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e strain effect in alkaline
hydrogen oxidation reaction over well-defined Ru
surfaces: insights into catalyst design†

Zihan Guo,‡a Yan Qiao,‡a Mengfan Li,a Zhenghe Gong,b Jingwei Yu,a Yanan Wang,a

Liang Zhao,a Yang Li,a Zehua Hu,*c Yangfan Lud and Hongwen Huang *ab

Surface strain has general impacts on the electronic structure and catalytic properties of catalyst surfaces.

However, accurately deciphering the strain effect in many catalytic processes, such as the alkaline hydrogen

oxidation reaction (HOR), remains a long-standing challenge due to the difficulty in isolating the strain and

ligand effects in most catalytic systems. Here the Ru(111) surfaces are designed and constructed via

epitaxially growing five atomic layers of Ru onto Pd octahedra and Pd icosahedra, respectively, providing

the model surfaces to explore the strain effect. Atomic-level structural characterization studies reveal

that the average surface strain on a Pd icosahedron is 2.5%, while the Ru surface on Pd octahedron is

almost unstrained. We demonstrate that the strained Ru surface exhibits a 2.8-fold enhancement in mass

activity at 50 mV for the HOR compared to the unstrained Ru surface. Combining in situ vibrational

spectroscopy studies and theoretical calculations, we find that the tensile strain upshifts the d-band

center of the Ru surface, thereby strengthening OH* adsorption and promoting HOR activity. This work

provides general guidance for the design of remarkable electrocatalysts.
Introduction

Hydrogen energy offers a promising solution to the global
environmental and energy crises,1,2 with hydrogen fuel cells
emerging as a leading technology for efficient energy
conversion.3–7 Compared with proton exchange membrane fuel
cells, alkaline exchange membrane fuel cells (AEMFCs) have
garnered much attention due to the development of anion
exchange membranes and the facile use of Pt group metal
(PGM)-free catalysts for the cathode ORR.6,8–10 Nevertheless, the
hydrogen oxidation reaction (HOR) at the anode on a PGM
catalyst is approximately two to three orders of magnitude
slower in alkaline media than in acid.11–13 Recent efforts to
develop alkaline HOR electrocatalysts have largely focused on
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PGMs and their alloys. However, the high cost and limited HOR
kinetic activity of Pt-based HOR catalysts severely hinder their
practical application in AEMFCs. Consequently, Ru-based
catalysts have emerged as a promising alternative, possessing
a comparable affinity for H2 to that of Pt while being more cost-
effective (about 50% of Pt price),14,15 and showing higher oxygen
tolerance compared to Ni-based alternatives.16,17

To boost the HOR activity of Ru-based catalysts, extensive
structural engineering strategies have been explored, including
interface engineering,18–22 heteroatom incorporation,23–26 strain
engineering and single atom construction.27–29 Among these,
strain engineering can modulate the catalytic performance
through tensile or compressive strains, induced by lattice
mismatch in designed core shells, alloyed nanostructures or
twin structures like icosahedra.14,30 Studies have proved that
strain can alter the d-band center and modulate the surface
binding to the reaction intermediates.14,31 For instance, PdCu/Ir
core–shell catalysts, which eliminate electronic effects and
retain 3.6% compressive strain, exhibit excellent OER activity.32

However, for strained catalysts in the HOR, the interplay
between the strain effect and electronic effect remains difficult
to disentangle.24,27,33–36 In a notable case, Shao and co-workers
reported that HOR activity of Ru-modied Pt correlates with
Ru coverage, where both strain and electronic effects strengthen
the binding of *H and OH*.37 The challenge in isolating the
strain effect from these other factors has hindered a clear
understanding of its independent contribution to the HOR. To
date, a comprehensive analysis of the strain effect in the HOR is
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Scheme 1 Schematic illustration showing the rational design of model surfaces and the strain effect in the alkaline hydrogen oxidation reaction
mechanism. (a and b) Scheme of the model surfaces for elucidating the strain effect. (c) Bond formation between the Ru surface and adsorbates
upon a tensile strained surface. (d) Origins of the enhanced catalytic performance on the strained surface.
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still lacking, limiting the full potential of strain engineering as
a tool for improving HOR performance.

Based on the above analyses, we thus aim to construct Ru
surfaces with varying strains, while avoiding the interference of
the electronic effect, as the model surfaces for investigating the
stain effect in alkaline HOR (Scheme 1). To achieve this, ve
atomic layers of Ru were epitaxially grown on the surfaces of Pd
icosahedra (denoted as Pd@Ru icosahedra) or Pd octahedra
(denoted as Pd@Ru octahedra). Since the ligand effect between
the Pd core and Ru shell is limited within three Ru atomic
layers, the as-synthesized Ru surfaces can safely exclude the
ligand effect between the Pd core and Ru surface. In the case of
the Pd@Ru icosahedra, a tensile strain of 2.5% is induced on
the Ru atoms due to lattice enlargement, whereas Pd@Ru
octahedra exhibit negligible surface strain (Fig. S1†). Remark-
ably, the Pd@Ru icosahedra demonstrate a highmass activity of
2.5 A mgRu

−1 at 50 mV in alkaline HOR, approximately 2.8 times
higher than that of the Pd@Ru octahedra. This activity also
signicantly surpasses that of commercial Pt/C and Ru/C cata-
lysts by factors of 5.1 and 7.6 times, respectively. Combined with
density functional theory (DFT) calculations and experimental
evidence, we nd that the tensile strain can upshi the d-band
center and enhance the adsorption of OH*, rationalizing the
boosted alkaline HOR performance of Pd@Ru icosahedra.
Results and discussion
Synthesis and characterization of core–shell Pd@Ru catalysts

To prepare the ideal catalyst model, we synthesized Pd@Ru
octahedra and Pd@Ru icosahedra with similar sizes using
© 2025 The Author(s). Published by the Royal Society of Chemistry
a seed-mediated growth method. Briey, the Pd octahedra
enclosed by (111) facets were obtained by transforming Pd
cubes through an oxidative etching and regrowth process,
following previously reported procedures.38,39 The Pd icosahedra
were directly synthesized in a diethylene glycol (DEG) solution.
Subsequently, RuCl3$3H2O was introduced into the Pd octa-
hedra or Pd icosahedra dispersed in ethylene glycol and heated
at 200 °C to achieve the uniform epitaxial growth of the Ru shell.
The number of Ru layers was controlled by adjusting the ratio of
Pd seed and ruthenium precursors. The key to this precisely
controlled synthesis relies on the control of Ru deposition and
surface diffusion kinetics, which results in the atomic layer-by-
layer deposition on Pd.38,39 The low-magnication transmission
electron microscopy (TEM) images show that the octahedral or
icosahedral morphology is well-preserved aer Ru deposition
(Fig. 1a, b, S2 and S3†). The average sizes of the Pd@Ru octa-
hedra and Pd@Ru icosahedra are determined to be 16.89 nm
and 17.62 nm, respectively. The increase in size compared to the
Pd seed was approximately 2.29 nm and 2.32 nm, correspond-
ing to the overgrowth of Ru. Besides, Ru nanocages were ob-
tained by selectively etching Pd cores, conrming the successful
growth of the Ru shell (Fig. S4†). The crystal phase of core–shell
Pd@Ru catalysts was determined by analyzing the XRD pattern
(Fig. 1c). All the XRD peaks for the catalysts have symmetric
shapes and their positions matched well with those of face-
centered-cubic (fcc) Pd (PDF #88-1734), while obvious shis of
diffraction peaks towards lower angles were identied for both
Pd icosahedra and Pd@Ru icosahedra, indicating their
enlarged lattice. The (111) peak at around 17.4° splits into
approximately three peaks for the Pd icosahedra and Pd@Ru
Chem. Sci., 2025, 16, 14468–14477 | 14469
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Fig. 1 Morphology and structure characterization of Pd@Ru octahedral and Pd@Ru icosahedral catalysts. (a and b) Low-magnification TEM
images of the Pd@Ru octahedra (a) and Pd@Ru icosahedra (b), and the insets illustrate size distributions. (c) XRD patterns of Pd octahedra, Pd@Ru
octahedra, Pd icosahedra and Pd@Ru icosahedra. (d) HAADF-STEM elemental mappings of Pd@Ru octahedra. (e) Atomically resolved HAADF-
STEM image of Pd@Ru octahedra. The corresponding FFT pattern was obtained from the region boxed by a blue rectangle. (f) The intensity
profiles are obtained along the red and blue lines in (e), respectively. (g) HAADF-STEM elemental mappings of Pd@Ru icosahedra. (h) Atomically
resolved HAADF-STEM image of Pd@Ru icosahedra. The corresponding FFT pattern was obtained from the region boxed by a blue rectangle. (i)
The intensity profiles are obtained along the red and blue lines in (h), respectively.
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icosahedra, arising from the inhomogeneous tensile strain
distributed on the Pd icosahedra.40 In addition, no XRD peaks
belonging to Ru were observed, likely due to the similar lattice
constants of the Ru shell and the Pd core. The structure and
composition of the Pd@Ru catalysts were further characterized
using high-angle annular dark-eld scanning transmission
electron microscopy (HAADF-STEM), energy dispersive X-ray
spectroscopy (EDS) and inductively coupled plasma-mass
spectrometry (ICP-MS). For the Pd@Ru octahedra, STEM-EDS
mapping and the line scan prole (Fig. 1d and S5†) show that
Ru atoms are well-distributed on the outer layers of Pd cores,
conrming the core–shell structure. The atomic resolution
HAADF-STEM image (Fig. 1e) reveals continuous lattice fringes
across the interface between the Pd core and the Ru shell,
indicating the epitaxial growth of Ru on Pd. According to the
ICP-MS data, the Pd/Ru atomic ratio in Pd@Ru octahedra was
1.78, corresponding to approximately ve atomic layers (Fig. S5
and Table S1†). The corresponding fast Fourier transform (FFT)
pattern from the blue rectangular region in Fig. 1e further
conrms the fcc phase structure of Pd octahedra along the
[0−11] zone axis. Additionally, the Ru atomic arrangement
exhibits a characteristic fcc packing with an ABCABC order, in
line with prior studies.38,41,42 The average measured Ru–Ru
distance was 2.333 Å (Fig. 1f and S6†), closely matching the
14470 | Chem. Sci., 2025, 16, 14468–14477
value of the Ru–Ru distance in bulk Ru crystals (2.33 Å). These
ndings suggest that the epitaxial growth of ve Ru layers on
Pd@Ru octahedra shows negligible strain. This result is
reasonable considering the slight lattice mist between Ru and
Pd (Pd: 3.89 Å and Ru: 3.82 Å) and the ve-atomic-layer
conguration of the Ru shell, which enables the relaxation of
the lattice mist. Similarly, the microstructure of the Pd@Ru
icosahedra was also conrmed through STEM-EDS mapping
and EDS line-scanning proles (Fig. 1g and S7†). The atomically
resolved HAADF-STEM image (Fig. 1h) conrms the successful
formation of the Pd@Ru core–shell structure. For an ideal
icosahedral model with a core size averaging 15.30 nm and
a ve-layer Ru shell, the calculated Pd/Ru atomic ratio is 1.89,
which closely aligns with the experimentally determined ratio of
1.81 obtained from ICP-MS analysis (Fig. S8 and Table S2†). The
corresponding FFT pattern from the blue rectangular region
conrms the fcc phase structure of Pd@Ru icosahedra along the
[1−10] zone axis (inset in Fig. 1h). The measured average Ru–Ru
atomic distance in the Ru shell is 2.39 Å (Fig. 1i). Consequently,
the tensile strain in the Ru shell was calculated to be 2.5% using
the equation SX = (aX − abulk)/abulk (see the ESI†), where aX

represents the lattice constant of the Ru shell and abulk is the
bulk standard value. Hence, both the XRD and HAADF-STEM
analyses conrm the presence of surface tensile strain on
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Pd@Ru icosahedra, which is negligible on the Pd@Ru octa-
hedra. It is worth noting that the ligand effect would diminish
when the number of shell layers exceeds three, while the strain
effect has a long-distance impact, as reported in previous
studies.43–45 To further conrm this, the differential charge
density of the Pd@Ru slabs was calculated (Fig. S9†). Notably,
when the Ru shell consists of three or fewer layers, a signicant
electron transfer from Pd to Ru occurs, indicating a strong
interaction between the two metals. In contrast, when the Ru
shell exceeds four layers, no noticeable charge difference is
observed. These results collectively demonstrated that the main
difference between our Pd@Ru octahedra and Pd@Ru icosa-
hedra with about ve atomic layers lies in the strain effect,
making them ideal platforms to investigate the strain effect on
their catalytic properties.

To analyze the effects of lattice expansion on the surface
chemical states, X-ray photoelectron spectroscopy (XPS) was per-
formed. Both Ru 3d and Pd 3d spectra exhibit doublets, which are
deconvoluted into two asymmetric peaks.46,47Notably, the Pd 3d5/2
binding energies of the Pd@Ru icosahedra show a negative shi
(around 0.16 eV) compared to that of Pd@Ru octahedra (Fig. 2a–
d). In contrast, the Ru 3d5/2 binding energy of Pd@Ru icosahedra
shis toward a positive value (0.24 eV) compared to that of
Pd@Ru octahedra. The result can be attributed to the decreased
electron density at the Ru shell with the lattice expansion in
Pd@Ru icosahedra.48 Furthermore, the surface valence band
spectra reveal an upshi of the d-band center in the Pd@Ru
icosahedra, approximately 0.1 eV higher than that in the Pd@Ru
octahedra (Fig. 2e). Meanwhile, we also carried out the projected
density of states (PDOS) analysis to theoretically determine the d-
band center. This analysis was based on models of fcc-Ru(111)
with 2.5% strain and fcc-Ru(111) without strain, representing
the Pd@Ru icosahedral and Pd@Ru octahedral catalysts,
respectively. The result shows that the d-band center of the
Fig. 2 Characterization of electronic structures. High-resolution XPS spe
spectra of Pd 3d (c) and Ru 3d (d) in Pd@Ru icosahedra. (e) Valence ban
high-resolution XPS. (f) Calculated projected density of states (PDOS) of
vertical grey lines denote the position of d-band centers.

© 2025 The Author(s). Published by the Royal Society of Chemistry
strained Ru(111) surface presents an upward shi relative to the
unstrained Ru(111) surface (Fig. 2f). The upshied d-band center
may move more anti-bonding states above the Fermi level,
potentially decreasing the occupation of these states and facili-
tating stronger bonding with intermediates.49 These results
collectively demonstrate that the tensile strain on the Pd@Ru
icosahedral surface reduces the electron density and upshis the
d-band center, which may lead to stronger interaction with reac-
tion intermediates.

Electrocatalytic performance for alkaline HOR

We further evaluated the alkaline HOR performance of the as-
prepared Pd@Ru icosahedra and Pd@Ru octahedra by using
a rotating disk electrode (RDE) in H2-saturated 0.1 M KOH
electrolyte. Beforehand, we rst loaded Pd@Ru icosahedra and
Pd@Ru octahedra onto a Vulcan XC-72 carbon support to
obtain the carbon-supported catalysts before the measurements
(Fig. S10†). In addition, the commercial Pt/C and homemade
Ru/C catalysts (Fig. S11 and S12†) were selected as benchmark
catalysts. Fig. 3a shows the polarization curves of all catalysts
collected at a scan rate of 1 mV s−1 with a rotation speed of
1600 rpm. The fastest increase in the anodic current density of
the Pd@Ru icosahedra indicates the best HOR activity, which
signicantly outperforms that of Pd@Ru octahedra (Fig. S13†).
The extremely small anode current of Pd@Ru icosahedra in an
N2-saturated 0.1 M KOH electrolyte demonstrates that the HOR
activity stems from H2 oxidation, rather than from electric
double-layer charging (Fig. S14†). Besides, a sharp decline of
anode current density aer 0.2 V (vs. RHE) can be observed for
the Ru/C catalyst, while this phenomenon did not occur on
Pd@Ru icosahedra. Then the polarization curves at various
speeds ranging from 400 rpm to 2500 rpm were recorded
(Fig. 3b). As the rotation speed increases, the anode current
density increased due to the improved mass transportation.
ctra of Pd 3d (a) and Ru 3d (b) in Pd@Ru octahedra. High-resolution XPS
d spectra of Pd@Ru octahedra and Pd@Ru icosahedra as measured by
Ru surfaces for Pd@Ru octahedral and Pd@Ru icosahedral models. The

Chem. Sci., 2025, 16, 14468–14477 | 14471
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Fig. 3 Electrocatalytic alkaline hydrogen oxidation reaction (HOR) performance. (a) Polarization curves of Pd@Ru octahedra, Pd@Ru icosahedra,
and commercial Pt/C and Ru/C catalysts in H2-saturated 0.1 M KOH solution. Scan rate, 1 mV s−1. Rotation speed, 1600 rpm. (b) HOR polarization
curves of Pd@Ru icosahedra at different rotation speeds with a scan rate of 1 mV s−1. Inset shows the Koutecky–Levich plot at 50mV (vs. RHE). (c)
The HOR/HER Tafel plots of kinetic current density (jk). (d) Linear fitting curves at the micro-polarization region of the HOR/HER. Comparison of
specific activity (j0,ECSA) (e) and mass activity (jk,m) (f) at 50 mV. (g) Comparison of the jk,m of Pd@Ru icosahedra in this work with those of
representative alkaline HOR catalysts. (h) Stability tests at 0.1 V (vs. RHE) for different catalysts.
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According to the Koutecky–Levich equation, a linear relation-
ship between u−1/2 and the inverse of current density (j−1) at an
overpotential of 50 mV is tted, obtaining a slope of 4.52 cm2

mA−1 s−1/2. This suggests a two-electron reaction for the HOR
process, in accordance with the theoretical value of 4.87 cm2

mA−1 s−1/2.50

Next, we examined the Tafel plots from the kinetic current
densities (jk) as a function of the potential calculated according to
the Koutecky–Levich equation (Fig. 3c), indicating the highest
activity of Pd@Ru icosahedra. The exchange current density (jo) of
all catalysts was further calculated by the linear tting of micro-
polarization regions (Fig. 3d) and Butler–Volmer tting. The
Pd@Ru icosahedra possess a high geometric j0 of 2.24 mA cm−2,
which is the highest compared with that of Pd@Ru octahedra/C
(1.26 mA cm−2), Pt/C (0.80 mA cm−2), and Ru/C (0.70 mA cm−2)
(Table S3†). To conduct a quantitative comparison of the intrinsic
HOR activity of these catalysts, the specic activity (j0,ECSA) was
compared based on the electrochemical active surface area
(ECSA)-normalized j0 (Fig. S15†). As illustrated in Fig. 3e and
Table S4,† the HOR-specic activity of Pd@Ru icosahedra (0.41
mA cm−2 at 50 mV) is determined to be the best among all
catalysts. In particular, mass activity is a signicant technical
parameter in potential applications. We also normalized the HOR
activity to the Ru or PGM loadings on the RDE electrode, and
compared the mass activity (jk,m). Impressively, as shown in
Fig. 3f, the Pd@Ru icosahedra exhibit an unprecedented mass
activity of 2.52 A mgRu

−1 at an overpotential of 50 mV,
14472 | Chem. Sci., 2025, 16, 14468–14477
signicantly higher than those of Pd@Ru octahedra (0.90 A
mgRu

−1), the Pt/C catalyst (0.49 A mgRu
−1), and the Ru/C catalyst

(0.33 A mgRu
−1). Besides, the Pd@Ru icosahedra achieve the

highest mass activity of 865 mAmgPGM
−1. This high performance

surpasses that of the most advanced catalysts reported recently
(Fig. 3g and Table S5†). In addition, we noted that both j0,ECSA and
jk,m of Pd@Ru icosahedra are higher than that of Pd@Ru octa-
hedra, indicating that the tensile strain on Pd@Ru icosahedra
has a pivotal role in improving the HOR kinetics.

The catalytic stability is another important indicator to
determine its potential application. The durability of each
catalyst was evaluated by applying the potentiostatic method at
0.1 V vs. RHE in H2-saturated 0.1 M KOH at room temperature.
Fig. 3h shows that the Pd@Ru icosahedra exhibit negligible
decay in the current density (<11.2%) aer a continuous 8000 s
operation, suggesting their remarkable stability. In contrast, the
HOR activity of Pd@Ru octahedra and Pt/C reduced by 15.9%
and 39.2%, respectively, and Ru/C ceased to even function aer
4000 s due to oxidation. The morphology of the Pd@Ru icosa-
hedra aer the stability test was further investigated by TEM. As
depicted in Fig. S16,† Pd@Ru icosahedra maintain their
icosahedral morphology and uniform distribution on a carbon
support, consistent with their excellent stability.
Mechanistic understanding

The above results explicitly demonstrate that the tensile strain
on the surface of a Pd@Ru icosahedron is the key to its superior
© 2025 The Author(s). Published by the Royal Society of Chemistry
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HOR activity. We thus conduct DFT calculations to elucidate the
underlying mechanisms by which this tensile strain enhances
the catalytic activity. Initially, based on the structural parame-
ters from the above experiments, we constructed models for
Pd@Ru icosahedra, Pd@Ru octahedra, and Ru/C and Pt/C
catalysts, including fcc-Ru(111) with 2.5% strain, fcc-Ru(111)
without strain, and hcp-Ru(101) and fcc-Pt(111) slabs as the
models, respectively (Fig. 4a). Previous studies have shown that
the binding strengths of H* (HBE) and OH* (OHBE) are closely
correlated with HOR activity.25,51,52 Therefore, we rst calculated
the adsorption energies of these intermediates on the different
slabs. As can be seen from Fig. S17 and S18,† the Pd@Ru ico-
sahedra and Pd@Ru octahedra possess very similar DEH*

values, indicating that the HBE is not a suitable descriptor in
our system. In parallel with the theoretical calculations, we also
performed cyclic voltammetry (CV) scans to assess the HBE on
various catalysts. The CV results show that the hydrogen
adsorption peaks for Pd@Ru icosahedra and Pd@Ru octahedra
remain nearly identical (Fig. S19†), implying that the HBE of
both catalysts has almost no difference. Similarly, in the in situ
attenuated total reection surface-enhanced infrared absorp-
tion spectroscopy (ATR-SEIRAS) spectra, both catalysts exhibit
comparable Ru–H vibrations in the 2000–2130 cm−1 range
(Fig. S20†).53,54 These ndings indicate that the boosted HOR
kinetics is likely affected by other reactive intermediates such as
the OH* intermediate.55,56

As depicted in Fig. 4b and S21,† the OH* adsorption on
Pd@Ru icosahedra, Pd@Ru octahedra and Ru/C catalysts is
Fig. 4 Mechanistic insights. (a) Optimized structures. (b) The adsorp
commercial Pt/C and Ru/C catalysts. (c) CO stripping curves for differen
occurring on Pd@Ru icosahedral and octahedral surfaces at different pot
electronic difference and Bader analysis of Pd@Ru icosahedra. Yellow
accumulation. (f) The projected crystal orbital Hamilton population (–
octahedra (left) and Pd@Ru icosahedra (right). (g) Energetic trend of Pd@

© 2025 The Author(s). Published by the Royal Society of Chemistry
stronger than that on Pt/C, which is consistent with the intrinsic
oxyphilic nature of Ru, as reported in previous studies.57,58

Remarkably, the DEOH* for Pd@Ru icosahedra was calculated to
be −0.46 eV, more negative than the value for Pd@Ru octa-
hedra, evidencing the strengthened OH* adsorption. Moreover,
experimental CO-stripping tests conrm this trend, with the
OHBE order as follows: Pd@Ru icosahedra > Pd@Ru octahedra
> Ru/C > Pt/C (Fig. 4c). This trend aligns with the alkaline HOR
activity, suggesting that the adsorption of hydroxyl (OH*) on the
catalyst surface plays a dominant role in alkaline HOR. In situ
Raman spectroscopy further conrms the adsorption behavior
of the catalysts. As shown in Fig. 4d and S22,† a weak Ru–OH*

peak was detected at 802 cm−1 for Pd@Ru octahedra. In
contrast, an intensied Ru–OH* binding peak was found at 795
cm−1 for Pd@Ru icosahedra, indicating enhanced OH* binding
strength on the Pd@Ru icosahedra.59 Indeed, particularly in
alkaline media, previous studies imply that enhanced OHBE
will benet the Volmer step for alkaline HOR kinetics.56 The
strengthened OH* adsorption is primarily attributed to the
tensile strain on the Pd@Ru icosahedral surface. To further
explore the relationship between the tensile strain of Pd@Ru
icosahedra and its strong OH* adsorption energy, the d-orbital
projected density of states (PDOS) was investigated (Fig. S23†).
According to the d-band center theory, the position of the d-
band center can serve as an indicator of the adsorption
behavior of OH* intermediates.55,60 The results depicted that the
tensile strain on the Pd@Ru icosahedra upshis the d-band
center compared to that of Pd@Ru octahedra, Ru/C, and Pt/C.
tion energy of OH* on Pd@Ru octahedra, Pd@Ru icosahedra, and
t catalysts. Scan rate, 20 mV s−1. (d) In situ Raman spectra for the HOR
entials in H2-saturated 0.1 M KOH solution. (e) Side and top view of the
and blue counters represent the isosurfaces of electronic charge

pCOHP) for Ru–O interaction of the OH* intermediate on Pd@Ru
Ru octahedra and Pd@Ru icosahedra for the HOR.
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Such a trend is consistent with the surface valence band
photoemission spectra collected from various catalysts
(Fig. S24†). This upward shi reduces the occupied antibonding
orbitals and strengthens OH adsorption on the Pd@Ru icosa-
hedral surface. Additional evidence for the stronger OHBE of
Pd@Ru icosahedra is obtained through the differential charge
density (Fig. 4e and S25†), further highlighting the stronger
OH* adsorption that contributes to the improved HOR kinetics.
Moreover, compared to Pd@Ru octahedra, the strained Pd@Ru
icosahedra exhibit much stronger orbital hybridization with the
O 2p orbital of OH* (Fig. 4f). These ndings not only corrobo-
rate the trend in HOR activity for our model catalysts but also
provide insights into how tensile strain enhances the catalytic
properties of Pd@Ru icosahedra.

Furthermore, the energetic proles of the HOR pathway for
Pd@Ru icosahedra and Pd@Ru octahedra were obtained
(Fig. 4g, S26 and S27†). Further analysis of the Volmer step,
which involves the combination of reactive OH* and *H to
produce H2O, was conducted to identify the key rate-
determining step (Fig. S28†). Corresponding to the DFT
results for DGOH*, the reaction barrier for the water generation
process was found to be lower on the strained Pd@Ru icosa-
hedra. Specically, Pd@Ru icosahedra exhibit a signicantly
lower activation barrier (0.88 eV) compared to Pd@Ru octa-
hedra (1.02 eV). This reduced energy barrier on Pd@Ru icosa-
hedra contributes to its superior HOR activity, aligning with the
experimental observations. Taken together, we nally conclude
that the tensile strain of Pd@Ru icosahedra plays a pivotal role
in enhancing OHBE, thereby improving HOR kinetics in alka-
line environments.

Conclusions

In summary, we have synthesized strained Pd@Ru icosahedra
and unstrained Pd@Ru octahedra with similar sizes and
surface facets, which serve as well-shaped platforms for efficient
alkaline HOR. The strained Pd@Ru icosahedra deliver an
impressive mass activity of 2.5 A mgRu

−1 at 50 mV, realizing
a 2.8-fold enhancement compared to that of the almost
unstrained Pd@Ru octahedra toward the HOR. Remarkably,
such activity signicantly surpasses that of commercial Pt/C
and Ru/C catalysts. Furthermore, the Pd@Ru icosahedra
present 88.8% retention in current density aer 8000 s of the
durability test. Mechanistic investigations identify that tensile
strain on the Pd@Ru icosahedron surface enhances HOR
performance by upshiing the d-band center and strengthening
the OH* adsorption. This accounts for the higher alkaline HOR
activity of Pd@Ru icosahedra compared to Pd@Ru octahedra.
Overall, this work provides an in-depth understanding of the
strain effect in the hydrogen oxidation reaction and implies new
opportunities for the design of highly efficient electrocatalysts
by strain engineering.
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