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The chemical nature of adsorbed inorganic additives such as phophates used in the preparation of

heterogeneous catalysts is suspected to impact their resulting activity. Predominant phosphate species located

on the surfaces of the γ-alumina catalytic support are identified by using one-dimensional 31P NMR spectra as

the only experimental input. The detailed insight is made possible by combining machine learning (ML) 31P

chemical shift prediction and ab initio molecular dynamics (AIMD) to sample conformers of 10 representative

possible structures and generate theoretical spectra, which were then used to decompose mathematically

the broad experimental peak. At low P concentration, several types of monomeric species are found to

co-exist on the γ-alumina (110) facets. Increasing the P concentration yields a marked increase in one

monomeric species and one dimeric species both located on the (110) facets, whereas phosphates are

mainly absent from the (100) facet. The NMR spectra broadening is interpreted by two levels of structural

disorders: the various types of P species and the conformational distribution of each species. We finally

propose some implications for the catalytic properties.

Introduction

Investigating phosphate speciation present on γ-alumina (γ-
Al2O3) powders impregnated with H3PO4 is widely relevant for
application fields as diverse as heterogeneous catalysis,1,2

environmental science,3 biology4 and pharmaceutical
formulations.5 Considering more particularly γ-Al2O3

supported heterogenous catalysts, several studies have
reported the impact of phosphates additives on the
performances of MoS2 based catalysts for hydrotreatment.6,7

The use of phosphorus inorganic compounds during
preparation was also shown to improve the thermal stability,
of the metallic active phase such as cobalt in Fischer–Tropsch
synthesis8 or palladium in CO oxidation9 and of the γ-Al2O3

support in biomass conversion processes.10 In these cases,
the phosphorus species are strongly suspected to act as a
chemical binder between the alumina surface and the
metallic active phases at the various stages of the catalyst life
cycle: preparation, activation, reaction, regeneration or

recycling. For this reason, unravelling the atomic scale nature
and location of phosphorus species on the alumina surface is
crucial for catalysis.

Solid-state nuclear magnetic resonance (NMR)
spectroscopy is a unique analytical technique to unravel the
atomic-scale structure of solid substrates, ranging from
polymers to glasses, heterogenous catalysts, pharmaceutical
drugs and biological assemblies.5,11,12 The interpretation of
NMR spectra is increasingly supported by chemical shift (CS)
prediction using density functional theory (DFT) models.13

However, the computational burden associated with those
predictions often limits the exploration of the chemical
space. Machine learning (ML) approaches have been recently
proposed to accelerate CS prediction, both on molecular
solids and inorganic materials.14–16 This approach proves to
be especially powerful when applied to forecast the NMR
chemical shifts of amorphous systems.17 However, in cases
where extensive experimental databases are lacking, and the
spectra are dominated by significant line broadening, the
structural characterization of disordered systems using ML
techniques remains highly challenging.

The direct interpretation of one-dimensional (1D)
31P solid-state NMR spectra is limited regarding the
identification and quantification of the various phosphate
species adsorbed on oxide surfaces.18–23 Indeed, the NMR
spectra typically display a single broad line spanning 20–30
ppm in width, which shifts towards more negative values
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when increasing the P concentration.12,18–23 This signal
results from the contributions of several non-equivalent
phosphate species (monomer, dimer, oligomer) with different
local environments, adsorbed on various surface sites. By
combining static DFT calculations with two-dimensional (2D)
Dynamic Nuclear Polarization Surface Enhanced NMR
Spectroscopy (DNP SENS) 31P–27Al correlation experiments,12

we previously identified 10 compatible structures of
phosphates species adsorbed on γ-alumina sites. However,
quantifying their respective contribution was not possible.
Even with DFT calculated CS at hand,24 the NMR spectra
could not be decomposed due to the significant broadening
of the NMR lines and the numerous possible species, with
only subtle differences in their environment (varying H-
bonds, P–O bonds and O–P–O angles).

To overcome the hurdle of structural disorder effects, ab
initio molecular dynamics (AIMD) can be used nowadays to
sample conformers at a given temperature. Since calculating
the 31P CS of each sampled structure is too costly, an
alternative is to establish generalized structure-chemical shift
relationships. For instance, in the case of crystalline
materials (such as calcium phosphates25 and aluminium
phosphates26) multivariate regressions correlating simple
structural parameters (P–O bonds and Al–O–P angles) with
calculated 31P chemical shift have been found applicable to a
wide range of AlPO materials, where Al sites exhibits a close
and well-defined local environment. However, they cannot be
easily extrapolated to phosphate species found in a
disordered environment, such as those adsorbed on oxide
surfaces.

An other possibility is to build a ML model combining
structural descriptors27 with regression models,28 trained on
an extensive set of DFT chemical shifts. Some examples of
DFT-ML-predicted CS of various nuclei have been reported so
far with reasonable accuracy.14,15,29 Recently, Cuny et al. used
artificial neural networks trained on DFT calculations
combined with AIMD to sample structures and predict 29Si
and 17O NMR spectra of various materials (including silica
glasses).14

In the present work, our aim is to reach a quantitative
speciation analysis of the P species adsorbed on γ-Al2O3 based
on the deconvolution of 1D 31P NMR spectra measured at
various P concentrations (0.4 to 4.1 P nm−2, see Fig. SI.2†) for
samples prepared as described in.12 For that, we will use DFT-
ML predicted 31P CS combined with AIMD simulations to
determine 31P CS histograms at ambient temperature and to
account for the broadening and the chemical shift evolution
of the NMR signal as a function of P concentrations.

Results and discussion
Structural DFT database of adsorbed phosphates

We previously identified 10 possible structures reported in
Fig. 1b). They are the most stable out of a large dataset of
1322 structures of adsorbed phosphate species on γ-Al2O3

identified by DFT calculations in our previous work.12 This
database is as diverse as possible, including three γ-Al2O3

surfaces with varying hydroxylation states ((100), n(110),
R(110)), four adsorption modes of phosphate monomers:
physisorbed (ν0), monodentate (ν1), bidentate (ν2) or

Fig. 1 a) Parity plots obtained after the initial regression model (with 3100 descriptors) for 31P chemical shift: training set (blue dots), test set
(orange dots). b) Score plot of the principal component analysis of the LMBTR descriptors. Blue dots: Dataset of 1322 structures optimized at the
PBE + D3 level (used to compute the PCA vectors and to train and validate the ML model). Colored dots: Projections on the PCA space of
structures from the AIMD trajectories of the 10 relevant P species adsorbed on γ-Al2O3, using one color per structure. The structures are
schematically represented. AlIV corresponds to 4-coordinated aluminum atoms, AlVI corresponds to 6-coordinated aluminum atoms. OH groups
with wiggled bonds are hydroxyl groups found on the γ-Al2O3 surface. Three hydrated γ-Al2O3 surfaces were considered: (100), non-reconstructed
and reconstructed (110),30,31 named n(110) and R(110) respectively. νx indicates the number of bonds between the phosphate oxygens and the
alumina. νx + νy is used for co-adsorption of two phosphate monomers while νxy is used for dimeric phosphate. More details can be found in ref.
12.
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tridentate (ν3), co-adsorbed monomers (νx + νy) and phosphate
dimers (νxy), binding to four fold or six fold coordinated Al
sites. However, the predicted chemical shift of those 10 species
is not enough to deconvolute unambiguously the 1D CP MAS
NMR spectra due to signal broadening. To limit the number of
parameters to be adjusted during the deconvolution, but still
embrace the possible chemical diversity, we first need to
predict the 31P CS histograms at 300 K for the 10 adsorbed P
species that were previously identified as relevant.12

Machine learning model for 31P chemical shift prediction

We first trained a ML model to identify the correlation
between the structure optimized at the PBE-D3 level32,33 and
the 31P CS obtained using GIPAW24 calculations, exploiting
our dataset of 1322 structures.12 The chemical environment
of P was described using local many-body tensor
representation (LMBTR) descriptors with a reduced size to
avoid overfitting issues (Table SI.1†).34 The correlation
between the structure and the 31P CS was obtained using a
ridge regularized least-square regression algorithm with
regularization parameter set to 0.02 (see methods). The root
mean square error (RMSE) of our ML model (after removal of
the lowest rank coefficients) is 2.2 ppm with respect to DFT
calculated 31P CS as illustrated in Fig. 1a), which is very close
to the reported error for the DFT CS values (2 ppm; see
methods and Table SI.2†). According to this comparison, the
values obtained from both approaches in our relevant
structures are fairly close, and close to the average error
represented by RMSE. Thus, we can reasonably argue that the
expected overall accuracy in our approach corresponds to the
highest statistical error from both ML and DFT
computations, that is, 2.2 ppm. This accuracy is reasonably
good for such disordered surfaces and independent of the
random selection during training. Moreover, since the
differences in the CS among the theoretical systems used for
spectra deconvolution is usually higher that this error
estimate, we do not expect this source of error to have an
impact on our conclusions. Then, we sampled the structural
distribution of each 10 adsorbed P species12 using AIMD
trajectories of 35 ps at 300 K after 11 ps of thermalization
(see Methods). A Principal Component Analysis (PCA) of the
LMBTR descriptors shows that the structures sampled using
AIMD overlaps with the database structures generated at T =
0 K, ensuring a good transferability from the database to the
target configuration space (Fig. 1b).

Histogram of 31P chemical shifts at ambient temperature

Applying this ML model on the structures sampled by AIMD,
we obtained the 31P CS histogram at 300 K associated with
each configuration of phosphates adsorbed on alumina.
Fig. 2 shows the 31P CS histograms obtained for two relevant
species: the phosphate monomer n(110) ν3 and the dimer
R(110) ν31 (for all the other P species see SI.3†). Those
histograms are broadened and exhibit two peaks when two
phosphate moieties are present (dimers and co-adsorption of
two monomers). Besides, they are slightly skewed to the
negative chemical shifts as also observed for the
experimental spectra. This slight asymmetry can only be
captured by predicting the variations of the chemical shift
over a large set of structures sampled by AIMD.

The mean CS obtained at 300 K is close to that computed
at 0 K with the same ML model, although it has a general
tendency to be shifted to more negative values by less than 3
ppm (with the exception of some species). The associated
standard deviation, quantifying the theoretical spectra
broadening during AIMD is comprised between 5.2 and 8.1
ppm depending on the P species (Table SI.2†). The origin of
this broadening is rather complex and can be induced by
several parameters: one of them is the structural disorder35

which may itself recover several effects. On the one hand, it
contains the contribution of various individual species: here,
the various phosphate species adsorbed on different alumina
sites such as R(110), n(110) or (100) and modes νx, νxy. On the
other hand, it contains the contribution of several
conformational structures (due to the distortion of angles,
bonds…) of a given species which co-exist on the alumina
surface. In the latter case, the distribution of these
conformers closely depends on the temperature which helps
to overcome weak energy barriers between each conformer.
The AIMD simulation at the given temperature allows a
rather large sampling of these conformers. In particular, we
observe that the CS distribution is broader when the
phosphate moiety is bonded to alumina through only one P–
O–Al bond (ν1) as in (100) ν21, R(110) ν31 and R(110) ν2 + ν1.
This greater flexibility of the monodentate can be tracked
back in the AIMD trajectories monitoring the root mean
square fluctuation of the PO4 entities (0.14 for n(110) ν3 and
the ν3 of the dimer R(110)-ν31, 0.26 for the ν1 of the dimer
R(110) ν31). An earlier attempt to quantify the effect of
structural deformation was proposed by DFT computation
of CS along several points of some arbitrary
chosen low vibrational modes in a molecular crystal.36 The
present AIMD-ML approach goes beyond by considering all
possible modes and their coupling under explicit thermal
conditions.

Decomposition of the experimental NMR spectra

The experimental broadening (Fig. SI.2†) is by far larger
than the one simulated for one single species (containing
either one or two P atoms), thus more than one phosphate
species must be invoked on γ-Al2O3. To identify them, we

Fig. 2 Sample histograms of 31P CS calculated using our ML model on
structures sampled from AIMD for a) monomer n(110) ν3, b) dimer
R(110) ν31.
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used the simulated 31P CS histograms to decompose the
experimental 31P CP MAS spectra measured for 5
concentrations (from 0.4 to 4.1 P nm−2, see SI.2†). First, the
total area of each simulated histogram of monomers was
normalized to 1. For systems containing more than one P
atom (dimers and co-adsorption cases), the two histograms
were summed up together. Multivariate curve resolution
alternating least squares method (MCR-ALS) was used to
decompose the experimental NMR spectra (SI.4†). We
retained the best solution minimizing the RMSE value (Table
SI.3†). At this stage, we would like to stress that is difficult to
assess the uniqueness of this solution, since there is no
possibility to check our numerical approach against results
from well-known samples of phosphate species adsorbed on
γ-Al2O3. Nevertheless, firstly, according to our results
(described in what follows), monomer species are not
sufficient to recover the experimental signal (i.e.: we need to
consider co-adsorbates and dimers). Secondly, the CS ranges
of monomer and dimer species are well differentiated (see
Table SI.2†). One might only question the species R(110) ν2
and R(110) ν3 which have rather close histograms (Fig. SI.3†
and 3) and so their relative ratio is rather difficult to predict.
Finally, the trends observed for the solution with minimized
RMSE value are chemically sound as analyzed in the
following.

The overall shape of the 5 spectra (broadening and skew
to the negative values) is well rendered, while the CS of
maximum position evolves as a function of P coverage (Fig.
SI.6†). At the lowest P concentration (0.4 P nm−2 in Fig. 3a),
various monomeric species are required to match the
experimental spectrum, whereas for the highest
concentration (4.1 P nm−2 in Fig. 3b) one monomeric and
one dimeric species are mainly contributing.

Evolution of phosphate species as a function of
concentration

Thanks to the previous decomposition, a more quantitative
trends of surface chemical speciation can be provided as
shown in Fig. 4, which reveals a chemically sound evolution
of their surface concentration as function of the P

concentration. Since all phosphorus sites are surrounded by
multiple hydroxyl groups in the present conditions of mild
drying (hydroxylation of alumina surfaces remains high), we
believe that the 31P CP signals provide reliable estimates of the
relative contributions of each species. In other words, we expect
that the efficiency of CP transfer is consistent for all surface
species. For the two samples with the lower P concentrations
(0.4 and 1 P nm−2), almost all monomeric species (including co-
adsorbed ones and excepting the (100) ν2) are present with
similar proportions (around 15–25% each). For the three
samples with P concentrations of 2, 2.8 and 4.1 P nm−2, 4 species
are predominant including 3 monomers (n(110) ν3, R(110) ν2
and n(110) ν3 + ν2) and one dimer, R(110) ν31, being located on
the two (110) facets. For 4.1 P nm−2, n(110) ν3 and R(110) ν31,
whose proportions are about 30% and 46%, respectively, become
the most predominant. By contrast, the monomeric species (100)
ν2 remains negligible for all P concentrations, whereas the (100)
ν21 appears only at the highest P concentration (4.1 P nm−2). This
implies that phosphates are preferentially adsorbed on the (110)
rather than on the (100) facet. Indeed, on γ-Al2O3 crystallites, the
(110) facets are expected to be predominant and exhibit a wider
diversity of Al and hydroxyl sites.31,37 In particular, the
tetrahedral Al sites present on this facet are involved in the
phosphate-alumina bonding of the four predominant species,
which is fully consistent with our previous experimental 2D DNP
enhanced through-bond 31P–27Al INEPT correlation spectra,12

but can be here extracted out of 1D CP MAS NMR spectra.
The n(110) ν3 monomer, either isolated or co-adsorbed

with n(110) ν2, dominate for P coverages equal to 2 and 2.8 P
nm−2. These n(110) ν3 species continuously increases for
samples with 0.4 up to 4.1 P nm−2, whereas the R(110) ν2
species reaches a plateau before declining for 4.1 P nm−2.
This decrease is coherently associated to the formation of the
dimeric R(110) ν31 species located on the same facet which
continuously increases from 0 to 4.1 P nm−2 and becomes
predominant for 4.1 P nm−2. When increasing the P

Fig. 3 Decomposition of the experimental NMR spectra by using the
theoretical histograms of 4 main species obtained with the AIMD-ML
approach for two relevant P concentrations: a) 0.5 P nm−2, b) 4.1 P
nm−2. For improving the fit with experimental spectra and enhancing
the clarity, the simulated histograms have been smoothed, by starting
from raw histograms like those reported in Fig. 2 and SI.3.†

Fig. 4 Quantitative estimates of the surface concentration for each
phosphate species adsorbed on the three γ-alumina facets (in P nm−2)
and for each total P surface concentration. Their relative contributions
were calculated from the deconvolution of the 31P NMR lines as shown
in Fig. 3 and SI.6† and scaled from the knowledge of the total P surface
concentration (in P nm−2).
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concentration, the experimental NMR spectrum shifts to
negative values. In Fig. SI.2,† a shift of about −10 ppm is
observed between 1.0 and 4.1 P nm−2. This trend is obviously
related to the apparition of a dimeric species and
demonstrates quantitatively the higher prevalence of dimers
at higher P concentration. We also notice that another
dimeric species (100) ν21 appears at 4.1 P nm−2 resulting from
the possible saturation of the (110) facets.

To assess the impact of the AIMD-ML approach to
determine the spectra broadening, we achieve a MCR-ALS
decomposition of the experimental by using a simple
gaussian component centered on the 0 K DFT CS value with
a fixed full width at half maximum (FWHM) of 6 ppm for
each species (Fig. SI.7†). We firstly notice that RMSE values
degrade with respect to the AIMD-ML approach (Table SI.4†).
Moreover, if we except the dimeric R(110) ν31 species, the
other predominant species differ significantly from the
previous ones (Fig. SI.8†). The origins of these differences
must be found in the values of the chemical shifts
determined at 300 K, as well as in the asymmetrical
components calculated from AIMD-ML. Those asymmetrical
components give more constraints for fitting the
experimental signal which reveal different species. This
justifies the key interest of using the AIMD-ML approach.

Possible impacts for catalysis

The use of computational chemistry to apprehend phenomenon
linked to the catalyst preparation is a rather challenging task.38

Since phosphates additives are generally introduced during the
preparation steps and remain present all along the catalyst life
cycle, it is relevant to discuss how the previous results could
qualitatively influence catalytic properties.

In our previous DFT-NMR work,12 we already proposed some
possible implications of the nature of the phosphate species
adsorbed on the γ-alumina (110) and (100) surfaces for the
supported catalysts. We underlined the fact that once Al–O–P
bonds are formed, this may directly impact the reactivity of
alumina surface. One the one hand, as it has been analyzed by
infra-red spectroscopy,39 the presence of such adsorbed
phosphates will modify the surface acidity in terms of number
and strength of Al Lewis sites and OH Brønsted sites. Moreover,
we expect that adsorbed phosphates will also interact with the
metallic sites (M) of the active phase through Al–O–P–O–M
bonds. This interaction could play a role at the various stage of
the catalysis preparation: during the impregnation/activation/
reduction steps and in reaction conditions. As discussed in
previous experimental works,7,8 this interaction will modify the
physico-chemical properties of the metallic active phase, its
activation mechanism and its resulting dispersion. In the
present work, thanks to the ML model and the NMR spectra
decomposition, we reveal that the phosphate species are
predominantly located on the (110) surfaces in close interaction
with AlIV sites. This trend is qualitatively in line with some
previous experimental investigations showing that the various
orientations of α-alumina single crystals,2 may tune the

interaction strength of phosphate: the α-alumina surface
orientation containing AlIV site being identified also as one
inducing the highest dispersion of phosphate species.

According to previous work, those AlIV sites might be
at the origin of the destabilization of the γ-alumina
surface in hydrothermal conditions.40 If phosphates are
now interacting with those sites, this location may thus
protect the surface by preventing AlIV sites from the
hydrolysis attack of water molecules. Similar proposals
have been previously made for justifying the improved
thermal stability of palladium oxidation catalysts.9 Recent
NMR-DFT works have highlighted that such AlIV sites
could also be located on the edges of γ-alumina
nanoparticles.41 Hence, if some phosphates species are
anchored on these AlIV sites located on edges, they might
also prevent the γ-alumina edges from being also attacked
in hydrothermal conditions. Finally, the distribution of
phosphate species is expected to be sensitive to a change
of the alumina nanoparticles' morphologies as it is often
determined at the preparation step.

Conclusions

In summary, by using a DFT data set of more than 1300
structures, we built a ML model to predict 31P CS of phosphate
monomeric and dimeric species adsorbed on γ-alumina
surfaces with a reasonable accuracy of 2.2 ppm. Combining
this ML model with AIMD simulations, we simulated frequency
histograms of the observed CS values for 10 relevant phosphate
species. Using these theoretical frequency histograms for the
mathematical decomposition of the one-dimensional 31P CP
MAS NMR spectra allows isolating and quantifying each species
unlike conventional MCR-ALS approaches using experimental
references. In particular, 4 species (3 monomeric phosphates
and 1 dimer) located on the (110) facets (either reconstructed
or not), account for the population of surface species observed
on the γ-alumina powders with P concentrations from 2 to 4.1
P nm−2. The (100) surface plays a negligible role. This analysis
highlights also a chemically relevant evolution of the
monomeric vs. dimeric species as a function of P
concentration. From a more fundamental aspect, this study
reveals that the NMR spectra broadening originates from two
main types of structural disorder: on the one hand, the
contribution of the 3 different phosphate species adsorbed on
the alumina surface and, on the other hand, the distribution of
local conformations associated to each individual species. The
latter can only be captured by AIMD at finite temperature.

We hope that this quantified analysis of the nature and
location of the adsorbed phosphates species may help to
better understand the behavior of the alumina surface of
heterogeneous catalysts synthesized in presence of
phosphorus additives. Firstly, it would be interesting to apply
this workflow, combining experiments with first principles
calculations and machine learning approaches, to surface
science studies on well-defined samples.2 This would
improve the reliability of the model and a quantification of
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thermal effects on the CS. This approach could also be
further applied to study subtle effects of alumina crystallites'
morphology (including edges41) on the nature and location of
phosphates species. This AIMD-ML methodology could
probably be generalized to determine other NMR parameters
(such as quadrupolar constants or anisotropic shift) and to
decompose 1D and 2D NMR of other nuclei such as 1H, 17O,
27Al present on the alumina surface or any other systems.
Lastly, a similar approach can be valuable for other
spectroscopic analyses such as infrared or X-ray absorption
spectroscopies.

Methods
DFT calculations

AIMD simulations were performed with the VASP simulation
package, in the canonical <NVT> ensemble, at 300 K, using
an Anderson thermostat with 0.1 collision probability and 1
fs timestep. The dynamics of these systems were equilibrated
during 11 ps and results were computed from 35 ps
trajectories. Electron wavefunctions were calculated with the
PBE exchange–correlation functional42 and D3 Grimme
corrections.33 The cut off was set to 300 eV, the k-grid to (2 ×
2 × 1) - which corresponds to a reciprocal space sampling of
0.04 Å−1, and the energy convergence criterion for self-
consistent field calculations was set to 10−5 eV per cycle. For
the chemical shift DFT calculations at 0 K and all other DFT
parameters and γ-alumina (γ-Al2O3) surface models related to
the screening of the adsorption structures, the reader may
refer to our previous work.12 The accuracy of chemical shift
calculations at 0 K was also assessed in the same previous
work, where we compared our theoretical results with
reference solid aluminophosphates materials and found out
that the expected error in our DFT CS calculations is within
the order of 2 ppm.

Machine learning model

The data set is split in test and training subsets with a ratio
of 0.2, the test subset is left untouched and only used for
reporting the final performance of the model. A five-fold
cross-validation is applied on the 80% training set for
hyperparameter tuning. The final machine learning (ML)
model is used to generate the chemical shifts histograms
along AIMD trajectories by computing their value at each
AIMD time step.

The ML model was trained using a ridge regularized least-
square regression and local many-body tensor representation
(LMBTR) descriptors. The initial set of LMBTR descriptors
contained vectors of 3100 dimensions. We reduced overfitting
by reducing the size of these descriptors (see Fig. SI.1†
showing that the difference between the training set RMSE
and the test set RMSE gets smaller when using less
descriptors). Firstly, we removed components of null variance
(992 descriptors) and then removed descriptors with the
lowest contribution to the model, keeping 500 of the initial
set of 3100 descriptors. Detailed parameters are provided in

Table SI.1.† These calculations were performed with an in-
house python code and the scikit-learn and Dscribe
libraries.34,43
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