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Analyzing and quantifying symmetry breaking of
anisotropic shear polaritons in monoclinic crystal
slabs
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Anisotropic phonon polaritons in materials with high symmetry including hexagonal, trigonal and ortho-

rhombic crystals, enable nanoscale light confinement and manipulation, crucial for nanophotonic on-

chip technologies. With reduced material symmetry, monoclinic crystals have been found to endow more

intriguing polaritonic phenomena, including axial dispersion and asymmetric propagation patterns,

offering new freedoms of nanoscale field manipulations. However, such symmetry-broken anisotropic

phonon polaritons, stemming from the intrinsic broken mirror symmetry of dispersion, so far have been

observed only in bulk natural materials. Here, we unveil shear polaritons in monoclinic crystal slabs with

finite thickness through dispersion analysis and field simulation, and quantify the associated symmetry

breaking by introducing a new shear factor based on the k-space integral of the rate of energy dissipation.

We demonstrate axial dispersion, mirror symmetry-broken dispersion and asymmetric propagation of

shear polaritons. By identifying surface-and volume-confined shear polaritons, we reveal their opposite

intensity distribution. In addition, the thickness of monoclinic crystal slab can induce the asymmetry tran-

sition, which the surface shear polaritons dominate. Our findings expand the shear polariton platform and

provide valuable strategies for manipulating light at the nanoscale through symmetry breaking.

1. Introduction

Breaking symmetries is fundamental for the precise control
over light propagation.1,2 A landmark example is the hyper-
bolic optical response observed in certain polar crystals, where
strong phonon-induced anisotropy leads to opposite signs in
the permittivity components along different principal axes.3–7

When interacting with light, the lattice vibrations in such
polar materials strongly couple with infrared light, yielding
hyperbolic phonon polaritons with hyperbolic iso-frequency
contours (IFCs) in momentum space.8,9 Hyperbolic phonon
polaritons exhibit directional, raylike propagation, extreme
field confinement and ultralow loss,10–15 thus enhancing
light–matter interactions. In recent years, they have attracted
wide attention in subdiffractional focusing and imaging,
infrared sensing, and superior light manipulation at the
nanoscale.16–19

A further degree of asymmetry emerges in monoclinic crys-
tals, which not only exhibit three principal axes with distinct
lattice constants but also support non-orthogonal microscopic
dipolar polarizability in one mirror plane. For example, the
monoclinic angle is 103.7° for beta-phase gallium oxide
(bGO)20–22 and 92.1° for cadmium tungstate (CdWO4).

23,24

Compared with hexagonal, trigonal and orthorhombic crystals,
these lower-symmetry crystals (LSC) support a new family of
anisotropic phonon polariton, so-called shear polaritons, fea-
tured with mirror symmetry breaking. The resulting shear
polaritons are characterized by microscopic shear phenomena,
such as rotation of their principal axis dependent on fre-
quency, i.e. axial dispersion.25,26 In addition, the asymmetric
loss distribution of shear polaritons leads to enhanced propa-
gation directionality, with energy preferentially guided along
specific orientations.27 The exotic light propagation of shear
polaritons has brought the light control in nano-optics to a
new degree. Recently, the investigation of shear polaritons in
natural low symmetry materials has been extended into layered
crystals,28–31 promoting the development of advanced optical
devices in subwavelength field. However, the analysis of the
symmetry breaking of anisotropic shear polaritons in monocli-
nic crystal slab has not yet been carried out.

In addition, quantifying the symmetry breaking of shear
polaritons is essential for analyzing their intrinsic properties
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and understanding the microscopic shear phenomena. To
date, such effects have mainly been characterized through loss
redistribution of shear polaritons, typically using physical
quantities such as damping factor21 or reflection coeffi-
cients.27 However, this quantifying method only evaluates sym-
metry breaking along the arm of the hyperbolic branches,
ignoring the contribution from other regions in momentum
space. For the related light–matter interactions such as Purcell
factor32,33 and near-field thermal radiation,34–37 the in-plane
momentum space integrals are significant to understand the
exotic physical phenomena induced by the broken symmetry.

Here, we introduce and explore the anisotropic phonon
polaritons in low symmetry monoclinic crystal slabs with finite
thickness. We theoretically derive the analytical dispersion
relations of the thin film, based on which the real and imagin-
ary parts of in-plane wavevector are calculated to directly
understand the mechanisms of propagation loss redistribution
of shear polaritons in monoclinic crystal slab. By reducing the
thickness, the polaritonic coupling makes the surface shear
polaritons split into symmetric and antisymmetric branches.
We find that the surface-confined and volume-confined shear
mode branches respectively exhibit clockwise and counter-
clockwise redistribution. Moreover, by integrating the rate of
energy dissipation, we provide a novel global shear factor to
quantify the symmetry breaking of anisotropic phonon polari-
tons in monoclinic crystal slab, offering an in-depth character-
ization of shear polaritons. Notably, we demonstrate that
varying the slab thickness can drive an asymmetry transition,
revealing a thickness-dependent control over polaritonic sym-
metry breaking. Our work offers valuable insights into the
light-guiding at deeply sub-wavelength scales.

2. Theoretical aspects

The monoclinic crystal exhibits multiple non-orthogonal
dipolar excitations of atomic resonance within lattice planes
due to low crystal symmetry. The non-orthogonality of the axes
(γ in the Fig. 1a, the angle between a and c axes of the monocli-
nic plane) results in non-diagonal permittivity tensor,20,23 with
four independent components, written in Cartesian coordi-
nates as:

ε ¼
εxx εxy 0
εyx εyy 0
0 0 εzz

0
@

1
A ð1Þ

where εxy = εyx. Here, the a and b axes of the monoclinic plane
are along the x and z axes, respectively. The y axis is selected as
the direction that forms a right-handed coordinate with x and
z axes. Generally speaking, if there is no loss, the real-valued
symmetric permittivity matrix can be diagonalized to a diag-
onal matrix via an orthonormal matrix. The corresponding dis-
persion is mirror symmetric with respect to the principal axes.
However, the complex-valued ε cannot be diagonalized in real
space using unitary rotation matrices. This intrinsic non-diag-
onalizability leads to asymmetric polariton dispersion and

propagation, manifesting a fundamental form of symmetry
breaking. To demonstrate this phenomenon, we focus on bGO,
a representative monoclinic crystal with a relatively large
monoclinic angle (γ = 103.7°) that enhances the shear effect
(the permittivity tensor of bGO crystal can be seen in SI1).

To better understand the shear properties in low-symmetry
crystal slab structure, we apply Maxwell’s equations to analyze
their dispersion. The analytic expression of IFCs of hyperbolic
shear polaritons, which gives the relation between the in-plane
momentum kρ and its angle ϕ with respect to the kx axis, is
given by

kρ ¼ ρ

d
arctan

εdρ

εzz

� �
þ arctan

εtρ

εzz

� �
þ lπ

� �
ð2Þ

where εd(t) represents the permittivity of superstrate (substrate).
l denotes the order of different polaritonic modes, where l = 0
represents the fundamental mode and l = 1, 2, 3… denotes

higher-order mode. And ρ ¼
ffiffiffiffiffiffiffiffiffiffi
� εzz

εϕ

r
, where εϕ is expressed as

(see the details in SI2)

εϕ ¼ εxx cos2 ϕþ εyy sin2 ϕþ 2εxycos ϕ sin ϕ ð3Þ
Using eqn (2), the IFCs at different frequencies are calcu-

lated and depicted in Fig. 1c–f. It is evident that the IFCs are
asymmetric due to the presence of non-diagonal component,
εxy. To better analyze the system, we diagonalize the real part
of the permittivity tensor of bGO, switching to a frequency-
dependent coordinate system [mnz], by rotating the monoclinic
plane by the frequency-dependent angle θ(ω):

θ ωð Þ ¼ 1
2
artan

2Re εxy
� �

Re εxxð Þ � Re εyy
� �

 !
ð4Þ

where positive (negative) value represents counterclockwise
(clockwise) rotation, as shown in Fig. 1b. In frequency-depen-
dent mnz coordinate system, a purely imaginary off-diagonal
permittivity component is still retained, which is associated
with shear phenomena. The rotated permittivity tensor is
included in SI. The diagonalization for the real part results in
two effective in-plane principal axes, O1 (m direction) and O2

(n direction), as indicated by the blue arrows in Fig. 1c–f.
These two axes are mutually orthogonal and divide the in-
plane momentum space into four quadrants, as highlighted by
the shading regions in Fig. 1c. The angle θ represents that
between the axis O1 and the x-axis. The frequency dispersion
of the major axes is called axial dispersion.

3. Results and discussion
3.1 The realization of shear polaritons in bGO slab

For higher-symmetry crystal, such as hexagonal (hexagonal
boron nitride, h-BN38), trigonal (calcite39), orthorhombic
(alpha-phase molybdenum trioxide, α-MoO3

40,41) lattices, the
IFCs are mirror symmetry with respect to the principal axes
even though the loss is retained. In contrast, the IFCs mirror
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symmetry with respect to the effective optic axes is broken for
the shear polaritons in LSC. To further reveal the shear-
induced asymmetry, we calculate the imaginary part of Fresnel
coefficient, i.e., Im(rpp) in monoclinic crystal slab and compare

with that in conventional high-symmetry material, such as
α-MoO3 slab whose [100], [001], and [010] crystalline directions
are parallel to the x-, y-, and z-axes, respectively, as shown in
Fig. 2. The k-space reflection coefficient in monoclinic crystal

Fig. 1 Anisotropic shear polaritons in monoclinic bGO crystal slab with a finite thickness. (a) Schematic of LSC slab with the thickness of d. Two
crystalline directions in x–y plane, i.e., a axis and c axis, are non-orthogonal. (b) Axial dispersion, i.e., frequency-dependence of effective optical prin-
cipal axis orientation. (c)–(f ) The distribution of the IFCs in monument space at different frequencies. The thickness of monoclinic bGO crystal slab
in (b)–(f ) is 100 nm.

Fig. 2 The analysis of the loss redistribution and asymmetry of shear polaritons in bGO slab. The dispersion of hyperbolic shear polariton in (a) bGO
slab and (b) α-MoO3 slab. The reciprocal space map is characterized by the imaginary part of reflection coefficient, calculated by Transfer Matrix
Method, TMM (see details in SI4). The blue dashed curves denote the IFCs based on complex-momentum analysis. (c) and (d) Real part and imagin-
ary part of complex kρ of IFCs varying with the azimuthal angle ϕ. The orange vertical lines represent azimuthal angle parallel to the effective optic
axis O2 in (a) and the [001] crystalline direction in (b). The thicknesses of bGO slab and α-MoO3 slab are 100 nm and 400 nm, respectively. The fre-
quencies are 718 cm−1 and 960 cm−1, respectively.
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slab exhibits hyperbolic branches featured with asymmetric
loss distribution while that in α-MoO3 slab is mirror-sym-
metric. The loss increases in one branch while decreases in
the other branch, resulting in asymmetric loss characteristics.
This asymmetric distribution makes a significant effect on the
polaritonic propagation in the real space, which will be dis-
cussed later.

In addition, to reveal the origination of propagation loss
redistribution of shear polaritons, we perform the complex-
momentum analysis and plot the real part and imaginary part
of kρ of IFCs varying with the azimuthal angle, as shown in
Fig. 2a and 2c. For hyperbolic polaritons in α-MoO3, the IFCs
is mirror-symmetric (Fig. 2b), also reflecting in Fig. 2d where
both the real part and imaginary part of kρ is symmetric across
the [001] crystalline direction (ϕ = 90°). In contrast, the IFCs of
shear polaritons is asymmetric with respect to the effective
optic axis (blue curve in Fig. 2a). The corresponding asym-
metric real part and imaginary part distribution manifests the
mirror symmetry breaking and the shear phenomenon.
Further, it can be seen more directly that the imaginary part of
wavevector of the hyperbolic branch in quadrant R1 (the region
indicated by red arrows) is larger, making the propagation
length less than that of the other branch, thus yielding a more
directional propagation.

To directly visualize the effect of this lower symmetry on
shear propagation in real space, we perform full-wave simu-
lations to examine dipole-launched polaritonic modes (see
details in SI5). The frequency is fixed at 718 cm−1. The shear
asymmetry of hyperbolic shear polaritons in real-space propa-
gation is clear in Fig. 3a–d, where the tilted wavefronts propa-
gating at an angle inclined relative to the optic axis. Moreover,
the corresponding fast Fourier Transforms (FFT) shown in
Fig. 3e–h indicate the redistribution of intensity in momentum
space.

Based on eqn (2), thickness of the slab is a significant para-
meter for tuning the dispersion contours and the wavevector
range of excited hyperbolic shear polaritons. For the case of
50 nm (Fig. 3a and e), the fundamental mode dominates the
shear effect which breaks the symmetry of the polariton propa-
gation. With increased thickness, the excited wavevector range
of hyperbolic shear polaritons is moved into lower momentum
space, so that higher-order mode begins to play a role in indu-
cing the asymmetric propagation of polaritons. Note that the
fundamental mode shows a clockwise redistribution of inten-
sity while the l = 1 mode manifests as a counterclockwise
intensity redistribution. Correspondingly and in real-space
waveforms, the fundamental and high-order modes show
counterclockwise and clockwise intensity redistribution,
respectively. Yet higher-order mode leads to a slightly less pro-
minent effect when compared to apparent loss redistribution
arising from the fundamental mode, which can be seen from
the real-space and Fourier space maps. The asymmetric distri-
bution makes the hyperbolic shear polaritons excited exclu-
sively along one dispersion branch, further enhancing their
directionality.

3.2 Distinguishing shear polaritons in bGO slab

Fig. 3a–d exhibit the hyperbolic propagation of shear polari-
tons in monoclinic crystal slab, however, there are two hyper-
bolic wavefronts centered along two effective optic axes,
respectively. Namely, along the hyperbolic wave asymptotes,
the real space is divided into four regions, among which fun-
damental mode determines the hyperbolic propagation in left
and right regions and the higher-order modes dominate in
upper and bottom regions. It is crucial to distinguish the type
of fundamental and higher-order modes excited in monoclinic
crystal slab. Note that there are two types hyperbolic
polaritons.39,42 One is surface-confined hyperbolic polaritons

Fig. 3 The asymmetric directional propagation of hyperbolic shear polaritons in bGO slab. (a)–(d) Numerical field distribution, that is, real part of
Ez, (Re(Ez)), of the dipole-launched polaritons above the surface at ω = 718 cm−1. (e)–(h) The corresponding fast Fourier transform (FFT). The red and
while dashed curves represent analytical dispersion of the fundamental and higher-order modes, respectively.
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(s-HPs) featured with exponential decaying along the direction
normal to interface on both sides. The other is volume-con-
fined hyperbolic polaritons (v-HPs) which directionally propa-
gate inside low-loss crystals. The latter, in thin films, is also in
the form of waveguide mode. As marked in Fig. 4a, four
specific points-corresponding to l = 0, 1, 2 were chosen to dis-
tinguish the fundamental and higher-order modes. The nor-
malized electric field distributions corresponding to the
selected points are shown in Fig. 4b–e (the details of mode
eigenfield calculation can be seen in SI5). For the red triangle
and orange circle, the electric field map of Fig. 4b and c corro-
borates the existence of s-HPs, which both decay with exponen-
tial attenuation inside the vacuum and slab medium. Further,
the surface hyperbolic polaritons can be classified into sym-
metric and antisymmetric modes according to relative value of
Re(Ex) in the two vacuum-slab interfaces. In the hyperbolic
slab, surface polaritons on the two vacuum-medium interfaces
couple with each other and split into two branches, consistent
with the isotropic surface modes. Finally, the two blue dashed
curves converge in the higher-k space. Fig. 4d and e exhibit the
characteristics of v-HPs, which are bound within the layer (that
is, waveguide mode).

3.3 Asymmetry transition driven by thickness of slab

Note that the whole momentum space is divided into four
quadrants by two effective optic axes, red and green shadow
regions, as shown in Fig. 5a. To quantify the shear effect of
hyperbolic shear polaritons, previous strategies are based on
the calculation of the line integrals along two arms of the
hyperbolic shear polaritons hyperbola in each quadrant of the

k-space dispersion, including the damping rate or the reflec-
tion coefficient. However, this evaluation method just com-
pares the integrals along two arms of the hyperbolic shear
polaritons hyperbola, i.e., the IFCs, ignoring the contribution
from the rest of k-space region.

To address this limitation, we introduce a new global shear-
ing factor to quantify the degree of shear through considering
the sum of the calculation of surface integrals. We calculate
the normalized rate of energy dissipation in the quadrant R of
the k-space region, which performs a k-space surface integral,
written as:43

P
P0

¼ 1þ 6πε0
k30

Im
ð ðR

0
Tr Qð Þdkxdky

	 

ð5Þ

where Q is given by

Q ¼ i
ω2μ0
8π2

P
α;β¼p;s

rαβ aαþ � aβþ
� �
kz

e2ikzh ð6Þ

Here, rαβ represents the Fresnel reflection coefficient which
can be obtained using the TMM. The polarization vectors
are defined as as

± = 1/kρ(ky, −kx, 0)t and ap
± = kz/(kρk0)(∓kx, ∓kx,

kρ
2/kz)

t where kρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kx2 þ ky2

p
and kz ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k02 � kx2 � ky2

p
are

the lateral and vertical wave vector components, respectively.
By comparing integrals in the adjacent quadrant of the

k-space region, the global shearing factor is defined as

η ¼ P1
P2

ð7Þ

Fig. 4 Distinguishing the type of hyperbolic shear polaritons in bGO slab: surface-confine or volume-confined. (a) The color map of Im(rpp) for the
thickness of 100 nm at frequency of 718 cm−1. The blue and yellow dashed lines show the analytically calculated polaritons dispersion using eqn (2).
The red triangle, orange circle, purple square and green rhombus denotes different order modes, which are further analyzed in b–e, respectively. (b)
and (c) Left, cross-sectional normalized electric field distribution Re(Ex) of the fundamental mode (marked by the red triangle (b) and the orange
circle (c) in (a)) propagating along the surface. The solid black lines denote the air-bGO interface at z = 0 and d. Right, the corresponding field
profile at x = 0. (d and e) Left, normalized Re(Ex) distribution of the (d) l = 1 mode (marked by the purple square in (a)) and (e) l = 2 mode (marked by
the green rhombus in (a)) propagating along the surface. Right, the corresponding field profile at x = 0.
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where the indices 1 and 2 represent the R1 and R2 quadrant,
respectively, illustrated by Fig. 5a. If there is no shear effect, η
will be 1, while otherwise, it is asymmetric. We note that eqn
(5) is also closely related to enhancement of local density of
states or the Purcell factor, which is a direct quantitative
measurement on the enhancement of light–matter inter-
actions. As a result, this shearing factor (η) can describe the
interplay between the enhancement of light–matter inter-
actions and shear polaritons induced by the symmetry
breaking.

To elucidate the shear properties in relation to structural
symmetries, we examine the global shearing factors as a func-
tion of the thickness of monoclinic crystal slab. The frequency
is fixed at 718 cm−1 and the height is 50 nm. It is noteworthy
that the thickness induces a transition of asymmetry as shown
in Fig. 5b. When d is less than 25 nm, the shearing factor is
less than 1, suggesting the rate of energy dissipation in the R2
quadrant is larger than that in R1 quadrant. As the d further
increases, rate of energy dissipation in the R1 quadrant domi-
nates, leading to the enhanced shear effect. Thus, the domi-
nant quadrant changes from R2 to R1 with the increasing of
thickness. This undoubtedly enables enhanced control over
asymmetry modulation.

Note that hyperbolic shear polaritons can be either volume-
or surface-confined. To explore the physics behind the thick-
ness-induced transition, we calculate and compare the contri-
butions from both types of shear polaritons. As shown in
Fig. 5a, each quadrant can be further divided into two sub-
regions depending on the excitation region of different types
of hyperbolic shear polaritons. Correspondingly, the asym-
metric factor ηs or ηv is defined as the ratio of the rates of
energy dissipation from R1 and R2 quadrants, which integrate
in surface modes or waveguide mode regions. One can see
from Fig. 5b that the surface confined hyperbolic shear polari-
tons almost dominate the shear effect.

Finally, to further visually understand the asymmetric tran-
sition, we plot the imaginary part of reflected Green’ s function

Im(Gzz
R) in the momentum space. In Fig. 6a, the bright

regions are concentrated in space less than 200k0, distinct
from the fundamental mode regions about 300k0. This is due
to attenuation of evanescent wave in vacuum, which makes the
contribution from the fundamental mode of 5 nm monoclinic
crystal slab negligible. In contrast, the energy dissipation rate
of the non-excited region dominates. For the case of 10 nm
slab (Fig. 6b), the brightest regions overlap the fundamental
mode regions. If the asymmetry factor is based on the line
integral along the arm of hyperbolic shear polaritons hyper-
bola, the R1 quadrant dominates the shear factor. However, in
term of the rate of energy dissipation adopting the k-space
surface integral, the R2 quadrant dominates. This is because
the brightest regions located at R2 quadrant occupy broader
momentum space. As the d further increases, the hyperbolic
shear polaritons in R1 quadrant dominate, resulting in the
asymmetry transition.

Finally, we provide the additional results on the evolution
of the shear factor in other polaritonic mode regimes in the
Supporting Information (S7).

4. Conclusion

By exploring the anisotropic phonon polaritons in monoclinic
crystal plates, we extend the symmetry breaking to the deep
subwavelength scale. We reveal that the thickness of the mono-
clinic crystal slab is crucial in controlling the asymmetry of
phonon polariton propagation and controlling their shear
phenomena. The rotation of the effective optic axis with fre-
quency indicates axial dispersion. The asymmetric distribution
of the real part and imaginary part of in-plane wavevector of
hyperbolic shear polaritons further confirms the in-plane
mirror symmetry breaking and loss redistribution, which
explains the origination of shear effect and asymmetric direc-
tional propagation. In addition, we quantify the symmetry
breaking of hyperbolic shear polaritons via the surface integral

Fig. 5 Analyzing the shear effect. (a) The whole k space is divided into four quadrants according to the effective optic axes, such as R1 and R2. The
surface and volume confined hyperbolic shear polaritons further divide each quadrant (R1 as an example) into two sub-regions, denoted by Rs1 and
Rv1. (b) Analytical shearing factor dependence on the thickness of bGO slab by integrating the rate of energy dissipation in the k-space via eqn (5).
The integration in adjacent quadrant (R1 and R2) of the k-space is compared, denoted by η. Moreover, the contributions from two sub-regions are
calculated, respectively, denoted by ηs or ηv. The inset shows the point in vacuum where the rate of energy dissipation is calculated above the bGO
slab. h denotes the distance from the vacuum/bGO slab interface, which is fixed to 50 nm.
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of the rate of energy dissipation in the momentum space. The
results show the thickness of monoclinic crystal slab can
induce the asymmetry transition, meaning dominant energy
dissipation rate jumps between two adjacent quadrants. We
also demonstrate that the broken symmetry induced by
surface-confined hyperbolic shear polaritons dominate the
shear effect, including the asymmetric polariton propagation
and defined asymmetric factor. Our finding with tailorable
symmetry-broken hyperbolic polaritons in crystal slabs will be
important in sub-diffractional imaging and spectroscopy.
Additionally, the exquisite control over the degree of sym-
metry-breaking at deeply sub-wavelength scales provides a flex-
ible strategy for controlling the asymmetric energy flow at the
nanoscale, which are readily valuable for various technologies
such as infrared sensing, photonic circuits, near-field radiation
management and many others.
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