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Bola-amphiphilic glycodendrimers for targeting
glial cells in the brain

Zhancun Bian, a,b Wenzheng Zhang, b,c Stefano Garofalo, d

Dinesh Dhumal, b Junyue Zheng, a Tom Roussel,b Erik Laurini, e

Christina Galanakou, b Clotilde Lauro, d Marc Maresca, e Yi Xia, c

Dandan Zhu, a Sabrina Pricl, f,g Xiaoxuan Liu, *a Cristina Limatola d,h and
Ling Peng *b

Targeting glial cells in the brain constitutes a formidable challenge due to the presence of the blood–

brain barrier (BBB) and the difficulty in achieving specific targeting. Intranasal (IN) administration offers a

promising solution to bypass the BBB for delivery directly to the brain, while nanotechnology-based deliv-

ery provides tailored targeting capabilities. Here, we report dendrimer-based nanosystems developed for

IN administration to target astrocytes and microglia, two types of glial cells that play important roles in

maintaining brain homeostasis. Specifically, we demonstrate that bola-amphiphilic glycodendrimers, Ia

and Ib, which bear glucose and mannose terminals, respectively, target astrocytes and microglia in the

mouse brain. These two glycodendrimers, composed of a hydrophobic bola-lipid in the middle con-

nected with two hydrophilic poly(amidoamine) dendrons, were effectively synthesized via a click reaction

using unprotected carbohydrate building units, and self-assembled into small and spherical nanoparticles

by virtue of their amphiphilicity. In a mouse model, both dendrimer nanoparticles successfully reached

the brain following IN administration, where the glucose-dendrimer Ia selectively targeted astrocytes and

the mannose-dendrimer Ib targeted microglia. These findings highlight the potential of glycodendrimer-

based nanosystems for precise targeting in the brain and offer a promising perspective for treating central

nervous system (CNS) diseases.

Introduction

Central nervous system (CNS) diseases pose significant thera-
peutic challenges due to the presence of the blood–brain

barrier (BBB), the complexity of brain pathologies and the
difficulty of delivering drugs effectively to the desired glial
cells in specific brain regions.1,2 Astrocytes and microglia are
two types of glial cells that play important roles in maintaining
brain homeostasis, and many CNS disorders are closely linked
to the dysfunction of these glial cells.3,4 Specifically, astrocytes
support neuronal function, regulate synaptic activity, and
maintain the integrity of the BBB,5–7 while microglia serve as
the brain’s primary immune cells, orchestrating inflammatory
responses and tissue repair.4,8 Targeting astrocytes and micro-
glia or modulating their activity presents a promising thera-
peutic approach, but remains a major challenge due to the
restrictive nature of the BBB and the lack of cell-specific target-
ing strategies.8–11

Intranasal (IN) administration has emerged as a non-inva-
sive and efficient strategy to bypass the BBB by delivering
therapeutics directly to the brain via the olfactory and trigem-
inal nerve pathways.12 This approach avoids systemic circula-
tion, enhances CNS targeting, and minimizes peripheral side
effects, making it particularly attractive for tackling CNS dis-
orders.13 To further improve the efficiency and specificity of IN
delivery, nanotechnology-based drug delivery systems have
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been developed for administration via the IN route.14–16

Nanoparticulate drug formulations have been shown to
improve drug stability, prolong drug residence time in the
nasal cavity and enhance drug penetration across the nasal
mucosa.14 Most importantly, nanoparticles decorated with tar-
geting ligands have enabled precise targeting and drug delivery
to specific regions and cells in the brain, further improving
therapeutic outcomes.14–16 For example, insulin-functionalized
nanoparticles leverage insulin receptor overexpression in hip-
pocampal neurons to achieve region-specific targeting and
delivery of protein drugs, raising therapeutic efficacy for neuro-
degenerative diseases.17 Also, nanoparticles functionalized
with glucose or mannose units have been investigated to
enhance specific delivery and targeting respectively to astro-
cytes via glucose transporter 1 (GLUT1)18,19 or activated micro-
glia via mannose receptors.20,21 Such specific targeting using
nanotechnology-based drug delivery thus provides new thera-
peutic options for treating CNS disorders.

Dendrimers are a special class of precision nanomaterials
that are highly valuable for nanotechnology-based delivery to
the CNS by virtue of their unique well-defined dendritic struc-

ture and cooperative multivalency confined within a nanoscale
3D architecture.22–24 In particular, amphiphilic dendrimers,
composed of distinct hydrophobic and hydrophilic entities,
are able to self-organize into nano-assemblies25–27 capable of
encapsulating and delivering various pharmaceutical agents,
including anticancer drugs,28–30 nucleic acid therapeutics31,32

and bioimaging agents.33–35 Specifically, bola-amphiphilic
dendrimers consist of two hydrophilic dendrons connected by
a hydrophobic “bola-lipid” core scaffold.31,36–38 This design
was inspired by the bola-amphiphiles found in extremophile
archaea, which possess a unique bola-lipid monolayer mem-
brane structure and exhibit robust tolerance to extreme con-
ditions such as high temperature, acidity, salinity, etc.39 All
these features have been successfully harnessed for robust and
efficient drug delivery.31,36–38

We have recently developed bola-amphiphilic glycodendri-
mers Ia and Ib (Fig. 1A) functionalized with glucose and
mannose terminals to target astrocytes and microglia, respect-
ively.40 The multiple carbohydrate units on the dendrimer
surface enhance binding affinity and selectivity through the
multivalent cooperative glycoside cluster effect, a mechanism

Fig. 1 (A) Bola-amphiphilic glycodendrimers, Ia and Ib, bearing glucose- and mannose-terminals for specifically targeting astrocytes and microglia,
respectively, in the brain. (B) Synthetic strategies for the bola-amphiphilic dendrimers Ia and Ib using protected carbohydrate building units in a pre-
vious study (left) and unprotected carbohydrate units in this study (right).
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observed in the interaction between glycans and glycoproteins
in nature.41,42 Additionally, the “bola-lipid” chain in Ia and Ib
is shorter than the membrane bilayer, preventing their poten-
tial anchoring to the cell membrane. Here, we extended these
findings to an in vivo mouse model to evaluate the ability of
these two glycodendrimers to reach and selectively target glial
cells following IN administration.

Notably, we also introduced an optimized synthetic route
for Ia and Ib to enhance efficiency and yield. Our previous
method involved using protected carbohydrates that carry
azido functionalities for conjugation with the alkynyl-bearing
dendrimer II via a click reaction (Fig. 1B, left). The resulting
dendrimers required a tedious and challenging purification
process, along with the subsequent removal of the protecting
groups. This made the synthesis particularly time-consuming
and labor-intensive, as well as compromised product yield. To
overcome these drawbacks, we elaborated a new and more
efficient synthesis route using unprotected carbohydrate units,
which significantly simplified the purification procedure and
improved overall yields (Fig. 1B, right). We present herein a
novel synthetic approach for preparing the bola-amphiphilic
glycodendrimers Ia and Ib and demonstrate their effective tar-
geting of astrocytes and microglia, respectively, in the mouse
brain following IN administration. This study highlights the
promise of glycodendrimers as tools for the precision targeting
of glial cells, offering a novel strategy to modulate glial cell
activity for treating CNS disorders.

Results and discussion
Reliable and simplified synthesis of glycodendrimers

The synthesis of both Ia and Ib started with the alkyne-termi-
nated dendrimer II, the precursor for click chemistry conju-
gation (Fig. 1B). We previously prepared II by condensing the
carboxylic acid-terminated dendrimer III with propargylamine
in DMF using EDCI and HOBt, along with molecular sieves as
a drying agent (Fig. 2).40 However, that approach produced
inconsistent yields, ranging from 0 to 81%. To address this
issue, we added DIPEA as an auxiliary base to activate the car-
boxylic acid terminals for reaction with EDCI, while also neu-
tralizing the generated hydrogen chloride to promote the reac-
tion. To further optimize the process, we replaced the high-
boiling-point solvent DMF with THF as the solvent, thereby
avoiding the time-intensive preparation of anhydrous DMF
and its removal during work-up. Collectively, these adjust-
ments rendered the coupling reaction particularly efficient,
consistently affording the alkyne-terminated dendrimer II in
stable yields exceeding 75% even without the use of molecular
sieves. This greatly simplified the synthesis and purification
processes.

We then conjugated the alkyne-terminated dendrimer II
with unprotected carbohydrate derivatives bearing azido
groups via click chemistry to obtain glycodendrimers Ia and
Ib, respectively (Fig. 2). The click reaction between II and a pro-
ceeded efficiently in the presence of CuSO4·5H2O and sodium

Fig. 2 Synthetic methods for the alkyne-terminated bola-amphiphilic dendrimer (II) and bola-amphiphilic glycodendrimers Ia and Ib.
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ascorbate, despite challenges associated with multi-site reac-
tions and steric hindrance of multiple glucose units at the
terminals. In addition, Ia was easily and conveniently isolated
and purified by employing Chelex® resin to chelate and
remove the copper ions, followed by dialysis and Sephadex
chromatography to eliminate other impurities from the crude
product. Subsequent lyophilization gave the final dendrimer Ia
as a white solid with an excellent yield exceeding 94%.

Compared to the previous method using the protected
glucose derivative a′ (Fig. 3, right), the new approach with the
unprotected glucose derivative a (Fig. 2, left and Fig. 3, left)
not only reduced the synthesis time and simplified the purifi-
cation process but also achieved higher yields. Using the same
strategy, we also successfully prepared the mannose-dendrimer
Ib as a white solid with an outstanding yield of 91% (Fig. 2,
right). The structural integrity and purity of all synthesized
dendrimers were confirmed using 1H-, 13C-, and 19F-NMR
spectral analyses, as well as high-resolution mass spectrometry
(HRMS) (Fig. S1–S3).

Self-assembly of glycodendrimers into small, uniform and
stable nanoparticles

With the synthesized dendrimers Ia and Ib in hand, we further
studied their self-assembly into nanoparticles in water. Owing
to their amphiphilicity, both Ia and Ib spontaneously formed
small nanoparticles (termed Ia@ and Ib@, respectively) in
water, as demonstrated by dynamic light scattering (DLS) ana-
lysis (Fig. 4A and B). Further transmission electron microscopy
(TEM) images of Ia@ and Ib@ (Fig. 4C and D) confirmed the
presence of small, uniform, spherical particles measuring 25 ±
3 nm for Ia@ and 20 ± 3 nm for Ib@, respectively, consistent
with the typical characteristics of nanomicelles. In addition,

fluorescence spectral analysis revealed similar critical micelle
concentrations (CMC) of 34 µM for Ia@ and 30 µM for Ib@
(Fig. 4E and F). It is also worth noting that both Ia@ and Ib@
have slightly positive zeta potentials, +12 mV and +11 mV,
respectively (Fig. 4G and H), which can help prevent nano-
particle aggregation and may also contribute to minimizing
potential toxicity arising from possible interactions with
serum proteins or cell membranes, thereby supporting their
favorable safety profile reported previously.40

We next employed isothermal titration calorimetry (ITC) to
elucidate the thermodynamic parameters governing the self-
assembly and micellization of dendrimers Ia and Ib following
a well-validated procedure.33,43 The demicellization thermo-
grams for both dendrimers exhibited comparable profiles,
indicating similar micellization behaviors (Fig. 4I and J). For
Ia, the CMC was determined to be 21 μM, while Ib exhibited a
slightly lower CMC of 16 μM. These values are consistent with
the data obtained from the fluorescence assay. The standard
Gibbs free energy of micellization (ΔGmic) was calculated using
the following relationship:

ΔGmic ¼ RT lnðCMC′Þ
where R is the universal gas constant (1.987 cal mol−1 K−1), T
is the absolute temperature in kelvin and CMC′ is the critical
micellization concentration expressed in molar units. The cal-
culated ΔGmic values were −8.78 kcal mol−1 for Ia@ and
−8.96 kcal mol−1 for Ib@, indicating a spontaneous micelliza-
tion process for both bola-amphiphilic dendrimers. The
enthalpy change of micellization (ΔHmic) was obtained directly
from the ITC measurements, yielding values of −5.31 kcal
mol−1 for Ia@ and −4.90 kcal mol−1 for Ib@, indicative of an
exothermic process. The entropy change (TΔSmic) associated

Fig. 3 Synthesis of the bola-amphiphilic glucose-dendrimer (Ia) using an unprotected carbohydrate derivative (left) and a protected carbohydrate
unit (right).
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Fig. 4 Self-assembly of the bola-amphiphilic glycodendrimers Ia and Ib into small and uniform nanoparticles, Ia@ and Ib@, respectively. Dynamic
light scattering (DLS) analysis of nanoparticles (A) Ia@ and (B) Ib@, respectively, showing their size and size distribution; transmission electron
microscopy (TEM) images of (C) Ia@ and (D) Ib@ (scale bar: 100 nm), demonstrating their uniform small nanoparticle morphology; critical micelle
concentration measured using fluorescence spectral analysis with Nile red for (E) Ia@ and (F) Ib@, respectively. Zeta-potential analysis of (G) Ia@ and
(H) Ib@, respectively. Representative ITC profiles for the demicellization process of (I) Ia@ and (J) Ib@ in water. The dotted lines represent the data
fitting with a sigmoidal function, and the insets display the corresponding ITC raw thermograms. Zoomed snapshots from the equilibrated MD tra-
jectory of (K) Ia@ and (L) Ib@.
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with micellization was derived from the Gibbs–Helmholtz
equation:

TΔSmic ¼ ΔHmic � ΔGmic:

Consequently, the TΔSmic values were calculated to be
3.47 kcal mol−1 for Ia@ and 4.06 kcal mol−1 for Ib@, indica-
tive of an increase in system entropy upon micellization. This
characteristic is due to the release of structured water mole-
cules from the hydration shells of the hydrophobic tails as the
dendrimers aggregate into micelles. Such thermodynamic
parameters suggest a combined enthalpic- and entropic-driven
micellization. The enthalpy change, arising from favorable
interactions between the hydrophilic head groups and the
solvent, as well as cooperative packing within the poly(amido-
amine) dendrons, plays a key role in micelle stabilization.
Simultaneously, the positive entropy values support the notion
of increasing disorder associated with water molecule displace-
ment, rendering the system thermodynamically favorable. This
combination of enthalpic and entropic factors underscores the
efficient self-assembly of both dendrimers into stable micellar
structures. In summary, ITC analysis demonstrated that both
glucose and mannose dendrimers undergo spontaneous,
exothermic micellization with comparable thermodynamic
parameters and mechanisms driven by a combination of
enthalpic stabilization and entropic favorability.

We also examined the nanomicellar formation of both den-
drimers using atomistic molecular dynamics (MD) simulations
by employing a robust computational protocol.44–46 Starting
from a randomized distribution of 22 molecules in solution,
the MD simulations resulted in stable micellar nanoassem-
blies, as depicted in Fig. 4K and L. The average micelle gyra-
tion radii (Rg) were determined to be approximately 6.8 ±
0.3 nm for Ia@ and 6.6 ± 0.2 nm for Ib@ (Fig. S4, in the SI),
demonstrating high consistency between the two systems and
aligning well with the data obtained with the experimental
techniques DLS and TEM. The similarity in Rg values suggests
that both micelles achieve comparable structural stability and
compaction in aqueous environments. A detailed confor-
mational analysis of the micellar architectures, coupled with
radial distribution function (RDF) analysis, revealed the spatial
organization of the terminal carbohydrate moieties and the
hydrophobic core components (Fig. S4, in the SI). Both Ia@
and Ib@ feature terminal carbohydrate residues that are pre-
dominantly exposed on the micellar surface. This structural
arrangement ensures their accessibility and the ability to inter-
act effectively with biological targets. The presentation of
glucose or mannose residues at the micellar periphery sup-
ports their potential recognition by specific biomolecular
counterparts, reinforcing their potential functional roles in tar-
geted interactions. Moreover, the same RDF analysis revealed
that the hydrophobic regions of both micelles remain primar-
ily concentrated toward the micellar core, effectively shielded
from the solvent, as shown by the corresponding RDFs.
Despite minor differences in the orientation of the terminal
moieties, the micellar structures of Ia@ and Ib@ remain
highly comparable, achieving an optimal surface presentation

of their functional groups, which is critical for their respective
biological interactions. In short, ITC and MD simulations
together confirm that both systems exhibit robust self-assem-
bly behavior and form stable micellar architectures in
solution.

Favorable safety profile and biocompatibility

For delivery to the brain via IN administration, the safety of
nanoparticles is an important consideration. As we already
assessed the cytotoxicity of Ia@ and Ib@ to human embryonic
kidney cells (HEK293), mouse fibroblast cells (L929), and
Madin–Darby canine kidney cells (MDCK) in our previous
study,40 we therefore focused, in this investigation, on evaluat-
ing their cytotoxicity to primary human nasal epithelial cells
(hNEpCs), microglial BV2 cells, astrocyte C8-D1A cells, mouse
brain endothelial bEnd.3 cells and neurons derived from N2a
cells using the MTT assay (Fig. 5A). Both Ia@ and Ib@ showed
no significant cytotoxicity to all tested cells, even at concen-
trations up to 100 μM, highlighting excellent in vitro
biocompatibility.

We further assessed the safety profiles of Ia@ and Ib@ in
healthy mice upon intranasal administration, through analysis
of inflammatory responses, blood biochemistry, and histo-
pathological changes in major organs. As shown in Fig. 5B, no
inflammation was observed in healthy mice following treat-
ment with Ia@ and Ib@, compared to the negative control
group treated with PBS buffer. In contrast, mice administered
with lipopolysaccharide (LPS) as a positive control exhibited
markedly elevated levels of proinflammatory cytokines IL-1β,
IL-6, TNF-α, and IFN-γ. Moreover, the kidney function-related
parameters (urea and creatinine), liver enzymes (alanine amino-
transferase (ALT) and aspartate aminotransferase (AST)), and
blood lipid parameters (triacylglycerol (TG) and total cholesterol
(TCHO)) remained within normal ranges following intranasal
administration of Ia@ and Ib@ (Fig. 5C), indicating the absence
of hepatotoxicity or nephrotoxicity. Also, histological analysis
using hematoxylin and eosin (H&E) staining revealed a normal
tissue architecture and cellular morphology in the major organs
of mice treated with Ia@ and Ib@, suggesting no discernible
pathological abnormalities compared to the PBS-treated control
group (Fig. 5D). Collectively, these findings indicate that both
Ia@ and Ib@ exhibit a favorable safety profile, highlighting
their potential as candidates for subsequent in vivo studies tar-
geting astrocytes and microglia in the brain.

Effective uptake in the brain and specific targeting of glial
cells

As we already demonstrated that Ia and Ib target primary cell
cultures of astrocytes and microglia, respectively, in our pre-
vious in vitro study,40 we concentrated, in this investigation, on
the examination of these two dendrimers to reach the brain
and to specifically target astrocytes and microglia in animals
using a healthy mouse as the animal model.

To facilitate the tracking of brain targeting and uptake, we
loaded the nanomicelles Ia@ and Ib@ formed by the two den-
drimers with the fluorescent dye Cy3, hereafter referred to as
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Cy3/Ia@ and Cy3/Ib@, respectively. Notably, both Cy3/Ia@ and
Cy3/Ib@ showed similar size and surface charges to their
corresponding non-labelled counterparts Ia@ and Ib@ (Fig. S5

in the SI), highlighting their relevance to mimic Ia@ and Ib@
for use in studying uptake into the brain as well as specific tar-
geting towards astrocytes and microglia.

Fig. 5 Safety evaluation of Ia@ and Ib@. (A) In vitro toxicity evaluation of Ia@ and Ib@ to primary human nasal epithelial cells (hNEpCs), microglial
BV2 cells, astrocyte C8-D1A cells, mouse brain endothelial bEnd.3 cells and neurons derived from N2a cells in a dendrimer concentration range of 0
to 100 μM at 24 h post-treatment using the MTT assay. (B, C and D) In vivo toxicity evaluation of Ia@ and Ib@ in healthy mice (n = 3 for each group
of mice). (B) Quantification of the major inflammatory cytokines in serum IL-1β, IL-6, TNF-α, and INF-γ. (C) Liver and kidney function as well as blood
lipid by quantifying the levels of biomarkers ALT, AST, UREA, CREA, TCHO and TG in serum. *p ≤ 0.001, ***p ≤ 0.001; significance was determined
using one-way ANOVA (mean ± SD, n = 3). (D) Histological analysis of tissues from major organs. Mice were intranasally administered with PBS, Ia@
and Ib@. Scale bar: 100 μm.
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Fig. 6 Intranasally administered dendrimer nanoparticles reached the mouse brain. (A) Representative immunofluorescence images showing the
astrocyte marker Glial Fibrillary Acidic Protein (GFAP; red) and Cy3/Ia@ (green) (upper panel), and the microglial marker ionized calcium binding
adaptor molecule 1 (Iba1; red) and Cy3/Ib@ (green) (lower panel), with Hoechst (blue) to label nuclei, in the transversal section of the C57BL/
6 mouse brain 24 h after intranasal administration of Cy3/Ia@ and Cy3/Ib@, respectively. Scale bar: 100 μm. (B) Percentage of Cy3/Ia@+ GFAP cells
in the olfactory bulb, striatum and hippocampus 24 h after intranasal administration of Cy3/Ia@ (n = 5 mice). Right: Representative immunofluores-
cence of GFAP (red) or Iba1 (cyan) and Cy3/Ia@ (green) in the brain of C57BL/6 mice (scale bar: 40 μm). (C) Percentage of Cy3/Ib@+ Iba1 cells (red)
in the olfactory bulb, striatum and hippocampus 24 h after intranasal administration of Cy3/Ib@ (n = 5 mice). Right: Representative immunofluores-
cence of Iba1 (red) or GFAP cells (cyan) and Cy3/Ib@ (green) in the brain of C57BL/6 mice (scale bar: 20 μm). The mouse image was created with
BioRender.
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We then administered Cy3/Ia@ and Cy3/Ib@, respectively,
to C57BL/6 mice via the IN route to track uptake into the
mouse brain (Fig. 6). Fluorescence signals from Cy3 were
observed in the olfactory bulb, hippocampus and striatum of
the mice treated with either Cy3/Ia@ or Cy3/Ib@. It is worth
mentioning that the olfactory bulb showed the highest
number of fluorescent cells. This can be easily understandable
as the olfactory bulb is the first part of the brain to encounter
the agent when using IN administration (Fig. 6A).

Further immunohistochemistry analysis revealed co-localiz-
ation of Cy3/Ia@ with astrocytes (Fig. 6B) and Cy3/Ib@ with
microglia (Fig. 6C). No co-localization of Cy3/Ia@ with micro-
glia (Fig. 6B) or Cy3/Ib@ with astrocytes (Fig. 6C) was
observed. These findings demonstrate the effective and
specific targeting of astrocytes by Cy3/Ia@ and microglia by
Cy3/Ib@ within the mouse brain following IN administration.
It is noted that single cell analyses revealed a macrophage-
specific expression of the mannose receptor, with minor
expression in a subset of immature microglia.47,48 Therefore,
the Iba1+ cells co-labeled with Cy3/Ib@ might also result from
the phagocytic activity of microglial cells and/or perivascular
macrophage labeling.

Conclusion

In this study, we successfully prepared bola-amphiphilic glyco-
dendrimers bearing glucose and mannose terminals using a
simplified synthetic route and evaluated their ability to target
specific glial cells in the brain via IN administration in a mouse
model. The novel synthetic strategy, employing unprotected
carbohydrate derivatives, provides a more efficient and reliable
method for synthesizing glycodendrimers. This new approach
reduces the number of synthesis steps and purification pro-
cedures while maintaining the structural integrity and purity, as
well as achieving higher yields. Further biological evaluation
demonstrated that both the glucose dendrimer Ia and the
mannose dendrimer Ib exhibited excellent brain targeting
ability, with Ia specifically homing in on astrocytes and Ib on
microglia. Given the emerging therapeutic potential of modulat-
ing glial cell activity for treating neurological disorders, glyco-
dendrimers Ia and Ib therefore hold great promise for trans-
lation into drug delivery systems to treat CNS diseases via the
simple and non-invasive IN route. Our ongoing research is
focused on advancing further along this promising avenue.
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