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We are witnessing a digital revolution
marching across every aspect of our
lives and technological fields, and
catalysis is no exception. As workflows
become increasingly digital and data-

driven, catalysis research and
development are now being
transformed and accelerated. This
themed collection on digital catalysis
reflects how these innovations are
reshaping the field, integrating
advanced computational tools, machine
learning, and FAIR data principles into
catalyst science and technology. It
highlights how digital tools can
accelerate discovery, address unresolved
challenges, and open new avenues for
sustainable chemical innovation.

Over decades, catalysis research has
generated a vast body of empirical data
and mechanistic knowledge. Now, with
the rise of digital methods and artificial
intelligence, this accumulated
knowledge can potentially be integrated
directly into advanced computational
and statistical models to provide a more
realistic and nuanced picture of
catalytic phenomena. By blending
established physical principles with
emerging data-driven approaches, we
enhance our ability to navigate chemical
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complexity and to move closer toward
catalysts by design.

The comprehensive review by Lapkin
and co-workers (https://doi.org/10.1039/
D3CY01160G) presents a future vision
on how integration of advanced
computational methods and AI/ML
techniques can enable predictive design
and autonomous discovery of
heterogeneous catalysts. In a
complementary work, Parveen and
Slater (ht tps : / /doi .org /10 .1039/
D4CY01525H) stress the broader
importance of digital frameworks and
FAIR principles for enabling sustainable
chemical production and exploring
wider chemical spaces.

Probably the most common and
widely practiced digital tool in
contemporary catalysis research is
computational modeling. Modern
quantum chemical methods have
reached the level of accuracy,
accessibility and cost to provide
indispensable support in interpreting
complex spectroscopic data and
building detailed mechanistic models to
explain kinetic trends and guide the
design of new catalysts via descriptors.

We have seen the development of
multiscale models that merge molecular
simulations, kinetic modeling, and
quantum chemistry, allowing us to
tackle complexity across scales. Several
contributions illustrate the power of
such methods. Tong et al. (https://doi.
org/10.1039/D3CY01590D) and Dunn
et al . (https:/ /doi.org/10.1039/
D4CY00506F) employ molecular
dynamics simulations to resolve how
zeolite morphology and molecular
interactions shape transport
phenomena that ultimately govern
catalytic turnover. Thomas et al. (https://
doi.org/10.1039/D4CY00284A) combine
DFT and molecular dynamics to capture
the speciation of manganese catalysts
under oxidative conditions, providing
atomistic insight into dynamic
coordination environments that control
stability and reactivity under realistic
operation. Ureel et al. (https://doi.org/
10.1039/D4CY00973H) develop a
predictive group additive model for
β-scission kinetics in zeolites,
introducing a pore-confinement

descriptor that connects local structure
with macroscopic cracking rates. Chen
et al . (https:/ /doi.org/10.1039/
D4CY00586D) further demonstrate the
strength of multiscale modeling by
showing the role of TiO2

polymorphs in dictating Ni cluster
morphology and reactivity in CO2

hydrogenation. He et al. (https://doi.
org/10.1039/D4CY01076K) integrate
DFT and microkinetic modeling to
establish design principles and
identify Ni3Fe alloys as selective
quinoline hydrogenation catalysts. At
the electrochemical interface, Iida
et al. (https://doi.org/10.1039/
D5CY00369E) combine DFT and a
statistical mechanical theory of
liquids (3D-RISM) to explain the
disappearance of double-layer effects,
offering fundamental understanding
of electrode–electrolyte interactions.
Together, these studies demonstrate
that multiscale modeling now
routinely describes diffusion,
adsorption, and condition-dependent
reactivity with a resolution
inaccessible to experiment.

Despite the great success of
quantum chemistry models, critical
challenges remain. Capturing catalyst
dynamics, competing pathways, and
condition-dependent equilibria is a
formidable task. The increasing size of
datasets and configuration spaces
demands new strategies that combine
physical fidelity with scalable efficiency.
Miyazaki et al. (https://doi.org/10.1039/
D4CY00685B) provide a systematic
assessment of exchange–correlation
functionals by comparing predicted
vibrational frequencies with
experiment. Such studies establish
clear reference points and allow
researchers to quantify the
uncertainty of popular
methodologies. Hühn et al. (https://
doi.org/10.1039/D4CY01152J) combine
31P NMR, ab initio molecular
dynamics, and machine learning to
characterize phosphate speciation on
alumina. Their results highlight how
disorder and dynamic effects challenge
standard models, but also how hybrid
approaches can bring simulations in
line with measurable observables.

Abdelmaqsoud et al. (https://doi.org/
10.1039/D4CY00615A) extend this
discussion to machine-learning
interatomic potentials, demonstrating
that inconsistencies due to surface
reconstruction in large DFT datasets
result in biased models and
propose that total-energy references
provide more robust training data.
Rey et al. (https://doi.org/10.1039/
D4CY00548A) introduce a hybrid
ML-thermodynamic perturbation
theory framework that achieves near
ab initio accuracy in free-energy
barriers at a fraction of the cost,
making predictive kinetics feasible
for complex zeolite reactions. Ting
et al. (https://doi.org/10.1039/
D4CY01000K) illustrate the role of
unsupervised learning in revealing
surface patterns in nanoparticle
simulations, offering a path toward
systematic identification of complex
catalytic motifs serving as active sites.

As the community generates ever-
larger datasets from both experiments
and simulations, the need for data-
driven methodologies is becoming
critical for analyzing this multifaceted
data, identifying patterns, and guiding
the development of catalysts and
catalytic processes. These digital tools
not only help us navigate much wider
chemical spaces and mechanistic
landscapes but close the gap between
operando catalysts and our models. Yet,
with this data-rich paradigm comes the
challenge of ensuring data integrity and
adopting FAIR (Findable, Accessible,
Interoperable, Reusable) principles.
Several contributions in this collection
discuss how the community is starting
to address these barriers. Trunschke
et al. (https:/ /doi.org/10.1039/
D4CY00693C) outline a framework for
digital and automatic acquisition,
storage, and linking of catalysis data
and metadata. They present machine-
readable SOPs and automation to
capture experimental workflows and
their associated data in a form that
supports reproducibility and direct
integration with machine learning. Behr
et al. (https:/ /doi.org/10.1039/
D4CY00369A) introduce automated
knowledge graphs that structure
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information extracted from catalysis
literature, making hidden connections
explicit and providing a foundation for
autonomous discovery. Li et al. (https://
doi.org/10.1039/D4CY01159G) illustrate
how ML and text mining can be
applied at scale to extract synthesis
and performance data from literature
on SCR catalysts, directly enabling
performance prediction and synthesis
optimization.

The final set of contributions
demonstrate how machine learning
and physics-based methods can be
combined into hybrid workflows.
These approaches draw their strength
directly from the advances
highlighted in the preceding sections:

accurate and benchmarked electronic
structure methods, mechanistic and
multiscale models that define
descriptors of catalytic function, and
structured datasets that ensure
reproducibility and reusability.
Without reliable data and validated
reference methods, machine learning
remains a black box; without
acceleration from data-driven models,
high-level simulations remain too
costly to drive discovery. Guo and
Harvey (https://doi.org/10.1039/
D3CY01625K) provide a clear example
by coupling ab initio calculations
with microkinetic modeling and data
fitting to experiments, achieving
predictive accuracy for catalytic rates.

Saha et al. (https://doi.org/10.1039/
D4CY00763H) employ machine-
learning potentials to analyze atomic
arrangements in zeolites, generating
statistically meaningful insights into
topology and synthesis–property
relations. Kuddusi et al. (https://doi.
org/10.1039/D4CY00873A) take this a
step further by combining ML with
active learning and automated
experimentation, exemplifying how
scientist-in-the-loop strategies can
accelerate design cycles for CO2

hydrogenation catalysts.
The contributions in this collection

show that hybrid data-driven strategies
are not merely accelerators but enablers
of the new catalysis science.
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