noted that clinical
translation requires validation through larger studies
correlating SAWHT with gold-standard post-transfusion
recovery methods, and metabolic correlations need
confirmation across diverse populations to establish broader
applicability. We believe the SAW-HA platform holds
significant promise for advancing personalized transfusion
medicine through rapid bedside quality assessment. Future
applications may extend to diagnosing blood diseases,
detecting pathological conditions that alter cellular
membranes, and conducting fundamental membrane
biophysics studies, potentially revolutionizing blood banking
practices and improving patient outcomes.
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