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The emergence of artificial intelligence (AI) and, more particularly, machine learning (ML), has had

a significant impact on engineering and the fundamental sciences, resulting in advances in various fields.

The use of ML has significantly enhanced data processing and analysis, eliciting the development of new

and improved technologies. Specifically, ML is projected to play an increasingly significant role in helping

researchers better understand and predict the behavior of porous media. Furthermore, ML models will

be able to make use of sizable datasets, such as subsurface data and experiments, to produce accurate

predictions and simulations of porous media systems. This capability could help optimize the design of

porous materials for specific applications and improve the effectiveness of industrial processes. To this

end, this review paper attempts to provide an overview of the present status quo in this context, i.e., the

interface of ML and porous media in six different applications, namely, heat exchanger and storage,

energy storage and combustion, electrochemical devices, hydrocarbon reservoirs, carbon capture and

sequestration, and groundwater, stressing the advances made in the application of ML to porous media

and offering insights into the challenges and opportunities for future research. Each section also entails

a supplementary database of the literature as a spreadsheet, which includes the details of ML models,

datasets, key findings, etc., and mentions relevant available online datasets that can be used to train ML

models. Future research trends include employing hybrid models by combining ML models with physics-

based models of porous media to improve predictions concerning accuracy and interpretability.
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1. Introduction

Porous media play an important role in many natural and
engineered systems, including subsurface reservoirs for energy
resources such as oil, natural gas, and geothermal heat, as well
as aquifers that store water for drinking and irrigation. In
addition, porous media play a critical role in a variety of envi-
ronmental and industrial processes, such as carbon capture
and sequestration (CCS), water treatment, heat transfer, etc.
which underscores the signicance of porous media in diverse
applications. The study of porous media is interdisciplinary,
combining elements of physics, chemistry, mechanics, and
geology. It involves understanding the transport and exchange
of uid, heat, and mass in porous media and the interactions
between uid, solid, and thermal components.1

Current research on porous media covers various aspects of
physics, chemistry, and engineering. In terms of transport
phenomena, the transport of uid, heat, and mass in porous
media and the impact of uid–uid, uid-solid, and solid–solid
interactions on these processes are investigated. In materials
science, researchers are developing new materials with
improved properties, such as higher permeability, better
mechanical strength, and improved thermal conductivity, for
J. Mater. Chem. A, 2024, 12, 20717–20782 | 20717
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use in an assorted range of applications. In the context of energy
resources such as oil and natural gas, researchers are studying
the behavior of subsurface reservoirs and developing tools and
techniques to improve the extraction of these resources.2

Over recent years, there has been a marked increase in
interest in employing ML and data analysis techniques to
uncover and elucidate the underlying mechanisms and inter-
actions within porous media, thereby enhancing the ability to
both understand and predict their behavior. Researchers are
attempting to develop models that capture the composite
interactions between uid, solid, and thermal components and
use these models for optimizing processes and augmenting
predictions. In particular, ML techniques can particularly assist
Fig. 1 The number of published articles containing the words [“porou
[“machine learning” or “artificial intelligence” or “deep learning” or “neural
from Scopus, (extracted on 14 April 2024).

20718 | J. Mater. Chem. A, 2024, 12, 20717–20782
in cases where traditional modeling methods are limited by the
complexity of the system or the availability of data.3 Fig. 1
depicts the occurrences of the published research on the
keywords “machine learning” (ML) and “porous media” over
the past two decades together with the relevant elds. This
rapport between the interface of ML and porous media is
conspicuous to grow even more over the coming years, sign-
posting the present review paper's direction.

Chapter two provides a comprehensive description of
different ML models employed in the study of porous media
such as supervised and unsupervised learning methods. Addi-
tionally, it gives instances of particular models that have been
s” or “porous media” or “porous materials” or “porous medium”] and
networks”] in the literature (a) annually and (b) by subject area, adopted

This journal is © The Royal Society of Chemistry 2024
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deployed, such as decision trees, random forests, support vector
machines, and neural networks, followed by evaluation metrics.

In chapter three, the review paper applies the different
applications of ML to porous media, stratied in different
sections, namely, heat exchanger and storage, energy storage
and combustion, electrochemical devices, hydrocarbon reser-
voirs, CCS, and groundwater. In each section, the different
variables involved are scrutinized which include uid ow
prediction and characterization of porous media, i.e., perme-
ability, porosity, pore size distribution, wettability, and trans-
port properties. Furthermore, it underscores examples of
particular applications, such as the prediction of permeability,
pinpointing the optimal production and injection methods,
and ood optimization.

A common and essential component of many porous media
applications is heat transfer. The contribution of the various
geometrical shapes, governing parameters, materials, and
micro/macroscale ow in different forms (convection, conduc-
tion, and radiation) elicits challenges in analyzing, optimizing,
and predicting such physics. In the eld of heat exchanger and
storage, ML allows for optimizing heat transfer processes and
thermal management of porous media. In this scope, key
thermal properties, such as thermal conductivity, diffusivity,
and heat capacity, are crucial for ensuring efficient and safe
heat transfer in thermal systems, especially high ux systems
such as electronics, chemical reactors, etc.MLmodels can assist
in interpreting large thermal data sets generated by monitoring
these systems and provide critical information that will ulti-
mately lead to the identication and mitigation of potential
risks and better decision-making to ensure the desired
operation.

ML models are commonly used in the energy storage eld to
predict and improve the performance of various energy storage
systems, including thermal, electrochemical, hydrogen gas, and
hybrid energy storage methods.4–6 This includes identifying
optimal charging and discharging approaches for batteries and
thermal storage systems, as well as controlling the operation of
energy storage equipment such as inverters and charge
controllers. Furthermore, ML models can predict and diagnose
the state of energy storage systems, including identifying factors
responsible for battery degradation. The use of ML models
helps improve the performance and reliability of energy storage
systems. These models can analyze data from weather forecasts,
energy usage, and energy production to predict energy demand.
This information is then used to optimize the use of energy
storage systems and balance the energy grid through grid
integration. Thermal energy storage (TES) systems, such as
thermal batteries, can be improved using ML models. These
models analyze data from experiments andmonitoring systems,
such as temperature and heat ux, to optimize the design and
operation of TES systems. This results in improved efficiency for
the system. In general, implementing ML in energy storage can
enhance the effectiveness, functionality, and dependability of
energy storage systems. This can also lead to the optimization of
energy storage systems to manage the balance between energy
supply and demand. The incorporation of ML models into
combustion has led to many discoveries, particularly in the eld
This journal is © The Royal Society of Chemistry 2024
of optimizing and controlling combustion systems used in
power generation, industrial heating, and transportation. These
models are utilized to forecast and improve the performance of
various combustion systems, such as by identifying the optimal
fuel-air ratios and combustion conditions for maximum effi-
ciency. They also help in controlling the operation of combus-
tion equipment, such as burners and boilers, by considering
factors such as ignition, ame propagation, and burnout. An
important eld of study involves the creation of fresh
combustion technologies, specically those that produce low
levels of emissions. Using ML models, data from experiments
and simulations can be analyzed to discover innovative strate-
gies and technologies that can enhance performance while also
reducing emissions. Finally, ML models can aid in predicting
combustion-related problems. For instance, they can identify
the root cause of combustion instability, leading to enhanced
performance and reliability of combustion systems.

In the eld of electrochemical devices, ML models have
found various applications to analyze experimental data and
improve the understanding and optimization of electro-
chemical processes. For electrocatalyst experiments, MLmodels
are used to assess stability and activity, aiding in the develop-
ment of more efficient catalysts for reactions such as the
hydrogen evolution reaction (HER) and oxygen evolution reac-
tion (OER).7 ML models are also valuable for battery research,
predicting the performance and behavior of different battery
types such as lithium-ion, alkaline, carbon zinc, redox ow, and
zinc air. This information can guide battery design and opti-
mization. Supercapacitors can also benet from ML modeling.
ML models are used in corrosion prediction to analyze experi-
mental data and forecast the corrosion rate of various materials,
contributing to corrosion mitigation strategies. Additionally,
ML models can be employed in electrodeposition processes to
control the microstructure of metal coatings, leading to
improved properties. In the eld of electrolysis, ML models
explored the relationship between electrocatalyst synthesis
conditions, structural properties, and catalytic performance.8,9

Specically, in the PEM water electrolyzer, ML highlighted the
key variables that inuence current/power density and polari-
zation of the electrolyzers. In fuel cells, both PEM and solid
oxide, ML helps design porous media such as gaseous diffusion
layers (GDLs) and catalyst layers (CLs) by optimizing porosity
and pore size distribution and their impacts on fuel cell
performance.10 Finally, ML models are employed in pore-scale
modeling to predict electrochemical transport and reactions
within porous media, providing accurate predictions of the
behavior of charged species.

The review paper focuses on the ML models in hydrocarbon
porous media, as a complex and dynamic system, to foremost
raise the understanding and thereaer provide an overview of
ways that optimize the recovery of hydrocarbons from the
reservoir.11 In reservoir characterization, ML models are used
for analyzing data from reservoir cores, including porosity and
permeability, for creating more accurate reservoir models. To
this end, the location of wells can be optimized to improve the
recovery of hydrocarbons from the reservoir. ML models in
reservoir history matching are used for matching production
J. Mater. Chem. A, 2024, 12, 20717–20782 | 20719
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data from oil or gas reservoirs to numerical models, which
allows for more accurate predictions of future production and
its changes over time. In enhanced oil recovery (EOR), ML
models may be employed for optimizing EOR methods
including CO2 injection and waterooding,12 by analyzing data
from the reservoirs. In rock physics modeling, ML models are
used for introducing rock physics models, whereby the
connection between rock's physical properties, such as porosity
and permeability, and the uids' properties in the rock, such as
oil and water are described. Here, pore-scale uid ow and
transport are also appraised allowing for better predictions of
oil and gas behavior in porous media. Furthermore, in the
subeld of fracture characterization, ML models can be used to
analyze data from seismic surveys and well logs to eventually
identify and characterize fractures in the reservoir, which are
critical to the uids' ow. Finally, by analyzing data from log
measurements, i.e., resistivity, porous media properties can be
determined.

Many key applications of ML can be applied to CCS porous
media. ML models can be used for analyzing data from exper-
iments on the CCS process, for instance, porosity, pore struc-
ture, and permeability, and using this to discern the CO2

behavior and thereaer optimize the CCS process.13 ML models
in predictive modeling can be used for predicting CO2 behavior
in introducing a new framework for calculating the normalized
effective permeability resulting from hydrate formation.
Furthermore, ML models can be introduced for optimizing the
CO2-EOR process, by analyzing experimental data and opti-
mizing the CO2 injection rate, timing, and location in the
reservoir. ML can make it possible to provide algorithms for
developing new materials and has attracted a great deal of
interest for its ability to accurately predict chemical and phys-
ical properties, establish structure–property relationships,
synthesize activated carbon and porous materials adsorbents
via several types of biomasses, and navigate the chemical space
to direct chemical synthesis. To determine structure–perfor-
mance correlations and choose the top descriptors that can
precisely predict the CO2 adsorption capacity, efficiency, and
selectivity, ML is applied to discover different porous materials
for carbon capture technologies. Furthermore, ML models
could predict highly accurate process condition prediction
allowing for quantifying the inuence of CO2 capacity variations
on material ranking in adsorption process technologies.14

Nowadays, researchers present cases of ML algorithm develop-
ment in various CO2 capture, storage, transport, and utilization
(CCSTU) systems. Adsorption, absorption, chemical looping,
membranes, sequestration, and hydrates are a few examples of
carbon capture or separation technology (CCST). Modeling and
simulating solvent-based carbon capture would be a progressive
effort towards the complicated governing processes of absorp-
tion, particularly chemical absorption, involving mass transfer
and chemical reactions.15

The paper reviews ML models that can be applied to
groundwater porous media to optimize the management of
water resources and ensure water is used sustainably. The ML
models are utilized for aquifer characterization, namely,
analyzing experimental data on aquifers, which include their
20720 | J. Mater. Chem. A, 2024, 12, 20717–20782
porosity, pore structure, and permeability, to understand the
aquifer water behavior and attempt to promote groundwater
management. Parameters such as recharge, ow, and storage of
aquifers can be studied over some time through ML models to
better manage groundwater resources through predictive
modeling. Concerning water quality, by analyzing data from
water quality sensors in monitoring systems, the ML models
can detect changes in water quality and therefore predict issues
such as heavy metal removal, nitrates, pH variations, and
contamination, aimed at mitigating potential risks. Data-driven
decision-making is also addressed in this eld. Regarding
groundwater recharge prediction, ML models can examine
parameters such as temperature, precipitation, and evapo-
transpiration and predict the groundwater recharge rate and
hence identify optimal conditions for recharge. Finally, further
assessments such as optimal pumping rate and drought
prediction, i.e., predicting the onset and severity of droughts,
and ood prediction, by analyzing data from weather forecasts
and water level monitoring systems, can be made using ML
models for water management decisions.

The review paper sums up by addressing the challenges and
outlook of ML in porous media. The article recollects the
challenges and relevant limitations associated with using ML
on porous media grounded on the ndings of the prior section.
With the authors' prior knowledge in this eld, this may include
issues such as the requirement for powerful computing, lack of
data, the complexity of studying porous media, dimensionality,
scaling, and validation and interpretability. The review paper
attempts to signpost new techniques to overcome these chal-
lenges and to improve the accuracy and robustness of ML
models for porous media. It additionally culminates future
research outlook for the application of ML to porous media,
such as integrating ML with other technologies such as simu-
lation and imaging and developing state-of-the-art ML methods
especially designed for porous media systems. Finally, as
a further reading and better comprehension of the scope of the
review, a list of available online databases that can be used as an
exercise to trainMLmodels and all the reviewed literature in the
manuscript as a spreadsheet are given in the ESI.†
2. Background on machine learning
and porous media

The integration of ML with porous media has been addressed
extensively during the past 10 years and, as evidenced by the
number of publications in this eld, the eld will be even more
focused on in the years to come. The review synthesizes recent
advancements and interdisciplinary applications by providing
a detailed analysis of how different MLmodels can improve and
innovate these applications, each of which is crucial to resource
management and sustainable technology advancements. Addi-
tionally, the review enjoys the addition of a supplemental
database of literature and datasets and discussions on current
challenges and future outlook. Dynamic research in ML for
porous media primarily focuses on data-based methods for
predicting the characteristics of complex porous substances in
This journal is © The Royal Society of Chemistry 2024
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transportation and chemical reactions. This area nds utility in
various sectors, including subsurface contaminant transport,16

geothermal power utilization,17 CO2 and H2 containment in
geological formations,18 water purication,19 and lithium-ion
batteries.20

One of the main challenges in this domain involves accu-
rately capturing the physical properties of pore-scale pores,
dealing with the heterogeneity and uncertain nature of porous
substances, and extrapolating these predictions to a larger
scale. By employing ML techniques to learn from different types
of data, such as visual representations or computer simulations
of porous media, we can overcome these obstacles and provide
rapid and accurate evaluations of relevant factors such as pore
volume, ow capacity, pathway complexity, and reaction rates.

ML can extract insights from various data sources, including
two or three-dimensional images, pore structure characteristics,
computational uid dynamics (CFD), or experimental nd-
ings.21,22 It can also incorporate fundamental physical constraints
or existing knowledge into the learning process to enhance
accuracy and applicability. The eld of ML applied to porous
media represents an innovative and stimulating area, offering
fresh perspectives and solutions to numerous scientic and
technical challenges related to uid movement and distribution
in complex materials. The following section briey provides an
overview various ML methods applicable to porous media.
2.1. Principles of porous media

Porous substances are characterized by two primary attributes:
(1) the presence of unlled voids or pores within the solid
material that can be occupied by liquids such as air, water, oil, or
a combination of different uids and (2) the ability to allow
various uids to pass through at specic pressure differentials.23

2.1.1. Relevant parameters
2.1.1.1. Permeability. Permeability, which refers to the ow

of liquids throughmaterials containing pores or cavities such as
rocks, soils, or ltration devices, has been extensively studied by
researchers and experts in porous media. Factors inuencing
permeability include pore volume, pathway complexity, pore
shape and size, and other porous medium characteristics.
Various methods exist to determine permeability, such as core
analysis, interpretation of well logs, and well assessments.
Permeability is commonly expressed in units of Darcy or milli-
Darcy.24

2.1.1.2. Porosity. Within the context of porous media,
porosity represents the proportion of empty spaces within the
material. It signicantly inuences the movement of liquids,
heat, and solutes within the porousmedium. Porosity is generally
quantied as a dimensionless ratio or percentage. Furthermore,
porosity can be categorized into different types: total porosity,
effective porosity, primary porosity, and secondary porosity.25

2.1.1.3. Capillarity. Capillarity refers to the phenomenon
where uids are drawn into tiny pores or porous materials due
to surface tension driven by capillary pressure. The capillary
pressure, inuenced by interfacial tension, pore size and shape,
and the wetting characteristics of the liquids and solid struc-
ture, is used to determine the pressure difference at the
This journal is © The Royal Society of Chemistry 2024
interface of two immiscible liquids. Capillarity plays a crucial
role in governing the ow, spreading, and connement of
liquids within porous media, with applications in areas such as
oil extraction, CO2 storage, groundwater decontamination, and
fuel cells.26

2.1.1.4. Sorption. Sorption, in the context of porous media,
refers to the process by which a porous material adsorbs or
absorbs a substance. This phenomenon signicantly impacts the
movement and fate of pollutants in soil and groundwater, as well
as the sequestration and retrieval of gases such as CO2 and CH4.
The properties of the substance, the porous material, and the
environmental conditions all play a crucial role in inuencing
sorption. Sorption can exhibit nonlinearity, meaning that the
sorbed substance amount does not correspond linearly to its
concentration in the liquid phase. This nonlinearity arises from
the heterogeneous nature of the porousmaterial, the arrangement
of sorption sites, and competition among different substances for
the same sites. Additionally, sorption can exhibit disequilibrium,
where the equilibrium between the solid and liquid phases is
delayed or hindered in rate. This phenomenon is due to substance
diffusion within the pores, mass transfer between distinct pore
regions, and the kinetics of sorption reactions.27

2.1.1.5. Fluid–solid interactions. The interaction between
uids and solids in porous media, known as uid–solid inter-
action, explores the interplay at the pore scale and its implica-
tions for the macroscopic properties of the porous material.
This interaction encompasses uid ow, solid deformation,
mass transfer, chemical reactions, and phase transitions.
Fluid–solid interaction has signicant applications and conse-
quences in elds such as geomechanics, hydrology, petroleum
engineering, environmental engineering, and biomedicine.28

2.1.2. Relevant equations. The fundamental theories of
porous media rely on mathematical formulations of equations
that conserve mass, momentum, and energy for both the liquid
and solid phases within the porous medium. Different models
can be derived to describe porous media's ow and transport
behavior, depending on the assumptions and simplications
employed. Some commonly used models include.

2.1.2.1. Darcy's law. Darcy's law, which serves as the foun-
dational model, relates the uid velocity to the pressure
gradient within the porous medium. According to this law, the
volumetric ow rate of the uid is directly related to the cross-
sectional area of the porous medium, its hydraulic conduc-
tivity, and the hydraulic gradient (pressure or head difference
per unit length) along the ow direction. Mathematically, Dar-
cy's law can be expressed as:29

q ¼ kA

m

DP

L
(1)

In this equation, q represents the Darcy ux, k denotes the
permeability, A is the cross-sectional area (m2), DP signies the
pressure difference, and L corresponds to the length of the
porous medium. Darcy's law is applicable for low Reynolds
number ows in homogeneous and isotropic porous media.

2.1.2.2. Brinkman's equation. Regarding porous substrates,
the concept of Brinkman characterizes an advancement of
J. Mater. Chem. A, 2024, 12, 20717–20782 | 20721
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Darcy's law, encompassing the inuence of uid thickness on
the ow through the porous material. An extension of Darcy's
law, the Brinkman equation integrates a component reecting
the Laplacian of velocity in accordance with the Stokes equation
for viscous movement. The Brinkman equation is expressed as
follows:30

�Vpþ mV2u ¼ �m

k
u (2)

In this equation, p represents pressure, m denotes the
dynamic viscosity of the uid, and u signies Darcy's velocity.
The rst term on the le symbolizes the pressure gradient, the
second term represents the Brinkman viscosity factor, and the
resistance term of Darcy is depicted on the right side.

This Brinkman equation proves effective in modeling uid
movement within porous substances exhibiting low porosity,
reduced permeability, or high velocity, where viscosity impacts
are more evident. The Brinkman equation can also be
combined with other elements to account for supplementary
inuences such as inertia, reactions, diffusion, and heat
transfer within porous substances.

2.1.2.3. Forchheimer equation. In relation to porous
substrates, the Forchheimer equation denotes a notion that
encompasses a modication of Darcy's law, incorporating the
inertial effects of uid motion through the porous material. The
Forchheimer equation, an expansion of Darcy's law, encom-
passes a term signifying the squared relationship between the
pressure gradient and velocity, akin to the Bernoulli equation
for non-viscous motion. The Forchheimer equation can be
formulated as follows:31

�Vp ¼
�m
k
þ rbjuj

�
u (3)

In this equation r refers to the density of the uid, b is the
Forchheimer coefficient and u denotes Darcy's velocity.

The Forchheimer equation proves valuable in modeling the
movement of uid within porous substances featuring high
porosity, increased permeability, or high velocity, where inertial
effects become noticeable.

2.1.2.4. Richards' equation. In the case of porous substrates,
Richards' equation represents a concept that encompasses
a partial differential equation elucidating the movement of
water in unsaturated soils, where gravitational and capillary
effects play a signicant role. This equation is based on the
Darcy–Buckingham law, representing water ow in porous
substances under varying saturation conditions, and the law of
mass conservation for an incompressible porous substance
with consistent liquid density. The equation can be formulated
as follows:32

vq

vt
¼ v

vz
�
�
KðhÞ vh

vz
þ kðhÞ

�
(4)

In this equation, q represents the volume-based water
content, t denotes time, K represents the hydraulic conductivity,
20722 | J. Mater. Chem. A, 2024, 12, 20717–20782
h signies the pressure head of the liquid, and z symbolizes the
unit vector in the vertical direction.

Richards' equation proves effective in modeling the move-
ment of water in the vadose zone, which is the region between
the atmosphere and the aquifer, where saturated and unsatu-
rated conditions can coexist. The equation can also be
employed to investigate various phenomena such as water
inltration, drainage, evaporation, irrigation, plant transpira-
tion, soil erosion, pollutant transportation, and heat transfer in
porous substances.

2.1.2.5. Navier–Stokes. The Navier–Stokes equation is
a crucial mathematical model that characterizes the motion of
uids by considering the conservation of mass, momentum,
and energy. It can be expressed in the general form below:

r

�
vu

vt
þ u� Vu

�
¼ �Vpþ V� sþ rf (5)

Here, p signies the uid pressure, s symbolizes the viscous
stress tensor, and f stands for the body force per unit mass. The
Navier–Stokes equation is applicable to various uid types,
including Newtonian, non-Newtonian, compressible, incom-
pressible, laminar, and turbulent, among others. However,
when uid ows through porous media, the Navier–Stokes
equation requires modication to incorporate the effects of the
solid matrix. One common approach to achieving this is using
Darcy's law. Nonetheless, Darcy's law is only valid for low Rey-
nolds number ows, and it does not account for the effects of
inertia, turbulence, or non-linearity of the uid. Additionally,
the permeability k is oen difficult to measure or unknown, and
it may vary spatially and temporally based on the properties of
the porous medium and the uid.

To address these challenges, ML techniques can be employed
to enhance the modeling of uid ow in porous media. ML can
be utilized to approximate the solution of the Navier–Stokes
equation in porous media. For instance, ML can predict steady-
state velocity elds and permeability in porous media.33
2.2. Types of learning

Fundamentally, ML operates by utilizing encoded instructions
to analyze and evaluate input data, generating predictions
within a permissible range. As new information is introduced,
these algorithms adapt, improve their functionality, and grad-
ually acquire knowledge, becoming more effective over time.

ML algorithms can be classied into four categories: super-
vised learning, semi-supervised learning, unsupervised
learning, and reinforcement learning.

2.2.1. Supervised learning. Supervised learning involves
learning from examples. A supervisor provides the algorithm
with a dataset containing specic inputs and corresponding
outputs, deciphers trends within the dataset, absorbs insights
from noted instances, and establishes conjectures to imitate the
preferred results. The supervisor continually adjusts the algo-
rithm's predictive outputs until its accuracy or performance
signicantly improves. In supervised learning, the algorithm
acts as a student meticulously studying a set of labeled exam-
ples. It analyzes the connection between the input data (pore
This journal is © The Royal Society of Chemistry 2024
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size distribution, permeability, etc.) and the corresponding
labels (ow rate and transport behavior) to learn the trends.
Supervised learning can be used in applications such as pre-
dicting uid ow properties and classifying pore types. Super-
vised learning includes tasks such as classication and
segmentation:34

(1) Classication: during categorization functions, the ML
application must deduce the group of fresh instances using the
data.

(2) Segmentation: it is the process of classifying a given set of
data into different groups. It is used in machine learning
applications to determine similarities and differences in the
data and to identify patterns and trends.

2.2.2. Semi-supervised learning. Obtaining fully labeled
data in porous media research can be expensive and time-
consuming, especially when characterizing complex properties
or rare phenomena. This is where semi-supervised learning
shines and combines labeled and unlabeled data. Labeled data
contain meaningful tags that aid the algorithm's under-
standing, while unlabeled data lack such information. This
combination enables algorithms to learn how to categorize
unlabeled data.35

Reservoir simulations pose a signicant computational chal-
lenge due to their complexity. In this situation, semi-supervised
learning offers a promising solution to this problem. By
utilizing high-resolution simulations from a limited number of
samples and combining them with lower-resolution data from
a larger set, semi-supervised learning enables more efficient
upscaling of simulations for reservoir characterization. Another
application of semi-supervised learning in porous media is its
use in identifying anomalous ow patterns. By training on
labeled data containing examples of normal and anomalous ow
patterns, a semi-supervised learning model can leverage unla-
beled data to detect potential anomalies in new datasets.

2.2.3. Unsupervised learning. Unsupervised learning
involves the algorithm examining data to identify patterns
without guidance from an answer key or human intervention. It
establishes correlations and relationships by scrutinizing the
available data. Unsupervised learning tasks the algorithm with
deciphering large volumes of data and organizing it in a struc-
tured manner.36 In the context of porous media, this could be
a vast dataset of images representing the microstructure of
various samples, or extensive ow rate measurements without
corresponding information on the specic characteristics of the
porous media they originated from. As the algorithm processes
more data, its decision-making capabilities regarding the data
gradually improve. Techniques in unsupervised learning
include clustering and dimension reduction.

(1) Clustering groups of similar datasets based on specic
criteria allows for data segmentation into multiple groups to
identify patterns within each group.

(2) Dimension reduction simplies the consideration of
variables by reducing their number, aiming to reveal the
essential data required.

Unsupervised learning enables the analysis of unlabeled
images of porous materials, allowing the quantication of pore
network complexity metrics such as connectivity and tortuosity.
This journal is © The Royal Society of Chemistry 2024
Moreover, unsupervised learning algorithms can detect anom-
alies in ow data, identifying deviations from typical ow
patterns within large datasets. This capability is particularly
useful for early detection of issues such as preferential ow
paths or blockages, which can signicantly impact porous
media behavior. Overall, unsupervised learning has proven to
be a promising tool for studying porous media, with various
potential applications in both research and industry.

2.2.4. Reinforcement learning. Reinforcement learning
encompasses organized learning methods, in which a ML
algorithm adheres to a series of activities, instructions, and end
consequences. Through pre-established regulations, the algo-
rithm investigates various possibilities and assesses each
consequence to identify the most appropriate selection. By
including experimentation and correction, reinforcement
learning allows the algorithm to acquire knowledge from prior
encounters and adapt its strategy according to the situation,
striving for the best outcomes.36
2.3. Machine learning models

ML models can be seen as soware programs designed to
identify patterns in new data and make predictions. These
models are represented as mathematical functions that take
input queries, make conjectures, and produce corresponding
outputs. Initially, the models are trained on a dataset, and an
algorithm is applied to reason over the data, extract patterns,
and acquire knowledge from it. Once trained, these models can
be used to predict unseen data.

2.3.1. Decision trees. Decision trees are a prevalent choice
for ML models that can handle both regression and classica-
tion challenges. A decision tree employs a tree-like diagram of
decisions alongside their potential repercussions and results. In
this, every internal node serves to represent a check on an
attribute and each branch symbolizes the result of that test. The
greater the number of nodes a decision tree possesses, the more
precise the outcome will be.

Decision trees' merits lie in their simplicity and ease of
implementation, but they fall short in precision. They nd
extensive application in operational research, especially in
decision analysis, strategic planning, and primarily in ML.

In relation to porous substances, decision trees can aid in
determining the crucial features inuencing CO2 adsorption,
such as textural characteristics, compositional properties, and
adsorption parameters.37

2.3.2. Random forest. The random forest represents an
ensemble learning technique encompassing a considerable
quantity of decision trees. Each tree within a random forest
predicts a result, and the prediction receiving the most votes is
deemed the nal outcome.38

A random forest model is versatile, being applicable to both
regression and classication tasks. For classication tasks, the
outcome from the random forest is derived from the majority
voting. Conversely, the outcome in regression tasks originates
from the mean or average of predictions produced by each tree.

2.3.3. Support vector machines. The support vector
machine (SVM) is a prevalent ML algorithm predominantly
J. Mater. Chem. A, 2024, 12, 20717–20782 | 20723
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employed for classication and regression tasks. More speci-
cally, it excels at resolving classication challenges. SVM's
primary goal is to identify optimal decision boundaries within
an n-dimensional space capable of segregating data points into
distinct classes. The superior decision boundary is termed
a hyperplane. The SVM employs the extreme vector to ascertain
this hyperplane, which is why these vectors are dubbed support
vectors.39

2.3.4. Neural networks. Articial neural networks (ANNs)
or simply neural networks constitute a group of ML algorithms
that derive inspiration from the human brain and, as per the
Universal Approximation Theorem, can approximate any func-
tion.40 Furthermore, due to their exibility and modularity,
neural network's structure can be customized for various
supervised, unsupervised, and reinforcement learning applica-
tions. The construction of deep learning (DL) models is made
possible by layering numerous levels in neural networks, which
enhances the models' ability to extract features and learn
intricate data representations. Hence, the neural network is
a favorite algorithm across all domains of ML, consistently
demonstrating remarkable results in all sorts of practical
issues.

Numerous varieties of neural networks exist, each with
varying complexity levels. All aim to emulate the human brain's
functionality to tackle complex problems or tasks. The cong-
uration of each neural network type somewhat mirrors neurons
and synapses. However, they differ in complexity, applications,
and structure. The differences extend to modeling articial
neurons within each type of neural network and the connec-
tions between each node. Other distinctions include the way
data navigate through the neural network and the density of the
nodes. The most common types of neural networks used in
porous media are detailed in the following.

2.3.4.1. Multi-layer perceptron. A multi-layer perceptron
(MLP) falls under the category of feedforward neural network
(FFNN).41 It is a versatile and commonly used architecture for
supervised learning tasks such as classication and regression.
MLPs are the most fundamental deep neural network, consist-
ing of a sequence of fully interconnected layers (an input layer,
one or more hidden layers, and an output layer). Each neuron
within the network processes input data using weighted
connections and activation functions. MLPs can be utilized to
circumvent the need for extensive computational resources
required by modern deep learning frameworks.

2.3.4.2. Convolutional neural networks. Convolutional
neural networks (CNNs) constitute a variant of neural networks
predominantly utilized for processing image and visual data.
They are designed to autonomously learn and extract hierar-
chical patterns and features from input images. CNNs encom-
pass convolutional layers that apply lters to input data,
followed by pooling layers for downsampling and fully con-
nected layers intended for classication or regression tasks.

2.3.4.3. Recurrent neural networks. A recurrent neural
network (RNN) represents another category of ANNs that
leverages sequential data input. RNNs were conceived to tackle
the time-series challenge posed by sequential input data. An
RNN's input comprises the current input along with prior
20724 | J. Mater. Chem. A, 2024, 12, 20717–20782
samples. As a result, the connections between nodes form
a directed graph that follows a chronological order. Addition-
ally, every neuron in an RNN possesses an internal memory that
preserves computational information from prior instances.

2.3.4.4. Physics-informed neural networks. Physics-informed
neural networks (PINNs) are a groundbreaking fusion of arti-
cial intelligence and mathematical physics, specically tailored
to address the complexities of partial differential equations
(PDEs). Their modus operandi involves projecting solutions to
these PDEs through the ne-tuning of a neural network aimed
at minimizing a meticulously designed loss function. This loss
function is imbued with critical elements representing the
initial and boundary conditions within the space-time domain
and the residual of the PDE at specic loci, known as colloca-
tion points. As PINNs function under the umbrella of deep
learning models, they deliver a calculated approximation of
a differential equation's solution at a specic point within the
computational domain aer completing their training. A revo-
lutionary stride in the eld of PINNs is the incorporation of
a residual network that envelops the primary physics equations.
In essence, the PINN's training process is viewed as an unsu-
pervised learning approach, eliminating the necessity for pre-
labeled data that typically originate from prior simulations or
experiments.

The PINN algorithm is a grid-independent method that
procures solutions to PDEs by recasting the task of directly
solving governing equations into an optimization challenge for
the loss function. This transformation becomes feasible by
weaving the mathematical model into the fabric of the network
and enriching the loss function with a residual term extracted
from the governing equation. This residual term acts as
a constraint that focuses on the range of acceptable solutions,
ensuring more precise and reliable results.
2.4. Evaluation metrics

Evaluation metrics serve as tools to quantify the performance
level of an algorithm or model. They offer a numerical indica-
tion of the model's success in meeting its objectives, such as
precise prediction of results or data categorization. Diverse
types of tasks might necessitate the application of different
evaluation metrics.37,42

2.4.1. Classication model. Evaluation metrics for classi-
cation models provide a quantiable analysis of the model's
ability to correctly categorize data into distinct groups.
Common metrics for assessing classication models are accu-
racy, precision, recall, and F1-score. Accuracy quanties the
ratio of instances that were correctly classied out of the total
number of instances. Precision is used to determine the fraction
of positive instances that were correctly identied out of all
instances the model predicted as positive. Recall measures the
fraction of actual positive instances that the model correctly
identied. The F1-score is the harmonic mean of precision and
recall, providing a balanced measurement of both aspects.
When evaluating a classication model, it's vital to consider
multiple metrics as relying on one could fail to give a compre-
hensive view of the model's performance.
This journal is © The Royal Society of Chemistry 2024
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2.4.2. Regression model. Evaluation metrics for regression
models provide a numerical estimation of the model's capa-
bility to precisely predict continuous or numerical outcomes.
Commonly used metrics for evaluating regression models
include mean squared error (MSE), root mean squared error
(RMSE), mean absolute error (MAE), and R-squared. MSE
measures the average of the squared discrepancies between
predicted and actual values, while RMSE takes the square root
of MSE to offer a metric in the same units as those of the pre-
dicted values. MAE calculates the average of the absolute
discrepancies between predicted and actual values. R-squared
quanties the fraction of the variance in the dependent variable
that can be explained by the independent variables in the
model.
3. Applications of machine learning to
porous media

This section presents a thorough review of the interface of ML
and porous media in the six subsections, namely, heat
exchanger and storage, energy storage and combustion, elec-
trochemical devices, hydrocarbon reservoirs, CCS, and
groundwater. Scientic research on porous media has tradi-
tionally been dominated by empirical and semi-empirical
models which, while useful, oen fail to capture the complex
inherent interactions in such materials. In recent years, appli-
cations of porous media have been pronounced, especially in
energy applications, including electrochemical devices43,44 (i.e.,
batteries, fuel cells,45 supercapacitors,46 etc.), enhanced oil
recovery, different energy storage technologies, and also envi-
ronmental applications, such as carbon capture and water
ltration. The advent of ML offers transformative potential in
this regard, providing tools that can improve data processing,
integrate large datasets, and uncover patterns that are not
immediately discernable. ML's capability to adaptively learn
from data without explicit programming leads to the assess-
ment of porous media in exceptional detail. This facilitates
a more rened understanding of physics such as ow and
transport phenomena, adsorption and absorption, phase
changes, and reactive dynamics within porous structures, which
are critical for optimizing applications and poised to address
some of the most important challenges in engineering and
environmental science today. This discussion aims to engage
readers by linking theoretical advancements in ML with prac-
tical, impactful applications in porous media, highlighting how
these integrated approaches are transforming the assessments
of porous media.
3.1. Heat exchanger and storage

Heat transfer represents a pivotal and foundational issue within
thermal science, holding absolute signicance in today's global
economic and energy landscape. The efficiency of heat transfer
systems is inuential in mitigating energy waste and protecting
the current fossil fuel reservoirs. It is conducted using energy
recovery systems, such as economizers, and enhancing heat
transfer methods, such as extended surfaces, turbulators,
This journal is © The Royal Society of Chemistry 2024
microchannels, and phase change materials (PCMs). Moreover,
the optimization of thermal systems, encompassing the
extraction, transportation, and utilization of energy sources,
particularly those facing challenges in temporal and spatial
production, is imperative. Efficient heat transfer is needed
using the methods of heat transfer increment, as well as the
optimal input conditions. Another positive outcome of effective
heat exchangers and storage devices is the reduction of pollu-
tion, contributing to improving adverse environmental impacts
and climate change, especially for those systems that apply
combustion ue gases.

The pursuit of a heat exchange system with superior thermo-
hydraulic performance necessitates the use of tools for opti-
mization and prediction. ML approaches, which initially
emerged over half a century ago for pattern recognition, have
evolved into sophisticated and professional methods. Conse-
quently, tools for optimizing and predicting thermal system
parameters are now readily available. The combined capabil-
ities of optimization and prediction empower a thermal system
to operate in a tuned mode, facilitating control systems
a process that would be time-consuming with traditional
analytical approaches. As well as the prediction of steady
conditions, ML now takes advantage of transient estimation,
enabling us to predict and respond to changes in real-time. This
is particularly crucial in scenarios where thermal systems
experience rapid variations, such as during startup and shut-
down, or when subjected to varying external conditions. The
ability to estimate transients allows MLmodels to adapt quickly
and optimize control strategies, leading to enhanced energy
efficiency, improved system performance, and increased reli-
ability in thermal processes.

Accurately determining the conditions for the efficient
operation of thermal systems requires handling large volumes
of data, a task that becomes slow and hard without the aid of
ML methods. This is because thermal systems are affected by
both thermal and hydrodynamic conditions as well as the
ambient status and energy resource quality. Recognizing the
potential of ML, it emerges as a key tool not only in setting
a thermal system at its desired operational point but also in the
design phase. It is such that the optimum dimensions of the
geometry can be determined using ML. This section aims to
explore previous endeavors that utilized ML models in thermal
systems and porous media. As the chronological trend indicates
continuous improvement in prediction and optimization
methods, there is condence that future ML methods will
reshape the current engineering system trends.

3.1.1. General heat transfer mechanisms. Numerous
inquiries have delved into the underlying mechanisms of heat
transfer, encompassing conduction, convection, and radiation.
Within the realm of porous media, there has been a notable
expansion in the application of ML. This expansion involves the
utilization of a genetic algorithm to pinpoint the optimal
operational point and/or the deployment of an ANN for
predictive purposes across the three fundamental heat transfer
mechanisms.

Moreover, recent studies have emphasized the role of ML in
assessing the characteristics of convection heat transfer,
J. Mater. Chem. A, 2024, 12, 20717–20782 | 20725
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especially within porous media. Fig. 2 provides a visual repre-
sentation, illustrating the integration of ML techniques to
analyze and optimize the features of convection heat transfer
processes in porous media. The incorporation of ML not only
enhances our understanding of heat transfer phenomena but
also paves the way for more efficient and targeted approaches to
optimizing heat transfer characteristics within porous media.

Keykhah et al.48 numerically simulated a tube with porous zone
inserts lled with water–silver nanouid, which is a suspension of
a liquid and nanoparticles. The Darcy number le an increment
and mitigation effect on the Nusselt number and friction factor,
respectively. Furthermore, the nanouid volume fraction made
the heat transfer increase and the friction factor decrease. Particle
swarm optimization (PSO) was applied to nd the optimum
conditions considering the Nusselt number and friction factor as
the objectives in the tube of a heat exchanger. TOPSIS, LINMAP,
and Shannon entropy were used to select the optimum point;
however, Shannon entropy was the best decision-maker. It is
worth noting that TOPSIS, LINMAP, and Shannon entropy are
called decision-makers to nd the best point of working condi-
tions among the Pareto frontiers, showing the set of solutions
having the best trade-off among the whole objectives.

Selimefendigil et al.49 proposed a 3D channel equipped with
porous blocks for dehumidication and heat transfer of wet air.
The constrained optimization by the linear approximation
(COBYLA) method was used to optimize the geometrical
features of the blocks concerning heat transfer. COBYLA is
a derivative-free optimization method used to solve problems
with bound and general constraints. It approximates the
objective function and constraints using linear models and
iteratively nds solutions that minimize the approximations
while satisfying the constraints. The full simulation includes
unsteady heat andmass transfer. The ow behavior between the
blocks caused the temperature difference in the domain. A
transient ANN was introduced using Levenberg–Marquardt
(LM) with backpropagation (BP) by feeding the time and drying
temperature as dependent variables and the liquid saturation as
the output. However, the author recommended generating an
ANN with time-dependent variables as the model inlet.

Khan et al.50 numerically simulated porous ns with various
shapes, called trapezoidal, rectangular, and dovetail, by
considering convective and radiative heat transfer. Applying
Fig. 2 Application of ML in the prediction of temperature using spa
convection of a porous medium, Zobeiry and Humfeld,47 reproduced w

20726 | J. Mater. Chem. A, 2024, 12, 20717–20782
1001 datasets, a neural network was constructed using the LM
algorithm and cascade feedforward back-propagated approach.
Using the inlet parameters, such as the inclination angle, tip
tapering, and porosity, the temperature prole throughout the
ns was predicted. A comparison between the captured results
and those obtained by PSO and gray wolf optimization was
accompanied and a negligible disparity was found. The results
indicated that, in terms of having higher heat transfer, the n
shapes could be ranked as dovetail and rectangular followed by
the trapezoidal n prole.

Liu and Liu51 numerically simulated a heat-transferring tube
involving porous ring inserts. The CFD results were coupled
with an online multi-objective process, which was a non-
dominating sorting genetic algorithm (NSGA-II), to nd the
optimum working conditions considering the Nusselt number
and friction factor. The tube's radii, Damkohler number, and
porosity were set as independent parameters. To reduce the
undesirable populations in the genetic algorithm, they applied
a penalty function, which removed the results with a higher
friction factor. TOPSIS was used as a decision maker, showing
more than a 40% increment in the Nusselt number and an 80%
decrement in the friction factor.

Butt et al.52 tested an inverse multiquadric radial basis neural
network for the problem of Casson nanouid, which is a non-
Newtonian uid inherently, on a stretchable porous surface
under an affecting magnetic force. The genetic algorithm was
used for training and the solution method resulted in ODEs.
The Casson parameter, Brownian motion parameter, Prandtl
number, stretching parameter, and porosity parameter were
some parameters to feed, and the velocity, temperature, and
nanouid concentration were predicted with an absolute error
lower than 10−4. However, the ability of the current method is
required to test for stiff sets of equations.

Ahmad et al.53 investigated a porous n model through an
analytical-numerical analysis. Two different porous types,
which were silicon nitride and alumina, were compared and the
prediction and optimization process was conducted respectively
using an ANN and GA. It was concluded that silicon nitride had
higher heat transfer than alumina. Therefore, alumina was
highlighted with a higher temperature in the porous n. The
hybrid ANN-GA with the interior-point technique (IPT) showed
more accurate and efficient optimum results.
cial and temporal parameters as independent variables in transient
ith permission from Elsevier.

This journal is © The Royal Society of Chemistry 2024
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Su et al.54 performed high-performance computing (HPC)
coupled with an ANN for a double-diffusive problem, including
mass and thermal diffusion. Furthermore, a multi-objective
optimization for the functions of the Nusselt and Sherwood
numbers was performed. The authors tried to solve the problem
that needed a large volume of data to feed the ANN by applying
the weighted objective functions, and aid from an HPC is
required. The macroscopic porous properties and thermal
features were fed to the ANN. It was shown that the random
ordering of training data helped the accuracy of prediction
when a sparse set of data is available, as the ANN's precision
depended on the data distribution as well as the volume of data
to feed.

Raja et al.55 considered a three-dimensional hybrid nano-
uid ow over a stretching/shrinking porous surface including
radiative heat transfer using an analytical-numerical approach.
The solution approach converted the PDEs to ODEs. The ANN
was constructed using the input parameters of mass ux
parameter, thermal relaxation parameter, stretching/shrinking
parameter, and Prandtl number. The prediction was made on
a hydrothermal eld. The stretching/shrinking parameter
changed the mass ow rate and velocity prole, while the vari-
ation in the radiation heat ux affected the temperature
gradient. The author proposed a solution using AI based on
infrastructure for future studies.

Ahmad et al.56 used an ANN involving the Levenberg–Mar-
quardt backpropagation to predict the temperature distribution
of a n attached to the heat sink. The n was made of a func-
tionally graded porous material to decrease the thermal
gradient and three mechanisms of conduction, convection, and
radiation heat transfer were considered through an analytical-
numerical solution procedure. It was illustrated that the non-
homogeneity of the n increased heat transfer and the
temperature gradient along the n. It was such that the func-
tionally graded materials made the temperature gradient
negligible throughout the n compared to the homogeneous
materials.

Sajjad et al.57 proposed an ANN to predict convective heat
transfer for pool boiling with R2 > 0.97 and MAE = 5.74%.
Owing to the involvement of various parameters in problem
physics, the prediction was hard using traditional methods.
Therefore, a neural network could be benecial and precise for
predicting various uids. Some input parameters were porosity,
coating thickness, and particle size. Three hidden layers with
neuron numbers of respectively 30, 15, and 1 were chosen.

The onset of convection cooling considering the rotation and
magnetic eld was studied in a horizontal bidispersive porous
layer by Singh et al.58 using a neural network with SVM type. The
network was applied to nd the marginal state and instability
mode. Having the targets of the Taylor number, the Hartman
number, and the Vadasz number, dened as the ratio of the
thermal diffusivity of the base uid to that of the nanoparticles,
to determine the stationary zone, it was found that the rotation,
inertia, and magnetic eld postponed the instability beginning,
and therefore, steady working conditions could be extended.
The two hidden layers worked better than the neural network
This journal is © The Royal Society of Chemistry 2024
with only one hidden layer. The Hartmann number could
motivate the instability mode from the stability mode critically.

Increasing heat transfer in a proton exchange membrane
fuel cell was simulated by Pourrahmani et al.59 A series of wave-
like porous ribs made of aluminum were mounted in the gas
ow channel to increase heat transfer. The results indicated
that the height of the rst porous layer played a critical role in
the Nusselt number and PEC. The latter indicates the ratio of
the heat transfer improvement to the cost of the pumping. An
ANN was also applied to produce a large amount of data to
analyze the effects of the geometrical parameters on heat
transfer and friction loss. The results showed the salient role of
the friction factor in the investigated system. Furthermore, it
was illustrated that the PEC could be an inuential parameter in
design geometry.

Alizadeh et al.60 proposed an accurate estimator for the
transport phenomena of a nanouid passing through a cylinder
in a porous medium using a support-vector regression (SVR)
ANN. The semi-similarity technique by considering the local
thermal non-equilibrium assumption was applied to nd the
results for training the ANN. As the problem involved a dozen
parameters, the ANN decreased the time for a response by more
than 90%. The correlations for the Nusselt number and shear
stress using the PSO algorithm were derived.

Alhadri et al.61 analyzed a hybrid nanouid ow with water
base uid over a stretching porous surface. The governing PDEs
were converted into ODEs and then solved numerically using
the shooting method. An ANN was produced to predict the
Nusselt number and friction factor using the input parameters
of porosity, Hartmann number, inertia coefficient, and suction/
injection parameter. The coefficient of determination was
found to be greater than 0.98. An optimization analysis was
indicated using the response surface methodology (RSM). The
main goal of RSM is to optimize a response variable, such as
maximizing yield or minimizing cost, by exploring the rela-
tionship between this response and the input variables. RSM
uses statistical models, oen based on polynomial equations, to
approximate the behavior of the response variable.

Mohebbi Najm Abad et al.62 instigated heat and mass
transfer of a hybrid nanouid in a porous medium. As the
problem involves many parameters, conventional approaches to
solving it might be complex and prone to failure. Therefore,
they used an ANN. Furthermore, a PSO was also applied to
derive some correlation to estimate the Nusselt and Sherwood
numbers. Stemming from the dependency of the targets on
various parameters, the feature selection process was per-
formed. The results showed that the correlation involved at
least ve parameters that could reach an acceptable accuracy.
Porous properties and the nanouid volume fraction were
among the most important ones.

Rajabi et al.63 analyzed the accuracy and robustness of a deep
learning method for the problem of natural convection. The
porous media was selected as a heterogeneous type. The
encoder–decoder convolutional neural network (ED-CNNs) was
applied for image-to-image processing as the input-to-target for
a porous cavity. The training was conducted through high-
resolution imaging and the output generally showed good
J. Mater. Chem. A, 2024, 12, 20717–20782 | 20727
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accuracy. The zone with lower precision was found in the
middle of the cavity where the temperature gradient fell. The
training using a heat map in this method needed a large
quantity of data, as they used 1000 samples. The method was
benecial for the uncertainty analysis of the meta-model.

The Brownian and thermophoresis effects were studied by
Khan et al.64 in a uid ow passing through two parallel porous
plates. Brownian motion refers to the random movement of
particles suspended in a uid (liquid or gas) due to collisions
with the molecules of the uid. Thermophoresis is the move-
ment of particles in a uid medium due to a temperature
gradient. The governing PDEs were transformed into ODEs
using the homotopy analysis method. Viscosity, porosity,
Prandtl number, and some other parameters were used as input
parameters to the ANN applied to predict the concentration and
temperature prole. The accuracy of the method showed well as
the MSE fell between 10−14 and 10−7. The authors would like to
test the applied ANN, which was a back-propagated neural
network with the Levenberg–Marquard system to predict other
uid ow problems.

3.1.2. Heat exchangers. Various heat exchangers incorpo-
rating porous media nd widespread application across
industries such as oil reneries, power plants, and heating,
ventilation, and air conditioning (HVAC) systems. Extensive
research has been conducted due to the recognized advantages
Fig. 3 The schematic diagram for application of the feed-forward algor
and normalization, the second one is feature selection for removing the
validation for having an accurate prediction, Yang et al.,65 reproduced w

20728 | J. Mater. Chem. A, 2024, 12, 20717–20782
of high efficiency in heat exchangers employing porous media,
resulting in reduced energy consumption and costs. The rst
section investigates traditional heat exchangers, specically
time-tested shell-and-tube congurations, as the oldest cate-
gory. Consequently, it is anticipated that greater emphasis will
be placed on advancing this particular heat exchanger type.

The subsequent focus involves advancements in
manufacturing technologies targeting the fabrication of micro
and nanoscale structures, particularly within miniature chan-
nels lled with porousmedia relevant to heat andmass transfer.
This exploration is detailed in the next section. Surprisingly, the
integration of ML into micro/nanoscale heat transfer with
porous media has not been extensively explored, as indicated in
Fig. 3. It should include data set creation, which is expensively
hindered in experiments as well as feature selection methods
and data training. The last part of this section reviews earlier
studies on solar applications where porous media play a crucial
role. Recognizing the signicant role of heat exchangers in
renewable energy production, the nal section explores the
application of ML in heat exchangers within solar systems
equipped with porous parts.

3.1.2.1. Conventional types. Siavashi et al.66 numerically
studied heat transfer augmentation and pressure loss incre-
ment in a tube of a heat exchanger by inserting gradient and
multilayer porous media and applying the water-alumina
ithm in microchannel flows; the first step includes data preprocessing
weak related parameters, and the final step involves model tuning and
ith permission from MDPI.

This journal is © The Royal Society of Chemistry 2024
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nanouid. Six different porous types, including linear
increasing particle size (LIPS), linear decreasing particle size
(LDPS), stepwise increasing particle size (SIPS), stepwise
decreasing particle size (SDPS), constant minimum particle size
(CMIPS), and constant maximum particle size (CMAPS) were
used. In LIPS structures, the pore size increases linearly and
gradually along the length or depth of the material, while LDPS
has a linear decrease in pore size. SIPS structures have discrete
steps where the pore size increases abruptly rather than grad-
ually; however, SDPS shows a similar structure when pore sizes
decrease. CMIPS (CMAPS) structures maintain a constant
minimum (maximum) pore size throughout the material. The
maximum value of PEC (performance evaluation criteria) was
captured by the PSO algorithm considering the independent
parameters of porosity and grain size. The optimization for
simultaneously considering particle size and porosity led to the
same arrangement for independent parameters when consid-
ering each of them separately. Applying the nanouid made the
PEC three times higher.

Meng et al.67 used porous ns to increase heat transfer in
a heat exchanger equipped with thermoelectric modules by
a numerical simulation. An NSGA-II algorithm along with the
TOPSIS decision maker was employed to increase heat transfer
and decrease pressure drop by feeding the variables of the
position, number, and relative distance of porous ns. A higher
power generation and lower pressure drop by respectively about
79% and 21% was achieved by introducing porous pin ns. The
dense downstream distribution for pin ns was shown to have
the best performance compared to other distributions. A novel
index was introduced to aid in picking up the optimum solution
from the Pareto frontiers, meaning the electrical power gener-
ated by considering the pressure drop penalty. The velocity
prole in the solution was reduced by increasing the porosity
factor, the volumetric concentration, and the magnetic eld
amplitude.

Abbasi et al.68 numerically simulated a shell-and-tube heat
exchanger with some segmental porous baffles. Inserting more
baffles increased heat transfer, while it upgraded the pressure
loss penalty. An ANN was trained to predict the crucial func-
tions, which were the heat transfer rate and pressure drop to
calculate the system performance. Furthermore, a multi-
objective optimization along with a TOPSIS decision maker
was performed to nd the best values for baffles' features by
minimizing the pressure drop and maximizing the heat trans-
fer. The process recommended 10 porous baffles, a baffle angle
of 111.9°, and a thickness of 16.69 mm, which led to a heat
transfer rate and pressure drop respectively of 523.81 kW and
48.87 kPa.

Athith et al.69 numerically simulated a heat exchanger
partially lled with high porosity metal foams, made of
aluminum, copper, and nickel with two pore densities, 20 pores
per inch (PPI) and 40 PPI. The authors intended to nd the best
performance of the heat exchanger by maximizing heat transfer
and minimizing the pressure drop. Therefore, a multi-objective
optimization using the NSGA-II algorithm was performed link-
ing with an ANN to predict the objectives, which were the heat
transfer rate and pressure loss. Although the porous inserts
This journal is © The Royal Society of Chemistry 2024
increased pressure drop, they could improve heat transfer
signicantly more than 5 times compared to the case without
obstacles.

Chen et al.70 conducted a transient numerical simulation for
a vertical geothermal heat exchanger. Soil was considered
a porous medium. The borehole depth was predicted through
a three-layer ANN using the input parameters of the soil thermal
conductivity, grout thermal conductivity, inlet water tempera-
ture, underground water velocity, and heat ux. They concluded
that the porosity of soil and volumetric heat capacity had an
insignicant effect on the results. The ANN worked with 10
neurons and R2 > 0.9999; however, without using the Leven-
berg–Marquardt algorithm, the prediction error was critically
enhanced.

Zheng et al.71 optimized the porosity of a multi-layer porous
medium, ranging from 0.5 to 1.0, by coupling the ANSYS Fluent
and MATLAB soware. The application of their study was in the
tubes of shell-and-tube heat exchangers. The multi-objective
optimization found the appropriate porosity to have
maximum performance evaluation criteria (PEC). The number
of porous layers was also determined.

Mohammadi et al.72 numerically simulated a shell and tube
heat exchanger equipped with porous baffles. An ANN was
conducted coupled with an NSGA-II algorithm to nd the
optimum values of the porosity, permeability, and baffle cut for
the objectives of heat transfer and pressure drop; each depen-
dent parameter took six values. Additionally, the ANN was
applied for sensitivity analysis, which showed that the baffle cut
mostly contributed to the heat transfer enhancement and
pressure drop decrement, respectively by 88% and 71%. The
permeability was set in the next rank. The authors declared that,
owing to steady state assumption, the fouling phenomenon was
not considered a limitation of the simulation.

Baiocco et al.73 numerically evaluated a heat exchanger using
aluminum metal foam, electrically deposited with copper for
increasing conductivity. A neural network was applied to predict
the characteristics of the heat exchanger with a general error of
less than 1%. Input temperature, airow speed, and foam
material were the inputs, while the outlet temperature was the
output. An electroplating process increased heat transfer and
enhanced efficiency by about 10%. The numerical simulation
was performed considering non-local thermal equilibrium.

Deshamukhya et al.74 used PSO to nd the optimum design
variables for a rectangular n attached to a heat exchanger. The
n was made of porous materials and the porosity, the Dam-
kohler number, and the ratio of thickness to length were
selected as input parameters to nd the maximum value of the
heat transfer rate. PSO had a higher convergence speed, as it has
a derivative-free nature. The tip temperature decreased by
increasing the Damkohler number, while heat transfer
increased. PSO elicited higher heat transfer while increasing the
porosity decreased the heat transfer.

3.1.2.2. Micro/mini channels. Microchannels and mini
channels are small-scale conduits through which uids ow.
Microchannels have dimensions in the range of micrometers to
millimeters and exhibit a high surface-to-volume ratio, enabling
enhanced heat transfer and uid ow properties. They are
J. Mater. Chem. A, 2024, 12, 20717–20782 | 20729
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employed in applications such as microuidics and electronics
cooling. Mini channels are slightly larger, ranging from milli-
meters to centimeters, and are used in areas such as compact
heat exchangers and cooling systems. Both micro and mini
channels offer unique uid dynamics and heat transfer char-
acteristics due to their reduced size compared to conventional
channels.

Wang et al.75 performed a multi-objective optimization for
nding a higher thermal resistance and a lower pumping power
for a double-layered porous microchannel. Geometrical features
were chosen as independent parameters. The numerical simu-
lations showed an inverse trend for both objectives. The NSGA-
II algorithm optimization results showed that the cooling
performance increased by about 14% and pumping power
decreased by nearly 16% compared to the reference case. The
numerical results indicated that the upper channel was
involved more in the pumping power and the lower channel was
critical for improving heat transfer. The importance of various
geometrical variables was derived.

Bayer et al.76 presented a microchannel with wavy double-
layered porous walls to increase heat transfer as well as solve
the problem of high-pressure loss. More than 3000 numerical
tests were conducted to build an ANN based on the Levenberg–
Marquardt backpropagation algorithm. The eight geometrical
scales were used as independent parameters and convective
heat transfer and pressure loss were the outputs of the ANN. Six
neurons guaranteed the precision of the prediction. Aer vali-
dation of the proposed ANN using 30% of the data, the three
best performers were introduced. The introduced patterns not
only increased heat transfer but also decreased the temperature
uniformity on the heat sink. The thermal efficiency factor was
shown increase if the top wall became wavy and the bottom was
straight instead of making a wavy shape on both walls.

Khosravi et al.77 applied an ANN to predict entropy genera-
tion in a microchannel under a constant thermal ux with
porous ns lled with the water–silver/graphene hybrid nano-
uid. A neural network was constructed using the parameters,
such as different porous medium thicknesses, nanoparticle
concentrations, and inlet mass ow rates. Various neuron
numbers for the ANN were tested and it was found that the ANN
could be accurate with two hidden layers having 12 and 20
neurons. The Bejan number was reported to be 0.944, showing
that the thermal irreversibility was salient. An increase in the
inlet mass ow rate and nanouid concentration diminished
the strength of thermal entropy generation.

3.1.2.3. Solar systems. Solar systems utilize the principles of
conduction, convection, and radiation to transfer heat from
solar radiation to useful applications. Solar radiation is absor-
bed by solar collectors, which convert it into heat energy. This
heat is then transferred through conduction within the system's
components, such as metal tubes or uid-lled panels.
Convection allows for the movement of heated uids, such as
water or air, which carry thermal energy to desired locations.
Additionally, radiation is involved in both the absorption and
emission of heat. By combining these heat transfer processes in
porous media, solar systems efficiently harness solar energy for
various applications such as heating water or spaces.
20730 | J. Mater. Chem. A, 2024, 12, 20717–20782
Ghritlahre and Prasad78 experimentally studied a solar air
heater by inserting a porous bed. The prediction of thermal
performance using a neural network using a multi-layer per-
ceptron (MLP), generalized regression neural network (GRNN),
and radial basis function (RBF) was conducted and compared
with multiple linear regression (MLR) statistical models. The
input parameters to the models were mass ow rate, wind
speed, atmospheric temperature, inlet uid temperature, uid
mean temperature, and solar intensity, collected during 96
tests. It was concluded that the neural models could predict
better than the MLR. Furthermore, the GRNN was highlighted
as the best predictive neural method; the MLP was set in the
next rank.

Du et al.79 investigated a porous volumetric solar receiver by
considering silicon carbide as the uid ow medium. Further-
more, non-equilibrium assumption was involved with
convective-radiative heat transfer. A multi-objective optimiza-
tion by coupling ANSYS Fluent and MATLAB was performed.
The pressure drop and thermal efficiency were selected as
objective functions. Although the pareto front was derived,
decision-maker strategies were not investigated. Nonetheless,
the single objective optimization showed that the higher the
porosity and ow velocity, the larger the thermal performance
would be.

Zheng et al.80 evaluated a parabolic solar system by inserting
porous ns in the shape of circular sectors and implementing
a non-uniform heat ux on the tube. The Nusselt number,
synergy angle, entransy dissipation, and exergy loss were the
indices to appraise the heat transferring system. The porosity,
thermal conductivity, and Reynolds number were the input
parameters for the single objective genetic algorithm, while the
Nusselt number was the target function. The results elucidated
that optimum porous inserts made the receiver more efficient
compared to the reference case with a lower exergy loss at the
same pumping power.

Hosseini and Siavashi81 numerically scrutinized the steam
reforming process to produce hydrogen gas in a thermo-
chemical reactor aiding solar energy. A novel idea using a two-
layer porous medium with different porosities was applied.
Some parameters, such as permeability, pore size, and reactor
length were chosen as input parameters for an ANN, coupled
with the PSO algorithm, to nd the optimum conditions. The
objective was hydrogen production. The results showed that the
optimization could enhance hydrogen productionmore than all
the investigated cases. Additionally, the two-layer porous
medium made an increment in hydrogen production.

Grosjean et al.82 optimized a glass with porous SiO2 anti-
reective coating to enhance solar transmittance using GA.
The porosity and angle were the inputs. The performance was
found to be drastically dependent on the glass type. The opti-
mization process showed that the angle below 30 degrees had
no effect on the objective, while values higher than 45 degrees
made it critically different. A low refractive index and high Abbe
number were introduced for an acceptable glass for solar
applications.

Du et al.83 presented that a porous layer with small pore
diameters was benecial for uniform radiation heat ux in
This journal is © The Royal Society of Chemistry 2024
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a solar receiver in terms of higher convective heat transfer.
However, it had an undesirable effect on the radiation pene-
tration, such as having overheating zones. Therefore, they
optimized the pore scales using a GA to have the highest
thermal efficiency. The proposed radial-graded porous
increased the thermal efficiency by 4.1% and decreased the ow
resistance by 8.6%. It was made of super-alloy Inconel 718 and
passed mythological post-processing.

The thermal efficiency of an air heater equipped with
a porous bed was predicted using an ANN by Ghritlahre and
Prasad.84 Four training functions, such as one-step secant
backpropagation, conjugate gradient backpropagation with
Polak–Ribiere, and Levenberg–Marquardt were tested and it
was illustrated that the latter performed the best. Thermal
efficiency, heat gain, and temperature difference were chosen as
targets for the input parameters of inlet velocity/temperature of
the air, ambient temperature, and solar irradiance.

3.1.3. Cooling electrical systems or batteries. Contempo-
rary focus is increasingly directed toward compact electrical
systems, with ongoing efforts to enhance miniature CPUs and
electrical power storage units. One notable challenge affecting
the optimal performance of such systems is elevated operating
temperatures, potentially causing system shutdown in the
absence of effective thermal management control. To address
this issue, numerous investigations have delved into the inte-
gration of porous media within the cooling system. By incor-
porating porous media, researchers aim to improve heat
dissipation efficiency, mitigating the risk of overheating and
system malfunctions.

The application of ML in the cooling systems of electrical
devices further contributes to a more efficient design, enabling
Fig. 4 Schematic view for applying combined CFD-ANN for battery c
parameters and cooling efficiency as the output parameter in an MLP net
MDPI.

This journal is © The Royal Society of Chemistry 2024
a swier and more resilient control system capable of
responding adeptly to sudden thermal uctuations. Moreover,
the strategic use of porous media enhances the overall effec-
tiveness of the thermal management system, providing a more
stable operating environment for compact electrical systems.
Additionally, as the diminished performance of vehicle
batteries can compromise the power system's efficacy and
competitiveness, maintaining precise temperature control
within the desired range becomes crucial. This goal is easily
attainable through optimization based on ML, as illustrated in
Fig. 4, with the added advantage of porous media integration
ensuring enhanced thermal regulation and reliability in chal-
lenging operational conditions.

Duan and Li86 investigated transient heat transfer in a metal
foam lled with a phase change material, applied for cooling
electrical devices or batteries. An ANN was trained to predict the
liquid fraction, temperature, and average Nusselt number using
lab-based experimental data. The input data were the time
series and the porous medium characteristics. However, the
effects of geometrical features and environmental conditions
were not considered. The importance of the porosity parameter
on the changes in the melting process speed with passing time
was reported. The latter was dependent on the temperature-
dependent thermal features of the metal foam.

Tikadar and Kumar87 predicted the thermo-hydraulic
performance of a heat sink in conjugation with a metal foam
using ve ML algorithms, called k-nearest neighbors (KNN),
random forest (RF), extreme gradient boosting (XGBoost), SVR,
and ANN. The average Nusselt number and friction factor were
chosen as the dependent parameters, while the porous zone
density, porosity, two geometrical indices, and the Reynolds
ooling; temperature, air velocity, and geometrical features as input
work aiming for prediction, Li et al.,85 reproduced with permission from
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number were picked as the input parameters. SVR and the ANN
showed a minimum mean absolute percent error of 3.1%. A
data size of 1000 points was numerically collected, and the
results indicated that the ML methods could capture the
thermo-hydraulic performance of the heat sink well, despite its
nature as a ‘black box’.

Ilyas et al.88 in an analytical-numerical study scrutinized the
uid ow and heat transfer of a hybrid nanouid, as alumina–
copper–water, over a rotating disk where a porous medium was
attached and a magnetic eld was imposed. Scaling group
transformation converted the PDEs to ODEs. The thermo-
hydraulic eld was predicted by the Levenberg–Marquardt
backpropagation neural network. The porosity factor, inertia
coefficient, Prandtl number, Brinkman number, radiation
parameter, magnetic parameter, and concentration of nano-
particles were selected as the feeding parameters for prediction.
The validation performance was reported to be precisely a value
lower than 10−10.

Butt et al.89 presented an amalgam procedure involving the
inverse multiquadric (IMQ) radial basis neural networks
(RBNNs) and a genetic algorithm, i.e., IMQ-RBNN-GA. The
hybrid proposed method was validated through the problem of
cooling a wedge by passing a nanouid in a porous medium
considering the radiation, viscous effect, and magnetic eld.
The absolute error for the neural procedure was lower than
10−10 by comparing it with the Adams solution method. The
dynamic properties of the nanouid were the objective. The
Eckert number and Brownian motion made the nanouid
temperature higher, while the radiation subsided it.

Bianco et al.90 numerically simulated a cooling system for
a heat sink involving nned and non-nnedmetal foams. As the
heat transfer and pressure drop act in opposite directions,
optimization was conducted in the study by linking the COM-
SOL Multiphysics and MATLAB modules. The results indicated
a higher heat transfer by inserting ns about 3.3–3.5 times than
that of simple conguration with constant pressure loss. In this
case, the optimization could enhance the heat transfer by
a factor of 3. The optimization concluded that a porosity of 0.85,
40 PPI and a number of ns of 8 were appropriate. Furthermore,
correlations for Pareto fronts were provided.

Deshamukhya et al.91 studied the optimal heat transfer rate
for stepped, convex and triangular porous ns attached to
a heat sink. PSO and the rey algorithm (FA) were employed to
achieve optimal heat transfer versus the geometrical parame-
ters, as well as the Damkohler number, Rayleigh number and
porosity, keeping the n volume constant. The stepped prole
showed the highest heat transfer compared to the triangular
and convex proles by nearly 2% and 40%, respectively. PSO
illustrated marginally better performance, while the FA indi-
cated more acceptable suboptimal points. A porosity of 20% at
a lower length ratio addressed optimal heat transfer.

A layered porous heat sink was scrutinized numerically for
heat sink by Dathathri and Balaji.92 An ANN was used to predict
the temperature and pressure drop using the input parameters
of inlet velocity and pore scale. The applied ANN was fed to
a multi-objective genetic algorithm (NSGA-II) to nd
a maximum temperature and minimum pressure drop. The
20732 | J. Mater. Chem. A, 2024, 12, 20717–20782
results elucidated that neglecting pressure drop could result in
a major deviation from reality in genetic algorithm
optimization.

Shoaib et al.93 investigated double-diffusive, free convective
nanouid ow in a porous medium numerically for cooling
a hot plate. The prediction was performed using a Levenberg–
Marquardt scheme in a backpropagation algorithm, in a novel
application. Different cases with changing the Grashof number
and various scenarios with varying variables, such as the
Brownian motion parameter and thermophoresis parameter
were studied. Various parameters, such as the Brownian
parameter, inclination angle, and Dufour, Grashof, and Lewis
number as well as magnetic strength were evaluated. The non-
dimensional temperature and concentration were among the
target parameters. The effect of governing parameters on the
volume fraction of the nanouid was critically investigated.

3.1.4. Heat storage. Heat storage involves the capture and
retention of thermal energy for later use. It plays a crucial role in
balancing energy supply and demand, particularly in renewable
energy systems. Various methods are used for heat storage,
including sensible heat storage, latent heat storage, and ther-
mochemical storage. Sensible heat storage involves storing heat
in a medium, such as water or rocks, and releasing it when
needed. Latent heat storage utilizes PCMs to store and release
heat during phase transitions, such as solid–liquid or liquid–
gas. Thermochemical storage involves reversible chemical
reactions that absorb and release heat energy. Heat storage
systems enable the efficient utilization of excess or intermittent
heat, increasing the overall energy efficiency and exibility of
thermal systems in various applications, including heating,
cooling, and industrial processes. In this context, ML emerges
as a valuable tool, contributing to the development of more
efficient and sustainable heat storage systems.

Integration of porous media becomes particularly signicant
in enhancing the performance of these systems. The incorpo-
ration of porous media in terms of geometry, foam distribution,
and ow path optimizes heat storage mechanisms, ensuring
a more effective utilization of undemanding energy. This
approach not only addresses the energy crisis but also promotes
sustainable practices in energy management. Furthermore, the
application of ML extends its benets by enabling the predic-
tion of thermal energy storage system performance under
various operating conditions. This predictive capability
enhances the overall efficiency of energy management strate-
gies, providing valuable insights into system behavior under
diverse circumstances. In summary, the synergy between ML
and porous media contributes to the development of advanced
heat storage systems that are not only more sustainable but also
adept at meeting the evolving demands of energy consumption.

Yang et al.94 tried to solve the problem of the low heat
transfer rate and low thermal efficiency of a latent heat storage
unit using metal foams, made of aluminum, nickle, and copper.
A quasi-stationary approximation was considered to have
a simple and accurate solution. A simplied model predicted
the phase change time and a genetic algorithm optimized the
metal foam distribution. The effect of various parameters on the
porosity distribution and graded layer number was numerically
This journal is © The Royal Society of Chemistry 2024
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found to be negligible. Thermal performance was the objective
function sought to nd the best value with an average accuracy
of 5–6%. Considering economical and engineering require-
ments, four metal foam layers were recommended.

Cui et al.95 numerically and experimentally analyzed an
inclined container equipped with a hybrid structure of metal
foam and metal foam-n hybrid. The metal foam-n system
aided in having more heat transfer. Furthermore, an increment
in the n number accelerated the phase change material (PCM)
melting and heat accumulation. Using a proposed ANN, the
melting time was predicted using the input parameters of the
n number, inclined angle, and melting time with an R2 of
about 0.9990. Applying the metal foam n could make the
melting process up to 60% quicker.

Anand et al.96 used numerical results to feed a self-organizing
map (SOM) to predict gas and solid phase temperature proles
in a porousmedium including a PCM. The extinction coefficient
and convective coupling were applied as inputs. Four pairs of
temperature proles were fed to the SOM, and it could predict
various regimes correctly. The algorithm also succeeded in
estimating precisely the PCM regime when it was trained using
1% noisy data. The proposed procedure could aid in the design
process of thermal systems including porous PCMs, such as
those working in a combustive aperture.

3.1.5. Thermal properties. Nowadays, various porous types
have been synthesized, and determining their thermal
Fig. 5 A flow work to predict porous properties of porosity (f), specific
acquisition, visually/experimentally input parameter extraction, and con
reproduced with permission from Elsevier.

This journal is © The Royal Society of Chemistry 2024
properties is an initial requirement for applying them in
thermal systems. To do so, experimental or molecular dynamic
methods are required, which are costly and time-consuming.
ML can be a swi and accurate method to specify the thermal
properties of such materials. Fig. 5 illustrates a view for nding
the porous properties schematically. ML also helps in synthesis
of porous media having high thermal conductivity and strength
by proposing the micro-structure distribution.

Eghtesad et al.98 applied an ANN to predict the radiation
properties of a porous medium at a high temperature. The
model couldmitigate the burden of the numerical simulation of
radiative models. Transmission and reection were selected as
the outputs. The authors introduced coupled geometrical and
physical features, such as porosity, the void's refractive index,
the particle's refractive index, and the particle radius. Three
predictive categories, namely, whole-size, wall-wise, and point-
wise were also considered by involving random overlapping
and non-overlapping packed porous media; the latter was
shown to be more accurate. The point-wise class, predicted
independently from the emission angle, was of the least accu-
racy. It showed a promising prediction needed involving
directional features of the porous media.

Wei et al.99 tried to derive an ML method to predict porous
thermal properties, considering morphology properties, owing
to the high expense of numerical simulations. The effects of
some parameters, such as the shape factor and channel factor,
surface area (SSA), and average pore size (APS) by a CNN using image
struction of a tuned neural network for prediction, Alqahtani et al.,97
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on the thermal conductivity were studied using an ANN. Then,
the SVR could predict the anisotropy features of the pores and
involve them in effective thermal conductivity. The results
showed that the selected inputs were critical to have an accurate
estimation of conductivity. The resultant ML could present an
intuitive insight into the conductivity values out of the normal
range.

Mishra et al.100 used a global search algorithm (GSA) and GA
to predict some thermal properties in a 2D rectangular porous
matrix considering conduction, convection, and radiation.
Scattering albedo, emissivity, solid conductivity, and heat
transfer coefficient were tried to predict by capturing the solid
and gas temperature distribution. Both direct and indirect
approaches were applied using the nite volume method for
solving energy equations. The results indicated that the GSA
showed faster prediction with higher accuracy compared to the
GA. However, the run time was affected by the starting points
and the error.

Singh et al.101 tried to predict the effective thermal conduc-
tivity using six feedforward backpropagation ANN models for
a moist porous medium by feeding the thermal conductivity
and volume fraction. The complex structure and different
thermal features of the substances in a moist porous material
pushed the authors to use articial intelligence. The model
showed good accuracy against the experimental data. It was
concluded that the uid phase played a critical role in the
prediction. The derived model could be used for complex moist
porous structures.
3.2. Energy storage and combustion

As time passes, humans are facing a growing energy demand.102

Meeting the growing energy demand can be achieved by
utilizing combustion systems such as boilers and gas turbines
and renewable sources of energy, such as solar and wind ener-
gies, which are viable solutions.103 In addition to addressing the
growing energy demand, it is crucial to consider the storage of
generated energy.104 The industrial sector frequently stores
energy to guarantee a consistent and uninterrupted power
supply, as well as to regulate uctuations in energy demand.
Thermal energy storage (TES),105 electrochemical energy storage
(EES),106 hydrogen gas energy storage,107 and hybrid energy
storage108 are some prevalent methods for energy storage in
industry. Optimal storage technology selection is performed
using various factors, including the scale of storage required,
the duration of storage needed, the specic energy demands,
and the economic feasibility of the system.

Porous media can indeed be used for energy storage in
various ways. For instance, metal–organic frameworks (MOFs)
have found diverse applications as a porous medium across
multiple industries such as solar cells, fuel cells, super-
capacitors, white light emitting diodes, and lithium-ion
batteries.105 The porous nature of these materials provides
a large surface area, which can enhance storage capacity and
facilitate the movement of uids or gases. Energy storage
systems consist of various components that use porous media,
including porous electrodes for batteries,106 porous adsorbents
20734 | J. Mater. Chem. A, 2024, 12, 20717–20782
for gas storage,107 and porous phase change materials (PCMs)
for thermal energy storage.108

The application of ML techniques in energy storage with
porous media has gained signicant attention.109,110 These
techniques offer valuable tools to understand and optimize
various aspects of energy storage systems based on porous
media. ML has several applications in this eld, such as the
characterization of porous materials,111 material design,112 and
optimization of energy storage systems.113 Through ML,
researchers and engineers can analyze complex data, optimize
system performance, and advance the eld of energy storage
with porous media. By leveraging these techniques, they can
enhance the efficiency, reliability, and overall performance of
energy storage systems based on porous media. Fig. 6 depicts
several studies on energy storage systems utilizing porous
materials, aided by ML.

In the upcoming section, we will delve into various processes
of energy storage utilizing porous media and ML. We will
present diverse thermal energy storage and electrochemical
energy storage methods. Also, hydrogen gas energy storage,
hybrid energy storage, and combustion will be reviewed. Fig. 7
illustrates some research on energy storage and combustion
using porous media aided by ML.

3.2.1. Thermal energy storage. Thermal energy storage
using porous media is a promising approach for storing and
utilizing heat energy. Porous media can effectively store thermal
energy in the form of sensible heat or latent heat, providing
a means to store excess heat and release it when needed. It can
be utilized in solar thermal systems, where excess heat from
solar collectors is stored in porous media and released during
periods of low solar availability.126 It can also be applied in
industrial processes, district heating and cooling systems, and
energy-efficient buildings, enabling the utilization of waste heat
and load shiing.127

3.2.1.1. Phase change materials (PCMs). PCMs can be effec-
tively combined with porous materials for energy storage
applications.128 The integration of PCMs with porous media
enhances the storage and release of thermal energy. The
combination of PCMs and porous materials offers advantages
such as high energy storage density, improved thermal
conductivity, and enhanced heat transfer characteristics. These
hybrid systems have the potential to contribute to more efficient
and sustainable energy storage solutions in various elds,
including building and construction, renewable energy inte-
gration, and thermal management.129 Furthermore, the
combination of PCMs with porous materials for energy storage
can be further enhanced through the application of ML tech-
niques. In a study, Saboori et al.120 utilized multi-layer calcula-
tion loops based onML to examine the ow pattern and thermal
behavior of pore scale porous media (PSPM) walls, which
incorporated PCMs in Trombe walls. They introduced a new
approach for predicting and optimizing the concentration of
PCMs in Trombe walls, considering factors such as porosity,
solar radiation, heat ux, and time. Based on the ndings, the
use of PCMs can lower the temperature of the outer side of the
PSPM wall by 5.2% compared to not using PCMs during the day
and night. In another study conducted by Selimefendigil and
This journal is © The Royal Society of Chemistry 2024
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Fig. 6 (a) Determining achievable volumetric targets for adsorption-based hydrogen storage in porous crystals using ML,114 reproduced with
permission from American Chemical Society, (b) predicting hydrogen storage in MOFs through ML techniques,115 reproduced with permission
from Cell Press, (c) a computational framework that utilizes ML techniques to predict the work function of MXenes,116 reproduced with
permission from IOP Publishing Ltd, (d) the construction of a hybrid framework that combines ANNs and genetic algorithms for optimizing
capacitance in supercapacitors,117 reproduced with permission from Elsevier, (e) the process of utilizing ML for rechargeable battery materials
involves four major stages,118 reproduced with permission from Elsevier, and (f) predicting the adsorption energies of hydrogen, carbon, and
oxygen using online databases, density functional theory (DFT) calculations, and ML regression models,119 reproduced with permission from the
AIDIC-Italian Association of Chemical Engineering.
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Öztop,130 they explored the impact of a porous disk on the
dynamic aspects of the phase change process. The study
focused on a circular pipe with PCM integration during nano-
liquid forced convection in discharging operation mode using
the nite element method for various values of porous disk
permeability, radius, and height. The disk achieves its best
permeability value at a Darcy number of 5 × 10−3, resulting in
the shortest discharging time. In this research, a feed-forward
neural network (FFNN) predictive model is utilized to provide
precise results on the impact of a porous disk on the dynamic
characteristics of the phase change process.

It's important to note that the integration of ML into PCM
and porous material systems for energy storage is an emerging
research area, and these are potential avenues where ML tech-
niques can provide valuable insights, optimization, and control
for enhancing the performance and efficiency of energy storage
systems utilizing PCMs and porous materials.

3.2.1.2. Adsorption cooling and heating systems. Adsorption
cooling and heating systems that utilize porous media can
benet from the integration of ML techniques. ML can aid in
optimizing and improving the performance and energy effi-
ciency of adsorption-based systems for cooling and heating.131

In a study conducted by Skrobek et al.,132 three deep learning
techniques (long short-termmemory (LSTM), bidirectional long
short-term memory (BiLSTM), and gated recurrent unit (GRU))
were employed to predict the mass of an adsorption bed in both
This journal is © The Royal Society of Chemistry 2024
xed and uidized beds. The purpose of utilizing this particular
bed was to optimize the efficiency of adsorption cooling systems
by enhancing heat and mass transfer via uidization. The
algorithms developed for the LSTM, BiLSTM, and GRU
networks produced results that were highly consistent with
experimental tests, with coefficient of determination (R2) values
exceeding 0.97. In the eld of adsorption-driven heat pumps
and chillers, Shi et al.133 conducted a study on selecting effective
adsorbents and working uids. They utilized a high-throughput
computational screening of 6013 computation-ready experi-
mental MOFs to determine the best candidates for methanol-
MOF pairs. The research resulted in the identication of the
top 10 MOFs with the highest working capacity (DW) and coef-
cient of performance (COP) under the heat pump's operating
conditions, which were found to be 512.86 mg g−1 and 1.83,
respectively. They also applied four ML algorithms (back prop-
agation neural networks (BPNNs), decision trees (DTs), random
forest (RF), and SVMs to predict the relative signicance of each
MOF descriptor. Based on the comparisons, it has been deter-
mined that both RF and BPNNs can produce the most accurate
predicted results. Using high-throughput screening and ML
techniques, this computational work serves as a reliable guide
for the development and design of MOF adsorbents in
adsorption-driven heat pumps and chillers.

3.2.1.3. Thermochemical energy storage (TCES). Thermo-
chemical energy storage (TCES) with porous media involves
J. Mater. Chem. A, 2024, 12, 20717–20782 | 20735
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Fig. 7 (a) The temperature behavior of the walls of pore scale porous media (PSPM) changes with the use of PCM encapsulation influenced by
variations in porosity, (1) without and (2) with optimization,120 reproduced with permission from Elsevier, and (b) the wetting of an electrode using
real and predicted visualization of the electrolyte over time in a lithium-ion (Li-ion) battery. The electrolyte enters through the yz plane at x = 0.
Refer to the web version for color explanations,121 reproduced with permission from Elsevier, and (c) comparing actual and predicted capacitance
values for a supercapacitor during training and test phases. Circles represent real values and triangles represent predicted values,243 reproduced
with permission from Elsevier, (d) performance of an ML model in predicting ln Poeq (the equilibrium pressure of H2 at room temperature) in (1)
training and (2) test processes, in which each plot contains overlaid data from 10-fold validation experiments,123 reproduced with permission
from ACS Publications, (e) comparing estimated and measured values of liquid fraction, entropy generation rates, and thermal management in
battery systems using a gradient boosting decision tree (GBDT) model and scatter plots,124 reproduced with permission from Elsevier, and (f)
comparison of research results and experimental data for combustor wall temperature and reformer CH4 conversion,125 reproduced with
permission from Elsevier.
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utilizing chemical reactions within porous materials to store
and release heat. It is a promising approach for high-density
and long-duration energy storage. The reactions occur within
the porous structure, allowing the storage and release of
thermal energy.134 TCES systems that utilize porous media can
benet from the integration of ML techniques which can aid in
optimizing performance, improving control strategies, and
enhancing system efficiency. A study by Chen et al.135 has shown
that calcium carbonate and calcium oxide (CaCO3/CaO) can be
excellent materials for storing thermochemical energy and can
be used in renewable energy sources due to their high energy
storage density and long storage time. This research delves into
the impact of complex pore structures and different operating
conditions on micro-ow diffusion mass transfer performance
within CaO materials. The study discovered that the effective
gas diffusion coefficient increases with porosity but decreases
with fractal dimension. Moreover, an ML-based prediction
model was proposed, with an average error rate of approxi-
mately 12% and a root mean square error (RMSE) of 0.04138.
This model can be valuable in designing Ca-based materials
with high performance, as well as in reactor design or system
thermodynamic investigations. According to a study by Praditia
20736 | J. Mater. Chem. A, 2024, 12, 20717–20782
et al.,136 the TCES system using calcium oxide and calcium
hydroxide (CaO/Ca(OH)2) is a promising energy storage tech-
nology due to its relatively high energy density and low cost.
They implemented a PINN to predict the dynamics of the TCES
internal state. They performed numerical simulations on an
ensemble of system parameters to obtain synthetic data to train
the network. The suggested approach provides results with an
error of 3.96 × 10−4, which is in the same range as the result
without physical regularization but is superior compared to
conventional ANN strategies because it ensures the physical
plausibility of the predictions, even in a highly dynamic and
nonlinear problem. A recent study by Tasneem et al.137 discov-
ered that reversible thermochemical reactions have signicant
potential for use in thermochemical energy storage systems. In
this study, ve powerful ML algorithms, including KNN, least
absolute shrinkage and selection operator (LASSO), XGBoost,
SVM, and Bayesian ridge, were utilized to develop accurate
models that predict the dynamic behavior of a reversible ther-
mochemical reaction-based system. The research utilized these
ML algorithms to create the best formula and model for
NH4NO3 and KOH. The study discovered that the polynomial
regression degree 4 for the NH4NO3 temperature with KOH and
This journal is © The Royal Society of Chemistry 2024
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water temperatures provides the best R2 of 0.938, with an MSE
of 3.898504. The KNN (K = 5) is ideal for creating a model with
polynomial regression degree 2, with an R2 of 0.999 and an MSE
of 0.009042. The KNN (K = 5) degree 3 had an R2 of 0.984, with
an MSE of 5.355852, making it the best method for creating
a model. As KOH also has a time series dataset, XGBoost was
used to compute the future KOH temperature.

3.2.2. Electrochemical energy storage. Electrochemical
energy storage using porous media is a widely used approach in
various electrochemical devices, including batteries and fuel
cells. Porous media are instrumental in enhancing electro-
chemical processes, transport phenomena, and overall perfor-
mance of electrochemical energy storage systems. Through
careful design and optimization, porous media can signicantly
contribute to the efficiency, capacity, and durability of batteries,
fuel cells, and other electrochemical devices.138 The integration
of ML techniques with electrochemical energy storage systems
using porous media holds great potential for optimizing
performance, improving control strategies, and accelerating
materials development.139

3.2.2.1. Battery energy storage. A battery stores electrical
energy for later use. It has gained signicant attention and
adoption in various applications, including renewable energy
integration, grid stabilization, electric vehicles, and backup
power systems in the different types of Li-ion batteries,140 lead-
acid batteries,141 and so on. Battery energy storage systems
typically do not utilize porous media directly in their operation.
However, there are certain aspects where porous media can
indirectly affect battery energy storage such as electrode struc-
tures.142 Ongoing research focuses on improving battery
performance and durability through the design and optimiza-
tion of porous electrode structures, advanced porous separa-
tors, and thermal management systems. These advancements
aim to enhance energy storage capacity, cycling stability, and
safety of battery systems. The integration of ML techniques with
battery energy storage systems can enhance their performance,
control, and optimization.143 While the direct involvement of
porous media in battery operation is limited, ML can be applied
in several areas to improve battery energy storage. ML can aid
battery energy storage systems in terms of state-of-charge (SoC)
and state-of-health (SoH) estimation,144 battery material design
and optimization,145 battery performance and lifetime predic-
tion,146 and optimal control and energy management.147

Some researchers have utilized ML techniques in conjunc-
tion with battery energy storage. In a study, Ishikawa et al.148

examined the structural characteristics of positive and negative
electrodes in lithium-ion batteries. Using an ML model, they
formulated a correlation equation for effective ion conductivity
by considering the unique features of each electrode layer. The
negative electrode is made up of graphite particles that have
a at shape, which means their aspect ratio is a signicant
factor in determining tortuosity. On the other hand, the positive
electrode is a secondary aggregate, and the tortuosity is
dependent on particle morphology, which makes it difficult to
determine relevant parameters. Using the SVM, they predicted
the tortuosity of the negative electrode in terms of the particle
aspect ratio through nonlinear regression. All in all, this study
This journal is © The Royal Society of Chemistry 2024
sheds light on the relationship between tortuosity and other
structural properties or images and can be applied in various
elds related to porous materials to help optimize structural
designs. In a study by Weber et al.,149 they efficiently approxi-
mate the macroscopic response of batteries. Some approaches,
such as direct numerical simulations of transport at the pore-
scale on reconstructed or synthetically generated images of
electrodes that include detailed topological information about
the pore structure, were employed. High-delity simulations
have also been used to train CNNs to estimate effective battery
properties directly from images of porous electrodes. In addi-
tion, they combined CNNmethods with homogenization theory
to take advantage of effective medium formulations and reduce
the computational cost associated with individual pore-scale
simulations. A noise sensitivity analysis is conducted to eval-
uate CNN's robustness, and it is shown to accurately predict the
effective properties of real battery electrodes using both 2D and
3D images. Jiang et al.150 presented a study to understand the
behavior of battery particles in a lithium-ion battery which is
a complex challenge. The microstructure of a composite elec-
trode plays a crucial role in determining how these particles are
charged and discharged. To tackle this challenge, they used
a combination of experimental approaches, statistical analysis
aided by ML, and mathematical modeling. They also explored
the potential of using electron density as a proxy for SoC.

3.2.2.2. Supercapacitor energy storage. Supercapacitors, also
known as ultracapacitors or electrochemical capacitors, store
energy through the electrostatic adsorption of ions on the
surface of electrodes. They have high power density, fast charge
and discharge rates, and long cycle life. Supercapacitors are
oen used in applications requiring rapid energy storage and
release, such as regenerative braking systems and power buff-
ering in renewable energy systems.151 Porous media can play
a crucial role in the design and performance of supercapacitors.
Research efforts in supercapacitor technology oen focus on
optimizing the pore structure, pore size distribution, and
surface area of the porous media to improve the energy density,
power density, and cycling stability of supercapacitors.152 ML
and computational modeling techniques are also employed to
predict and optimize the performance of supercapacitors by
considering the complex interactions between porous media,
electrolyte, and electrode materials. ML can aid supercapacitors
with porous media in different ways such as electrode material
design, performance prediction, state of health monitoring,
control, energy management, and material characterization.153

Researchers have used ML techniques along with super-
capacitors. In a study by Saad et al.,154 they presented graphene-
based nanocomposites that have emerged as promising active
components for high-capacity supercapacitor electrodes in
energy storage systems. For the sake of predictions, the ML
models (KNN, decision tree regression (DTR), Bayesian ridge
regression (BRR), and ANN) utilized various electrochemical
measurements such as electrolyte ionic conductivity and elec-
trolyte concentration and physicochemical features such as
atomic percentages, pore size, and pore-volume. Among these,
the ANN model demonstrated the highest accuracy, with RMSE
and R2 values of 60.42 and 0.88, respectively. Rahimi et al.122
J. Mater. Chem. A, 2024, 12, 20717–20782 | 20737
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mentioned that the multi-physio-chemical features of the acti-
vated carbon (AC) material play a synergistic role in enhancing
the capacitance performance of supercapacitors. A multi-layer
perceptron neural network (MLP-NN) model predicts the in-
operando performance of N/O co-doped AC, using electrode
materials. The results show that the training algorithms in the
MLP-NN model have high feasibility in predicting AC perfor-
mance with minimal error. The model provides valuable
insights into possible procedures for fabricating N/O co-doped
porous carbon electrodes with maximized specic capaci-
tance. Finally, the genetic algorithm predicts the optimal AC in
6 M KOH in a three-electrode system with a specic capacitance
of 550 F g−1 at 1 A g−1, which can be used for practical appli-
cations. In another study by Gosh et al.,155 a combinatorial
approach that leverages value and grade prediction ML models
was used to predict the performance of a novel material, cerium
oxynitride, for use in supercapacitor applications. The model
predicts that this material will have a specic capacity of
approximately 26.6 mA h g−1 and a capacity retention of over
90%. Experimental results have validated this predictive
approach, with an observed specic capacity of approximately
26 mA h g−1 and 100% capacity retention. Lu et al.156 introduced
a novel ML approach for both electrochemical sensors and
supercapacitors using a carbonized metal–organic framework
(C-ZIF-67). An ANN algorithm is employed as a powerful tool to
achieve intelligent analysis of niclosamide (NA) and incorpo-
rates theoretical calculations to optimize the structure of the
sensing material and predict its adsorption and binding energy.
Results show that the developed sensor exhibits excellent elec-
trochemical response, with a 196.6-fold improvement
compared to bare GCE for NA, wider linear ranges of intelligent
analysis from 1 nm to 9 mm, and a low limit of detection of
0.3 nm. The ML model with the ANN algorithm is also utilized
to predict the performance of the supercapacitor, which
exhibits a capacitance of 336.67 F g−1 at a current density of 2 A
g−1 and shows excellent prediction accuracy.

3.2.2.3. Fuel cell energy storage. Fuel cells are electro-
chemical devices that convert the chemical energy of a fuel,
typically hydrogen, into electrical energy through an electro-
chemical reaction. While fuel cells themselves do not directly
use porous media, they oen incorporate porous materials to
facilitate efficient reactions and enhance performance.157

Research and development efforts in fuel cell technology oen
focus on optimizing the design and performance of porous
media within fuel cell components. The combination of fuel cell
energy storage and porous media with ML techniques offers
several potential benets for performance optimization,
control, and system integration. ML can aid fuel cell energy
storage systems utilizing porous media in terms of performance
prediction and optimization, optimal control and energy
management, design and material optimization, and system
integration and sizing.158 The application of ML to fuel cell
energy storage systems with porous media is an active area of
research and development.159 Designing the ow eld is crucial
in proton exchange membrane (PEM) fuel cells as it greatly
affects gas transfer, water discharge, electron conductance, and
heat transfer. The use of porous media ow elds, such as metal
20738 | J. Mater. Chem. A, 2024, 12, 20717–20782
foam, shows potential for enhancing cell performance by
providing uniform distributions of oxygen, liquid, current
density, and temperature, particularly in the concentration
polarization regime.

Scientists have employed ML methods in conjunction with
fuel cells. Zhang et al.159 utilized a data-driven surrogate model,
supported by the SVM, to optimize the geometry of the porous
media ow eld. Results demonstrate that the SVM-based data-
driven surrogate model yields similar predictions to the 3D
physical model. Furthermore, the genetic algorithm (GA) is
utilized for optimization, and the optimized values obtained
from the surrogate model are validated using the 3D physical
model, conrming the effectiveness of the proposed data-driven
surrogate model in the design and optimization of the porous
media ow eld. In a study by Liu et al.,160 they utilized the deep
convolutional generative adversarial network (DCGAN) deep
learning method to reconstruct the three-dimensional (3D)
porous structure of the fuel cell catalyst layer using micro-
structure graphs obtained from focused ion beam scanning
electron microscopy (FIB-SEM) as training data. The DCGAN
with interpolation in latent space generates spatial-continuous
microstructure graphs that are used to construct a unique 3D
microstructure of the CL without the need for real FIB-SEM
data. Different interpolation conditions in the DCGAN are
also explored to optimize the ultimate structure by incorpo-
rating real data such as porosity, particle size distribution, and
tortuosity. Additionally, the comparison between real and
generated structural data shows that the data generated by the
DCGAN have an adjacency relationship with real data, indi-
cating its potential applicability in the eld of electrochemical
simulation with reduced costs.

3.2.3. Hydrogen gas energy storage. Hydrogen energy
storage involves the use of hydrogen gas as a means of storing
and releasing energy. Hydrogen can be produced through
various methods, such as electrolysis of water or reforming of
natural gas, and stored for later use in various applications.161

Porous media can be utilized for energy storage in the context of
hydrogen gas. In both cases, the choice of porous media is
critical to optimize storage capacity, adsorption/desorption
kinetics, and overall system performance. The porosity,
surface area, and adsorption properties of the media impact the
storage capacity and release characteristics. Additionally,
proper design, safety considerations, and system integration are
crucial factors when implementing energy storage using porous
media for hydrogen gas.162 ML techniques can play a signicant
role in optimizing and enhancing energy storage systems based
on hydrogen gas. While the application of ML in the eld of
hydrogen gas energy storage is still emerging, it holds great
potential for optimizing system performance, improving safety,
enhancing operational efficiency, and facilitating the integra-
tion of these energy carriers into a broader energy landscape.163

Hydrogen energy storage using porous media, aided by ML
techniques, holds promise for optimizing storage performance,
enhancing efficiency, and enabling intelligent control. Porous
media can be employed for hydrogen storage, enabling the
storage and release of hydrogen gas for various applications,
This journal is © The Royal Society of Chemistry 2024
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including fuel cells, transportation, and renewable energy
integration.164

Scientists have employed ML methods in combination with
hydrogen energy storage with porous materials. Gopalan et al.165

developed a highly efficient and accurate method for predicting
hydrogen adsorption in porous materials. Their approach
involves calculating the amount of adsorption at any given
temperature and pressure by integrating the energy density of
the adsorption sites (guest–host interactions) and adding an
average guest–guest term. To calculate guest–host interaction
energy, they use a classical force eld with hydrogenmodeled as
a single-site probe. For guest–guest interaction energy, they
approximate an average coordination number using Gaussian
process regression (GPR). Their method was tested on 933
MOFs, ranging from 10−5 to 100 bar at 77 K. Their analysis
showed that 13 MOFs exceeded the Department of Energy target
of 50 g L−1 for adsorption at 100 bar, 77 K, and desorption at 5
bar, 160 K. In a study by Bucior et al.,166 they developed a data-
driven approach that accelerates material screening and learns
structure–property relationships. They created new descriptors
for gas adsorption in MOFs based on the energetics of MOF–
guest interactions. The model parameters demonstrate that
a slightly weak attraction between hydrogen and the framework
is ideal for cryogenic storage and release. As a case study, they
applied this method to screen a database of more than 50 000
experimental MOF structures and identied MFU-4l as one of
the top candidates. Rahimi et al.167 constructed and tested three
MLmodels to predict the hydrogen adsorption of ACs. The data-
based modeling considers crucial properties of ACs' structural
characteristics, such as micropore surface area, pore volume,
and pore-size distribution, as inputs for hydrogen adsorption.
They found that the proposed models were highly feasible for
predicting hydrogen uptake, with RMs ranging from 0.06 to
0.19. Among them, the SVM model demonstrated the highest
accuracy in predicting hydrogen adsorption on ACs. Using the
SVM-based GA technique, they optimized the effects of micro-
structure properties on hydrogen storage. By using the optimal
structural properties obtained from GA, they were able to
increase hydrogen uptake by 2.5 wt%.

3.2.4. Hybrid energy storage. Hybrid energy storage refers
to the combination of multiple energy storage technologies or
systems to create a hybridized energy storage solution. By
integrating different storage technologies, hybrid systems aim
to leverage the unique strengths and capabilities of each tech-
nology to achieve enhanced performance, improved efficiency,
and optimized energy management. Hybrid energy storage
systems are an evolving eld, and ongoing research and devel-
opment efforts focus on optimizing system congurations,
improving control strategies, and exploring new combinations
of storage technologies.168 These efforts aim to further enhance
the performance, exibility, and scalability of hybrid energy
storage for various applications, including renewable energy
integration, grid support, and energy management. Hybrid
energy storage systems that incorporate porous media can
provide enhanced performance and exibility in storing and
utilizing multiple forms of energy.169 Additionally, hybrid
energy storage systems using porous media, aided by ML
This journal is © The Royal Society of Chemistry 2024
techniques, have the potential to optimize energy storage
performance, improve system control, and enhance overall
efficiency. The integration of porous media and ML techniques
in hybrid energy storage systems offers the potential for
improved energy storage performance, system optimization,
and intelligent control. Ongoing research and development
efforts focus on advancing these technologies to enhance the
efficiency, reliability, and scalability of hybrid energy storage for
various applications, including renewable energy integration,
grid support, and demand management.170

3.2.4.1. Thermal-electrical hybrid energy storage. This hybrid
system combines thermal energy storage (TES) with electrical
energy storage (EES) using porous media. Excess electricity is
rst converted into thermal energy and stored in a porous
medium, such as PCMs or hot water/steam in a thermal storage
tank.171 When electricity demand is high, the stored thermal
energy is converted back into electricity using a thermodynamic
cycle or through a heat exchanger. This approach enables the
efficient utilization of both electrical and thermal energy,
making it suitable for applications such as combined heat and
power (CHP) systems or district heating and cooling. The inte-
gration of porous media and ML techniques in thermal-
electrical hybrid energy storage systems holds great potential
for achieving enhanced energy storage performance, efficient
energy management, and optimized system control. Ongoing
research and development efforts aim to further advance these
technologies and improve the scalability, reliability, and cost-
effectiveness of thermal-electric hybrid energy storage
systems.124

3.2.4.2. Electrochemical-thermal hybrid energy storage. In this
hybrid system, electrochemical energy storage, such as batteries
or supercapacitors, is combined with thermal energy storage
using porous media. Excess electrical energy is rst stored in
the electrochemical storage system. When there is a demand for
thermal energy, the stored electrical energy is converted into
heat using resistive heating or other means and stored in
a porous medium, such as high-temperature PCMs or solid-
state materials. The stored thermal energy can later be
utilized for heating applications or power generation. This
hybrid approach can provide a more exible and efficient
utilization of energy for both electrical and thermal require-
ments.172 Electrochemical-thermal hybrid energy storage
systems that incorporate porous media, aided by ML tech-
niques, offer promising solutions for efficient energy storage
and management and hold great potential for achieving
enhanced energy storage performance, efficient energy
management, and optimized system control. Ongoing research
and development efforts aim to further advance these technol-
ogies and improve the scalability, reliability, and cost-
effectiveness of electrochemical-thermal hybrid energy storage
systems.173

3.2.5. Combustion. A combustion process refers to the
chemical reaction between a fuel and an oxidizer that produces
heat and light. It involves the rapid combination of fuel mole-
cules with oxygen molecules, resulting in the release of energy
in the form of heat and the production of combustion prod-
ucts.174 Combustion using porous media refers to a process
J. Mater. Chem. A, 2024, 12, 20717–20782 | 20739
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where a fuel–air mixture is burned within a porous medium.175

The porous media acts as a matrix that facilitates combustion
by providing a large surface area for reaction and allowing for
efficient mixing of fuel and oxidizer.176 Combustion processes
can be aided by ML techniques to enhance combustion effi-
ciency, optimize performance, and improve control.177 The
integration of ML techniques with porous media in combustion
systems holds promise for enhancing combustion efficiency,
emission control, and system performance. Ongoing research
and development efforts aim to further advance these technol-
ogies and optimize their application in various combustion
processes, including power generation, heating systems, and
industrial applications. To conduct a thorough study of micro-
scale integrated hydrogen production systems, one must dedi-
cate signicant computational efforts to account for complex
phenomena such as reaction kinetics.

Researchers have utilized ML techniques to enhance the
efficiency of combustion systems. In a study by Pourali and
Esfahani,125 they developed an innovative approach that
combines ML for data generation (pre-processing), analytical
techniques for processing, and response surface methodology
for post-processing to investigate an integrated hydrogen
production system. They used the decision tree algorithm to
establish appropriate correlations for the species' net rate,
mixture properties, and heat of reactions based on a detailed
reaction mechanism of methane steam reforming and
combustion in the pre-processing step. The ndings suggest
that wall thickness is the most inuential parameter in CH4

conversion and system efficiency, while combustor height is the
most critical parameter for sustaining combustion in the inte-
grated system. Lastly, they propose ve optimized designs of the
integrated system for constructing experimental prototypes. In
another study, Jiang et al.175 utilized wheat straw, corn straw,
and sorghum straw as raw materials. Using KOH and NaOH as
catalysts, they prepared straw pyrolytic carbon (SPC) and
analyzed the characteristics of combustion activation energy
(AE) through thermogravimetric analysis. They proposed
predictive models of combustion AE based on linear regression
(LR), SVR, and random forest regression (RFR) and compared
their results. In the LR, SVR, and RFRmodels, R2 values reached
0.8531, 0.9048 and 0.9834, respectively. The RFR model was
found to be more suitable for the AE prediction of alkali-
catalyzed SPC compared to the LR and SVR models.
3.3. Electrochemical devices

The advancement of porous electrocatalytic materials primarily
depends on empirical approaches, involving extensive trial-and-
error methods.178 Discovering optimal solutions for multicom-
ponent catalysts across diverse reaction conditions demands
substantial investments of time and effort. However, in recent
years, the landscape has undergone a revolutionary trans-
formation with the emergence of ML techniques. These
powerful ML tools have revolutionized the development and
exploration of materials designed for electrochemical
devices.179 This section presents a comprehensive review of ML-
based techniques for discovering and developing porous media
20740 | J. Mater. Chem. A, 2024, 12, 20717–20782
for electrochemical devices. It also highlights practical appli-
cations in various elds such as electrocatalysts, proton
exchange membrane water electrolyzers (PEMWEs), PEM fuel
cells (PEMFCs), solid oxide fuel cells (SOFCs), batteries, and
supercapacitors.

Fig. 8a depicts design parameters in an ANN for the predic-
tion of SOFC cell performance. Fig. 8b shows a schematic of
a PEMWE, Fig. 8c shows an SOFC voltage prediction using an
ANN model, and Fig. 8d displays a PEMFC catalyst layer with
SVM polarization curve prediction. In electrochemical reac-
tions, two half-reactions take place: one at the anode, such as
the oxygen evolution reaction (OER), and the other at the
cathode, encompassing reactions such as carbon dioxide
reduction, hydrogen evolution reaction (HER), nitrogen reduc-
tion, and the oxygen reduction reaction (ORR).178 These reac-
tions are powered by the ow of electrons. Effective catalysts
play a crucial role in optimizing efficiency and minimizing
overpotential during these processes.178

3.3.1. Electrocatalysts. Electrocatalysts play a crucial role in
shaping a sustainable future by facilitating the generation of
clean fuels, mitigating the effects of global warming, and
offering solutions to environmental pollution. The progress in
ML offers a pathway to overcome the limitations of traditional
approaches to discovering new electrocatalysts.184 In this review,
we emphasize the current advancements in ML-driven
approaches that have facilitated the discovery and optimiza-
tion of porous electrocatalysts at an accelerated pace. Xia et al.185

investigated nanoporous carbon-based electrocatalysts for the
ORR. They used k-nearest neighbor regression (KNR), SVR, and
RFR methods to choose the best porous solid supports for
anchoring metal particles. Various descriptors, including Bru-
nauer, Emmett, and Teller (BET) surface area, nitrogen content,
and the ID/IG ratio, were used as inputs and four descriptors,
namely, half-wave potential, onset potential, current density,
and electron transfer number, were employed to represent the
ORR performance. Based on RSME and MAE results, RFR
accurately predicted the best ORR performance by considering
the most important materials descriptors which were BET
surface area and nitrogen content. Defective nitrogen-doped
graphene nanomesh was identied as a highly promising
matrix for loading metal-based catalysts, exhibiting maximum
onset potential and superior electrocatalytic performance for
the ORR. Zhou et al.186 investigated the OER process in covalent
organic framework (COF)-based electrocatalysts which are an
emerging type of porous crystalline materials. They presented
a new methodology to select the best M-NxOy-based catalyst
candidate among thousands of possible COF structures via
combining ML and DFT methods. The GBR algorithm was used
to nd the most crucial factors affecting the adsorption prop-
erties. The RMSE and R2 were employed to evaluate GBR which
showed that ML methodologies can be applied in catalyst
design. They also selected Ni–COF as the best candidate catalyst
and experimentally synthesized it which showed the highest
OER activity and stability among COF-based OER catalysts.
Ebikade et al.187 conducted a study that explored the relation-
ship between catalyst synthesis conditions, structural proper-
ties, and performance. Their specic focus was on the synthesis
This journal is © The Royal Society of Chemistry 2024
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Fig. 8 (a) The optimization of multiple parameters such as anode and cathode thickness, anode porosity, and electrolyte thickness included in an
ANN for the prediction of voltage of an SOFC and improve its performance,180 reproduced with permission from MDPI. (b) In order to distinguish
oxygenwithin the PTL, machine learning was utilized to analyze the amount of oxygen present in the PTL of the electrolyzers at varying flow rates
and current densities which is shown in 3D representation of a conventional PEWE,181 reproduced with permission from Cell Press, (c) prediction
of cell voltage in the SOFC using an ANN model using current density, temperature, anode, cathode, and electrolyte thickness,182 reproduced
with permission from Elsevier, and (d) schematic of distribution of water, platinum, ionomer, and carbon support in the PEMFC catalyst layer,
including prediction of the SVM for the polarization curve compared against a physical model,183 reproduced with permission from Elsevier.
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of nitrogen-doped catalysts (NDCs) for the HER. Using active
learning-based optimization and ML techniques such as
regression, partial least squares (PLS), and principal component
analysis (PCA), they efficiently determined the optimal pyrolysis
conditions. The ML models were trained using a dataset that
comprised both structural features (such as micropore volume,
BET surface area, and crystallinity) and synthesis conditions as
inputs and current density and onset potential as outputs. An
important discovery from their research is that the performance
of NDCs was inuenced by factors such as the pore structure,
nitrogen dopants, and material disorder. Overall, their meth-
odology offered valuable insights into the synthesis, structure,
and performance of catalysts, providing a systematic approach
for optimizing electrochemical catalysis. To achieve net-zero
emissions, researchers are particularly interested in the elec-
trochemical evolution of H2 using catalysts. Given the difficulty
of designing catalysts, Zheng et al.188 presented a data-driven
strategy for developing optimized catalysts for H2 evolution.
Based on previous studies, they created a database of Pt/C
catalysts for H2 evolution and used ML to reveal the signi-
cance of various features such as the properties of Pt, the pore
volume, and the specic surface area of carbon support on
catalytic performance. According to the algorithms, the Pt size
This journal is © The Royal Society of Chemistry 2024
and content had the highest inuence on the catalyst over-
potentials. They created size-controllable Pt nanoclusters that
are anchored on an N-doped mesoporous carbon nanosheet
network which had higher catalytic activity in alkaline electro-
lytes than current commercial catalysts. Pourali et al.189 exam-
ined hydrogen production through ammonia decomposition
using a novel setup involving a porous catalytic shell and tube
reactor. They investigated the correlation between eight process
variables, which include factors related to the reactor's structure
and operation, and their impact on the overall system perfor-
mance. To achieve this, they utilized CFD, ANN, and response
surface methodology (RSM). The study demonstrated that the
porosity of the catalyst signicantly affects the pressure drop
along the reactor, emphasizing the need for optimization to
minimize any detrimental effects on system performance. Chen
et al.190 devised a methodology combining laboratory experi-
ments and the ML method to expedite the creation and devel-
opment of catalysts through the example of selective catalytic
reduction (SCR) of nitrogen oxides (NOx). Their approach
included training an ANN model using experimental data (62
variables including specic surface area, the pore volume, and
size) from relevant publications, screening candidate catalysts
using the trained model, experimentally synthesizing, and
J. Mater. Chem. A, 2024, 12, 20717–20782 | 20741
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characterizing the candidates, updating the ML model with the
new experimental results, and reevaluating candidate catalysts
with the updated model. This process was repeated to attain an
optimized catalyst. By employing this iterative approach, an
innovative SCR NOx catalyst was discovered and successfully
synthesized aer four iterations, exhibiting desirable features.
The versatility of this approach enabled its application to the
screening and optimization of other catalyst designs, thereby
presenting signicant opportunities for the exploration of
various materials.

3.3.2. PEM water electrolyzers. Sustainable and clean
energy consumption is vital for technological development,
necessitating the exploration of new energy vectors such as
hydrogen, which can be produced through chemical and elec-
trochemical processes.191 PEM water electrolysis remains the
preferred choice for producing clean and pure hydrogen, as it
offers sustainability and a carbon footprint-free solution.191

Günay et al.192 employed regression trees and classication
modeling to analyze a large database from previous publica-
tions on PEM electrolyzers. Box and whisker plots revealed that
the utilization of Ti porous structures in the electrodes
contributed to enhanced performance. The classication tree
models highlighted the key variables that inuenced the
performance of the electrolyzer, showcasing the crucial roles
played by the mole fraction of Ni on the cathode surface and the
mole fraction of Co on the anode surface, in addition to current
density and potential. Furthermore, the regression tree method
effectively captured and simulated the polarization behavior of
the electrolyzer, showcasing a remarkable RMSE. In their new
study, Günay et al.193 employed local interpretable model-
agnostic explanations (LIMEs) as a local surrogate model to
investigate the impact of different factors on current/power
density and polarization in PEM and anion exchange
membrane (AEM) electrolysis systems. Their ndings suggested
that while material properties mainly inuence power density,
the catalytic properties of electrodes play a primary role in
affecting current density and polarization. To enhance the
performance of the PEM water electrolyzer, it is crucial to
understand how the morphology of the porous transport layer
(PTL) relates to the removal of oxygen. Satjaritanun et al.181

employed operando X-ray computed tomography and ML tech-
niques on a model electrolyzer. Their objective was to examine
the oxygen content within the PTLs and its correlation with both
the current density and the water ow rate. Also, they deter-
mined whether oxygen exhibits preferential pathways while
being transported through the PTL. The observed oxygen
distribution was attributed to the PTL's low tortuosity and its
high porosity which enabled preferential oxygen ow.

3.3.3. PEM fuel cells. Proton exchange membrane fuel cells
(PEMFCs) play a vital role in achieving an environmentally
friendly society by serving as energy conversion devices for
hydrogen energy. However, their cost and performance still
present challenges for large-scale commercialization. The
complex nature of PEMFCs involves multiple simultaneous
physical and chemical processes occurring at different scales.
The gas diffusion layer (GDL) plays a crucial role in facilitating
the movement of electrons, gases, and liquid water within
20742 | J. Mater. Chem. A, 2024, 12, 20717–20782
PEMFCs as it acts as a connecting component between the ow
eld and the catalyst layer.194 ML and AI can be utilized to
optimize the design of GDLs which includes optimizing factors
such as porosity, pore size distribution, and permeability.
Zhang et al.195 successfully developed a data-driven surrogate
model based on the SVM for optimizing the porous media ow
eld in PEMFCs. By training the SVM model on a small dataset
obtained from a validated 3D physical model, they successfully
established a relationship between the inputs (ber distance,
ber diameter, and output voltage) and the output (current
density). The surrogate model enabled accurate cell perfor-
mance prediction at different porosities, closely matching the
outcomes of a computationally taxing 3D physical model. They
asserted that the use of SVM, specically chosen for its suit-
ability with small datasets, mitigates over-training issues and
ensures reliable predictions. The study identied optimal
porosity values with impressively high current densities and
a negligibly small relative error by incorporating the SVM-based
surrogate model into the GA optimization process. Wang
et al.196 conducted a comprehensive study on the effect of
various factors, such as porosity, thickness, and electrical
conductivity of GDL, on PEMFC performance. Both RSM and
ANN models were employed to optimize the physical parame-
ters of the GDL, aiming to maximize cell performance and
achieve a uniform oxygen prole within the cathode electrode.
Upon validation using average R2 and RSME, as the training
sample size grew, the prediction accuracy of ANN models sur-
passed that of RSM. Through the utilization of a physics-based
model and experimental validation, the optimization of input
parameters using the ANN and RSM resulted in notable
enhancements in current density and the standard deviation of
oxygen distribution. Pourrahmani et al.197 conducted a study
addressing water column formation in the gas GDL of PEMFCs,
which can negatively impact performance. They explored the
inuence of GDL porosity and permeability on liquid water
removal within the GDL and PEMFC performance. Increased
GDL liquid removal rates were associated with enhanced
PEMFC performance, including reduced degradation, extended
lifespan, and improved cold-start capabilities. The study
utilized variable parameters of GDL porosity and permeability,
with maximum GDL liquid water removal as the output
parameter. Error evaluation using MSE, RMSE, and R2

conrmed the suitability of the developed ANN model. The
ndings demonstrated that increasing GDL porosity enhances
liquid removal within the GDL, while a specic range of
permeability values yields optimal water removal results.
Notably, higher GDL porosity values reduce resistance to liquid
and gas phase movement, resulting in improved power densi-
ties and more efficient water management in PEMFCs. Pour-
rahmani et al.198 evaluated the impact of porous media as an
inserted layer within the gas ow channel on PEMFC perfor-
mance. Using 66 simulation datasets, ANNmodels were created
to forecast the output values of the Nusselt number, voltage,
pressure drops, and power density by considering the input
parameters of thickness, current density, and viscous resis-
tance. At high current densities, the study revealed that power
densities were predominantly affected by viscous resistance,
This journal is © The Royal Society of Chemistry 2024
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whereas improved performance was achieved with thicker
inserted porous layers. Aer conrming the accuracy of the ANN
models through regression values andMSE, the study employed
these models to dene an evaluation criterion of the proton
exchange membrane (ECPEM) that considered the simulta-
neous optimization of output parameters. Li et al.199 developed
a comprehensive framework integrating a 3D CFD model,
kernel extreme learning machines (KELM), and an improved
gray wolf optimizer (IGWO) for PEMFC modeling and optimi-
zation. KELMs exhibited superior generalization ability and
rapid convergence and eliminated the need for manual
parameter adjustment and local optimal solutions, providing
a notable advantage in handling low-dimensional data. The
framework considered operating parameters (cell voltage,
oxygen ow rate, and operating pressure) and geometric
parameters (GDL thickness and porosity) to collect reliable
data. Higher GDL porosity improved reactant diffusion but
increased ohmic resistance, impacting voltage drop and current
density. The KELM model achieved excellent agreement with
CFD simulation results, demonstrating high R2 and a minimum
of MSE and MAPE values. The proposed model determined
optimal values for various parameters, resulting in a signicant
maximum power density. It is worth noting that the coupling of
KELMs and the IGWO not only addressed critical challenges in
the fuel cell eld but also exhibited great potential for fuel cell
design and control. Cawte et al.200 evaluated various ML
methods to forecast the air diffusivity and water permeability in
GDL porous media in a PEMFC system, under multiphase and
single-phase ow conditions. The implemented algorithms
were SVR, DTR, GBR, RFR, KNR, ANN, and ELN. Among the
algorithms tested, GBR emerged as the most successful, while
the ANN and SVR exhibited comparable performance in pre-
dicting single-phase transport properties. In single-phase
properties, ber orientation and the porosity of the material
were identied as the most crucial parameters, while for
multiphase transport conditions, saturation emerged as the
predominant parameter across all models.

The composition and microstructure of the catalyst layer
(CL), which serves as the central electrochemical reaction
region in PEMFCs, play a pivotal role in determining the output
performance of PEMFCs. Wang et al.183 established an SVM
model combined with a GA to globally optimize multiple vari-
ables and enhance themaximum power density of PEMFCs. The
database was formed using simulation results from a CFD
model coupled with a CL agglomerate model. Aer the surro-
gate model was developed, prediction performance was
assessed using RMSE, R2, mean percentage error, and
maximum percentage error to evaluate model performance. For
verication, the optimal CL composition was returned to the
physical model and a good agreement was achieved. Addition-
ally, the porous structure of the CL in PEMFCs is crucial for
oxygen transfer resistance and charge/discharge performance.
Using microstructure graphs acquired from focused ion beam
scanning electron microscopy (FIB-SEM), Liu et al.201 employed
a deep convolutional generative adversarial network (DCGAN)
to reconstruct the 3D porous structure of the CL in PEMFCs.
Different interpolation conditions in the DCGAN were explored
This journal is © The Royal Society of Chemistry 2024
to optimize the generated structure, aligning it with real data in
terms of particle size distribution, porosity, and tortuosity.
Comparisons between generated structural and real data
demonstrated the adjacency relationship, suggesting the
potential application of DCGAN-generated data in electro-
chemical simulations with reduced costs. The cathode catalyst
layer (CCL) in PEMFCs plays a crucial role in facilitating mass,
charge, and heat transfer. Traditional methods are insufficient
for a comprehensive understanding of the CCL. As a new
approach, Lou et al.202 employed an MLmodel to investigate the
structure of the CCL. By integrating the XGBoost algorithm with
the PEMFC physical model, this model effectively established
a relationship between nine adjustable parameters (such as Pt
loading, agglomerate radius, pore diameters, and CCL thick-
ness) and optimization goals (power density, current density,
and temperature uniformity of the CCL). The model achieved
high accuracy, with an R2 value greater than 0.95 and an RMSE
value less than 0.05, indicating its strong predictive capabilities.
Their results indicated that the critical parameters for multi-
objective optimization are the Pt loading, agglomerate radius,
ratio of Pt to carbon, and CCL thickness. Implementing an
optimized CCL leads to improvements in power density and
current density and a reduction in Pt loading. Vaz et al.203

employed an MLP model for multi-objective optimization
analysis to assess the impacts of different compositions in the
CCL on single-cell voltage and stack cost. Four important
parameters of the cathode CL, namely Pt loading, ionomer to
carbon weight ratio, Pt to carbon weight ratio, and cathode CL
porosity, were treated as design variables. The 85 CFD simula-
tion database from a comprehensive three-dimensional, multi-
scale, two-phase PEMFC model was utilized to train and vali-
date the MLP model. The accuracy of the MLP model was veri-
ed using metrics such as RSME and adjusted R2. The
optimization process led to signicant cost reduction by mini-
mizing Pt usage and simultaneously resulted in noteworthy
improvements in single-cell voltage.

3.3.4. Solid oxide fuel cells. SOFCs have garnered ongoing
interest due to their numerous benets, which include high
power efficiency, fuel adaptability, environmentally friendly
design, and relatively affordable production. Xu et al.204 intro-
duced a methodology that leveraged CFD, ANN, and GA to
enhance the performance of SOFCs. They compared 19
commonly used algorithms among which the ANN had the
highest R2 and lowest MAE, so the ANN was chosen to connect
inputs and outputs. The impact of 10 inputs, namely, micro-
structure (anode, cathode, and electrolyte porosity), operating
conditions (temperature, pressure, cathode, and anode mass
ow rate, and molar fractions of H2), and geometry (airway
surface liquid (ASL) thickness and channel width) properties on
power density output was investigated. Then, the optimal
operating parameters were used to establish a CFD model for
validation GA. Liu et al.205 introduced a homogenization
framework that utilized DL to establish a link between the
microstructures of porous nickel/yttria-stabilized zirconia
anodes in SOFCs and their macroscopic properties. By
employing the nite element method and mesoscale kinetic
Monte Carlo method, they generated a range of 3D
J. Mater. Chem. A, 2024, 12, 20717–20782 | 20743
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microstructure images to discover the best SOFC anodes with
a proper microstructure (porosity and Ni%) and effective
mechanical properties (elastic properties, coefficient of thermal
expansion, and the triple-phase boundary length density).
Thereaer, these 3D images were used as inputs and macro-
scopic properties were used as outputs to train a DL model
based on the CNN. The model successfully predicted the values
of these properties for new samples, showcasing exceptional
predictive performance compared to the actual values. Nassef
et al.182 employed an ANN to simulate the SOFC by leveraging
experimental data. The simulation was utilized to identify the
optimal operating parameters of the SOFC by an efficient and
reliable optimization algorithm known as the radial movement
optimizer. The parameters considered during the optimization
process included anode support layer thickness, anode
porosity, electrolyte thickness, and cathode interlayer thick-
ness. Meanwhile, the output variable of the ANN was the
voltage. By adopting this approach, the power density greatly
surpassed that achieved through experimental and genetic
methods. Fathy et al.206 employed an ANN model to predict the
terminal voltage of the SOFC using six inputs. They utilized
a moth-ame optimizer (MFO) to estimate optimal values for
various parameters of the SOFC model, including ASL thick-
ness, ASL porosity, electrolyte thickness, and cathode func-
tional layer thickness. The results demonstrated that their ANN-
MFO approach signicantly improved the SOFC power output,
affirming the effectiveness of ML in enhancing the power
generation of SOFCs. Sciazko et al.207 employed an ML-based
image processing framework to accurately reconstruct the 3D
structures of carbon deposition within the porous anode of
SOFCs. By utilizing a U-net neural network withmultiple inputs,
they successfully identied unlled pores, enabling the phase
segmentation of unaltered SEM images without resin inltra-
tion. The innovative microstructure evaluation framework
signicantly contributed to quantitative investigations of
carbon deposition in pores, as well as the development of
effective mitigation strategies for SOFC anodes. Song et al.180

developed an anode-supported SOFC model using an ANN and
optimized design variables. The model incorporated input
parameters to estimate the voltage of the SOFC. They optimized
four design parameters: electrolyte thickness, anode thickness,
cathode thickness, and anode porosity using a multi-armed
bandit algorithm. Golbabaei et al.208 introduced several ML
approaches to forecasting the output voltage of anode-
supported SOFCs. The MLP regressor stood out as the supe-
rior model among others for accurately predicting the output
voltage of an anode-supported SOFC. The model considered key
operational parameters such as temperature, anode-supported
porosity and thickness, electrolyte thickness, cathode func-
tional layer thickness, and current density.

Solid oxide electrochemical cells (SOCs) are versatile energy
conversion devices that can function as either fuel cells or
electrolysis cells. In the fuel cell mode (SOFC), they produce
electricity by oxidizing fuel, while in the electrolysis mode
(SOEC), they convert electricity into chemical energy stored as
fuel. Wang et al.209 introduced a data-driven surrogate model
that utilized the SVM regression algorithm to establish
20744 | J. Mater. Chem. A, 2024, 12, 20717–20782
a relationship between fabrication parameters (including
volume fractions of NiO, YSZ, and pore former phases, as well as
initial average particle size) and electrode overpotentials. The
model demonstrated fast and accurate prediction of the elec-
trochemical performance of heterogeneous porous electrodes.
Specically, the volume fractions of YSZ were identied as
a crucial factor inuencing the overall overpotential.

3.3.5. Redox ow batteries. Redox ow batteries (RFBs)
have emerged as a promising solution for addressing the chal-
lenges of intermittent renewable energy sources. To enable the
widespread adoption of RFBs, improvements are needed in
various components, including the discovery of high-energy-
density redox couples, optimization of electrode and
membrane microstructures, and enhancement of ow eld
design. These improvements aim to enhance the overall
performance, efficiency, and cost-effectiveness of RFBs.

The optimization of electrode microstructures has been
investigated in the literature using a combination of ML
methods, lattice Boltzmann method (LBM) simulations,210 and
pore network modeling (PNM).211 In one study, articial brous
electrode microstructures were generated using stochastic
reconstruction methods and morphological algorithms, and
their hydraulic permeability was evaluated using the LBM.210

ML models such as linear regression, ANN, and random forests
(RF) were utilized, along with the genetic algorithm NSGA-II, to
identify microstructures with high specic surface area and
hydraulic permeability. The workow resulted in the discovery
of microstructures exhibiting microstructures with signicant
improvements compared to commercial carbon felt electrodes.
However, limitations were noted regarding assumptions made
during microstructure generation, which may impact the
realism of the optimized microstructures.210 Another study
employed PNM to optimize the pore and throat size distribu-
tions of an articially generated microstructure using a genetic
algorithm.211 The optimized microstructures showed a bimodal
pore size distribution, leading to improved ow pathways and
enhanced electrochemical performance. However, challenges
were identied regarding the realism and manufacturability of
the optimized microstructures, as well as the consideration of
pore coordinate relocation during the optimization process.211

Furthermore, a multi-scale model was employed to investi-
gate the relationship between pore-scale electrode structure
reactions and device-scale electrochemical reaction unifor-
mity.212 The study combined a deep neural network with
a partial differential equation solver and utilized 128 pore-scale
simulations to train and validate the deep neural network. The
ndings revealed that optimizing the electrolyte inlet velocity
over time led to a signicant reduction in pump power
consumption while maintaining surface reaction uniformity,
while the impact on electric power output during discharging
was minimal.212 It is important to note that the limited number
of simulations conducted in this study may restrict the gener-
alizability of the results. Additionally, the characterization of
electrode microstructure plays a crucial role in understanding
its behavior. In another investigation,213 a custom Weka three-
dimensional segmentation technique214 was employed to
study the permeability and mass transport processes in various
This journal is © The Royal Society of Chemistry 2024
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carbon electrodes. This segmentation approach provided
improved control over the known ber thickness, potentially
leading to more accurate estimations of specic surface area
and porosity. However, it is worth mentioning that the disad-
vantage of the workow was the small sample size used for
training the classier and the use of scanning electron micro-
scope (SEM) images as the ground truth for adjusting ber
thickness.213

The laser reduction process of poly(acrylonitrile) (PAN)
membranes has been investigated using Bayesian optimiza-
tion.215 A dataset of 204 samples, including laser scan speed,
laser power, focal point height, and image density, was utilized
for this study. The results demonstrated the successful
synthesis of laser-reduced PAN membranes in a single lasing
step, leading to materials with low sheet resistance (6.5 U sq−1).
The suitability of these materials as membrane electrodes for
vanadium RFBs was conrmed through electrochemical
testing.215 However, challenges were encountered, such as the
system-specic nature of the optimized parameter set and the
limitation imposed by electrode thickness. In another study,216

an ANN was employed to develop polybenzimidazole (PBI)
Fig. 9 (a) Predictable membrane performance of the MLmodel and mem
of Chemistry, (b) U-Net neural network used to enhance the quality of ex
with permission from Elsevier, (c) coupled physical models for battery el
ministic learning method and subsequent property optimization,218 rep
between control variables for the cathode and anode,219 reproduced wit

This journal is © The Royal Society of Chemistry 2024
membranes with high ion selectivity, proton conductivity, and
low cost through solvent treatment. The dataset comprised 49
samples, with solvent properties and experimental parameters
used as inputs. The predicted performance of the PBI
membranes in vanadium RFBs, in terms of voltage efficiency
(VE) and energy efficiency (EE), achieved a mean absolute
prediction error (MAPE) within 1% of the experimental data as
highlighted between the comparisons in chemicals (hexane,
ethanol, etc.) as shown in Fig. 9a. Nonetheless, the relatively
small dataset and the limited exploration of solvents could
impact the generalizability of the model.216

3.3.6. Lithium-ion batteries. Lithium-ion batteries (LIBs)
have become an integral part of modern life, powering
numerous portable electronic devices, electric vehicles, and
renewable energy storage systems. The increasing demand for
longer-lasting batteries with higher performance and efficiency
has propelled research and development efforts in this eld. By
gaining insights into the intricate details of the electrode
microstructure the development of advanced materials,
manufacturing techniques, and computational models
becomes possible. ML algorithms are used to enhance the
brane structure,216 reproduced with permission from the Royal Society
tracted microstructures from X-ray tomography images,217 reproduced
ectrode manufacturing processes (drying and calendering) to a deter-
roduced with permission from Elsevier, and (d) correlation analysis
h permission from Elsevier.
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image segmentation outcome, estimation of the electrode
microstructure properties, optimization of the electrode
manufacturing process, and 3D microstructure reconstruction
using 2D images.

Microstructure characterization plays a vital role in opti-
mizing manufacturing processes and predicting the long-term
performance of LIBs. In a recent study, researchers focused
on LiNi0.33Co0.33Mn0.33O2 as the active material and employed
coarse-grained molecular dynamics simulations and X-ray
micro-computed tomography to investigate changes in elec-
trode heterogeneity and the deformation of secondary particles
during manufacturing.220 To analyze the obtained tomographic
data, ML techniques, including the Weka plugin214 and fast
random forest class, were trained on real particle shapes.
However, further improvements and validations are necessary
to enhance the accuracy and applicability of the model in real-
world scenarios. In a similar study, to minimize variation in
quantifying the volume fraction of the active material,
researchers utilized the open-source soware Ilastik221 and
employed an iterative, manual training approach.222 This
method achieved reduced variation compared to unsupervised
techniques, but additional renements and validations were
required to enhance accuracy and applicability when quanti-
fying the active material volume fraction in LIB cathode tomo-
grams. Moreover, researchers employed a DL-based U-Net
architecture and StarDist223 for active particle segmentation,
enabling rapid and accurate characterization of the electrode
microstructure.224 Geometric analysis of the segmented data
provided valuable information on particle size distribution,
porosity, tortuosity, and particle system connectivity. Addi-
tionally, a stochastic reconstruction methodology was pre-
sented to generate statistically equivalent virtual microstructure
designs. It is important to note that the limitations of this
approach include its reliance on previously published tomo-
graphic data and the challenge of accurately representing non-
spherical particle morphology.

For microstructure extraction from 2D scanning electron
microscopy (SEM) images, researchers used a modied U-Net
architecture223 based on the CNN217 with an input to
segmented output process on the images shown in Fig. 9b. They
examined the relationship between porosity and thickness at
different states of charge, demonstrating the effectiveness of the
image segmentation method in improving microstructure
extraction quality. Another investigation focused on the rapid
characterization of microstructural effective properties of LIB
graphite anode electrodes using ML models.225 Different
supervised learningmodels, including linear, decision-tree, and
ensemble-based models, were employed and trained on input
parameters such as composition, active material shape, mean
pore size, and particle orientation and alignment. The results
exhibited high prediction accuracy for estimating effective
properties, but the limitations included the use of articially
constructed porous electrodes and the complexity of accurately
estimating the properties of real electrodes.

To estimate the tortuosity of the cathode and anode in LIBs,
researchers used a combination of a CNN and support vector
regression (SVR).226 Three-dimensional porous structures were
20746 | J. Mater. Chem. A, 2024, 12, 20717–20782
employed as input, and the study revealed a correlation between
tortuosity and the particle aspect ratio, expanding the under-
standing beyond porosity alone. However, the limitations
included the use of simulated electrode structures that may not
fully represent real microstructures and the neglect of carbon
black and binder in the models. Researchers developed a CNN
model to predict the microstructural properties of
a graphitejLiMn2O4 electrode based on voltage–capacity
curves.227 Training the model on a large dataset allowed
successful prediction of Bruggeman's exponent and shape
factor. This study highlighted the potential of deep learning
approaches for rapidly inferring microstructural properties for
battery design optimization and performance evaluation.
Limitations included the challenges of capturing particle–
particle effects at high current densities and predicting the
performance of highly aligned platelets with morphological
anisotropy.

Advancements in 3D microstructure reconstruction have
also been explored. One study developed a method using ANNs
and the scaled conjugate gradient (SCG) method to construct
3D microstructures from limited morphological information
obtained from 2D cross-sectional images.228 The results
demonstrated that the workow preserved statistical charac-
teristics, geometrical irregularities, long-distance connectivity,
and anisotropy observed in the 2D images. However, further
research is needed to address and validate the limitations and
challenges related to accuracy and efficiency. Another study
focused on the reconstruction and analysis of anode and
cathode electrodes using a neural network-based approach.229

The study employed an autoencoder–decoder framework for
microstructure reconstruction and feature extraction. While the
ndings showed promise in optimizing microstructure recon-
struction, incorporating additional computational layers such
as pooling, batch normalization, and regularization, the
model's inability to produce realistic reconstructions indicated
the need for more data to enhance its performance. Addition-
ally, researchers utilized CNNs to build 3D models of nickel–
manganese–cobalt cathodes.230 This approach aimed to over-
come the challenges associated with accessing 3D images by
utilizing readily available 2D images and capturing the
granular-like morphology of the battery system. The ndings
demonstrated the ability of the proposed method to generate
synthetic 3D models that exhibited good agreement with the
original models. However, differences in pore size distribution,
permeability, and thermal conductivity compared to the orig-
inal models indicated a limitation of the approach.

Researchers have explored the optimization of
manufacturing parameters in LIBs using ML techniques. A
combination of ML methods with physics-based simulations
was employed for multi-objective optimization and inverse
design of LIB electrode properties and manufacturing param-
eters218 as shown in the ow chart in Fig. 9c. The ML-assisted
pipeline utilized a synthetic dataset generated from physics-
based simulations to train ML models, to nd a balance
between minimizing the electrode tortuosity factor and maxi-
mizing effective electronic conductivity, active surface area, and
density, all crucial factors inuencing Li+ (de-) intercalation
This journal is © The Royal Society of Chemistry 2024
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kinetics and transport properties. The study revealed the
interconnected nature of these properties and their impact on
optimal electrode performance. However, limitations include
reliance on simulation data, limited dataset volume impacting
generalizability, and exclusion of certain manufacturing steps
in the simulation process. Nonetheless, the successful experi-
mental fabrication of an electrode based on the model's
predictions validated the physical relevance of the modeling
pipeline.218 In predicting electrolyte inltration in LIB elec-
trodes, a multi-layer perceptron (MLP) approach was used.231

The model was trained on a database generated from a 3D-
resolved physical model based on the LBM and X-ray micro-
computer tomography. The MLP model accurately predicted
the rate of saturation, lling time, and direction of electrolyte
ow in porous electrodes. It enabled quick and accurate
predictions, facilitating the screening of different conditions to
optimize the inltration process. However, limitations of the
model included the exclusion of certain geometrical parameters
inuencing the uid distribution and the reliance on simulated
data that may not fully capture the complexity of real-world
systems.231

In another study, to optimize electrolyte inltration condi-
tions, random forest (RF), neural network, and SVM models
were employed.232 Exploratory data analysis (EDA) identied
inuential electrolyte parameters affecting saturation descrip-
tors. Lower kinematic viscosity led to higher wetting degrees
and rates, while higher inlet applied pressure reduced the
electrolyte lling time. The study showcased the potential of ML
as a surrogate model for optimizing multi-parameter processes
in battery manufacturing. However, the computational cost
associated with physics-based approaches such as the LBM
poses a limitation.232 Gradient-boosted trees and random forest
models were used to identify key parameters in the
manufacturing process of LIB electrodes.219 Coating process
factors such as the comma bar gap, coating speed, and the
coating ratio were considered input parameters. The study
demonstrated a data-driven approach to predicting electrode
quality and identied key parameters and control variables
affecting the manufacturing process as shown in Fig. 9d. A
systematic design of experiments was proposed to generate
representative data for ML activities, reducing waste and
resource demand. However, the limited number of experiments
and consideration of only a subset of parameters restricted the
general applicability of the model.219

A deep-learning-based prediction algorithm combines
adaptive dropout long short-term memory-Monte Carlo
(ADLSTM-MC), for early prediction of battery remaining useful
life (RUL) in LiFePO4/graphite and LiNi0.8Co0.15Al0.05O2/
graphite batteries,233 with reduced degradation data. The
method achieves precise early prediction with only 25% of the
degradation data, outperforming existing models. The
proposed method demonstrates high accuracy with an R2 value
of 0.957–0.982 for capacity prediction and low prediction errors
(RMSE and MAE). However, the computational efficiency of the
LSTM network needs improvement for real-time battery
management systems. Moreover, the Bayesian optimization
(BO) strategy was employed to optimize rapid charging
This journal is © The Royal Society of Chemistry 2024
protocols in graphite/LiCoO2 batteries.234 The goal was to
reduce charging time while limiting battery degradation. The
probability-of-improvement acquisition function showed the
best performance. Limitations include computational cost,
limited applicability of the electrochemical model used,
simplied assumptions, and a lack of experimental validations.
Another study employed particle swarm optimization (PSO) to
optimize highly ordered laser-patterned electrode (HOLE)
architectures for fast-charging LIBs.235 The study used experi-
mentally obtained voltage vs. capacity data for galvanostatic
charging at different C-rates as input. The optimal spacing
between channels for improved fast-charging performance was
identied, with the Damkohler number (Da) serving as a metric.
The optimal conguration maintained a Da z 1 throughout
charging. Limitations include the oversight of pore-scale
changes due to continuum modeling and the small dataset
used in the study.

3.3.7. Supercapacitors. Supercapacitors are electro-
chemical energy storage devices that have fast charging capa-
bilities, high power density, and cycle lifetimes. They can either
store their charge via the electrical double layer (by ion
adsorption) or reversible redox reactions.236 This means that
electrode structures or chemical composition could alter the
performance, such as by the change in active surface area or the
connectivity of the pore network.237

Ions must ow from the separator region towards or away
from the electrodes which is inuenced by diffusion and
migration, where the electrode structure may facilitate or resist
each transport mechanism as shown in Fig. 10a. To determine
the optimal properties for supercapacitor electrodes (typically
activated carbon-based materials as shown in the gure, where
the performance metrics are oen specic capacitance (F
g−1),236–243 ML tools using experimental data can be used.

ML models are empirical, meaning that high-quality data-
sets are needed for the models generated to be predictive
outside of the experimental region of interest. For example, in
one case243 400 raw datasets were condensed to 259 defect-free
results. The inclusion of inaccurate experimental data could
bias the prediction of the ML models.

In the literature on supercapacitors, it is stated that theo-
retical models are not reliable enough to predict the state of
supercapacitors away from equilibrium so to optimize the
electrode structure currently, ML techniques must be used.237,242

The ML methods that have been used for supercapacitor opti-
mization have used ANNs, MLP, LR, XGBoost, RF, and DTs236–243

to name a few; however, of these the ANN and XGBoost are oen
the more accurate performance models. The evaluation metrics
used to study the predictive capability of the models include R2,
RMSE, and MAPE.

As shown in Fig. 10b, the ANN can be used to create material
design operating maps which provide a design space to choose
specic surface area for mesoscale and microscale pores237,242

allowing for next-generation material design.
Some of these studies have used ML to optimize the chem-

ical composition or preparation structure for bio-mass-derived
electrodes for supercapacitors, including jackfruit-derived.241

Here, using a design of experiment (Box-Behnken design), 15
J. Mater. Chem. A, 2024, 12, 20717–20782 | 20747
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Fig. 10 (a) Schematic of an asymmetric supercapacitor showing different materials that can be used for the anode (lignin/NiWO4) and cathode
(activated carbon),242 reproduced with permission from American Chemical Society, (b) specific capacitance design maps predicted by ANNs,
allowing meso and micropore surface area to be optimized at different scan rates,237 reproduced with permission from Elsevier, (c) selection of
input variables taken from 200 experimental publications allowing for prediction of specific capacitance of graphene doped electrodes,238

reproduced with permission from Elsevier, and (d) ANN used along with particle swarm optimization to predict and optimize specific capacitance
(color bar) based on activation temperature and the impregnation ratio,241 reproduced with permission from Elsevier.
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experimental datasets were extracted and an ANN was trained
on this limited dataset. The ANN model was able to predict and
optimize the amount of phosphoric acid and activation
temperature required, obtaining a maximum specic capaci-
tance of 56.12 F g−1. However, in this scenario, the micro-
structural properties were not used as inputs to the trained
model.241 As shown in Fig. 10d, this method was able to provide
the response of specic capacity as a function of activation
temperature, impregnation ratio, and series resistance, which
could lead to improvements in specic capacitance of over 9
times. Similarly, lignin-based electrodes have been investigated
via ML methods (LR, SVG, and ANN) using an 80/20 training/
test split on cycle data, where performance data did not use
microstructure data but could predict specic capacitance
change over time.242

Other studies, where BET data for surface area have been
acquired, have looked at using microstructural properties as
inputs for ML models. This can include the surface area for the
micro and macroporous structure237,239,240,243 or operating
20748 | J. Mater. Chem. A, 2024, 12, 20717–20782
parameters such as electrolyte conductivity, cell conguration,
and charge transfer resistance238 as shown by the inputs to the
neural network in Fig. 10c.

The impact of ML models on the development of next-
generation electrode materials was highlighted by Rahimi
et al.243 They used 259 defect-free datasets for experimental
values in 6 M KOH and with three electrode congurations to
train an ANN. The surrogate model was used for a genetic
algorithm to optimize the input parameters which could predict
the optimal properties of an AC supercapacitor electrode to
reach 550 F g−1.

ML approaches using empirical data as input maymiss some
critical features as the relationships between parameters may be
highly non-linear. However, without this, there has been some
success in optimizing input parameters or macroscopic
parameters. However, there is still no approach that considers
a mix of theoretical models, ML, perhaps as surrogate models to
the theory (which contains no noise), leading to ML algorithms
for optimization.
This journal is © The Royal Society of Chemistry 2024
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ML applied to electrochemical engineering has been shown
to be able to predict the complex interaction between operating
and material parameters that a physical-based model is
currently unable to resolve. There are readily available data
regarding the manufacturing methods that lead to certain
electrode microstructures, and these could be leveraged by ML
methods through surrogate modeling or optimization strategies
to choose optimal manufacturing conditions. Generally,
between fuel cells, electrolyzers, batteries, and supercapacitors,
the role of the microstructure of electrodes, separators, and
electrolytes plays a key role in performance and durability.
3.4. Hydrocarbon reservoirs

Central to the efficacy of oil and gas reservoirs is the intricate
matrix of porous media, a labyrinthine network of inter-
connected spaces within rock formations that house hydrocar-
bons. These porous structures, comprising varying
permeabilities and porosities, act as repositories for vital
resources. ML algorithms play a pivotal role in unraveling the
mysteries held within these porous domains. By harnessing ML
models, the characterization and understanding of these
porous media undergo a profound transformation.244

ML is a subset of articial intelligence that enables
computers to learn from data without being explicitly pro-
grammed. It involves developing algorithms to identify patterns
in large datasets and make predictions based on those patterns.
In oil and gas reservoirs, ML can analyze geological data, well
logs, seismic surveys, production data, and other relevant
information to enhance reservoir characterization, improve
production efficiency, and reduce costs. One of the key benets
of ML in the oil and gas industry is its ability to handle large
amounts of complex data. Traditional methods for analyzing
geological data involve manual interpretation by geologists or
engineers. However, this process can be time-consuming and
prone to errors. ML methods can quickly analyze vast amounts
of data from multiple sources to identify patterns that may not
be apparent to human analysts. Another advantage of ML is its
ability to make accurate predictions based on historical data.245

As technology continues to evolve, we will likely see more
widespread adoption of ML in the exploration and production
of oil and gas reservoirs. However, it is essential to note that ML
is not a silver bullet solution and requires careful consideration
of data quality, model accuracy, and ethical considerations.
Nonetheless, the benets of ML in the oil and gas industry are
clear, and its application will undoubtedly continue to grow in
the years to come.

This section focuses on the ML models in oil and gas porous
media, as a complex and dynamic system, to foremost raise the
understanding and thereaer provide an overview of ways that
optimize the recovery of hydrocarbons from the reservoir. In
reservoir characterization, ML models are used for analyzing
data from reservoir cores, including porosity and permeability,
for creating more accurate reservoir models. To this end, the
location of wells can be optimized and improve the recovery of
hydrocarbons from the reservoir. MLmodels in reservoir history
matching are used for matching production data from oil or gas
This journal is © The Royal Society of Chemistry 2024
reservoirs to numerical models, which allows for more accurate
predictions of future production and its changes over time. In
EOR, MLmodels may be employed for optimizing EORmethods
including CO2 injection and waterooding, by analyzing data
from the reservoirs. Towards rock physics modeling, MLmodels
are used for introducing rock physics models, whereby the
connection between rock's physical properties, such as porosity
and permeability, and the uids' properties in the rock, such as
oil and water is described. Here, pore-scale uid ow and
transport are also appraised allowing for better predictions of
oil and gas behavior in porous media. Furthermore, in the
subeld of fracture characterization, ML models can be used to
analyze data from seismic surveys and well logs to eventually
identify and characterize fractures in the reservoir, which are
critical to the uids' ow. Finally, by analyzing data from log
measurements, i.e., resistivity, the porous media properties can
be determined.

In this section, the application of ML techniques in hydro-
carbon reservoirs is described in four subsections: pore-scale
modeling, reservoir characterization, reservoir modeling, and
reservoir management (Fig. 11).

3.4.1. Pore-scale modeling. Pore-scale simulation is
a computational technique used to study the behavior of uids
in porous media at the microscopic level. Using numerical
methods involves simulating uid ow and transport through
individual pores and throats of a porous material, such as a rock
or soil. The process of pore-scale simulation typically begins
with obtaining high-resolution X-ray images of the porous
media. These images are then processed to create a three-
dimensional digital representation of the pore space. The
digital model is then used to simulate uid ow and transport
through the pore network using mathematical models that
describe the physics of the uid ow (Fig. 12). Pore-scale
simulation can provide valuable insights into the behavior of
uids in complex geological formations, which can help
improve our understanding of subsurface processes such as oil
and gas production, groundwater management, and carbon
sequestration.250

3.4.1.1. Image resolution enhancement. One of the primary
applications of ML in pore-scale modeling is image resolution
enhancement. Due to hardware constraints, pore images ob-
tained from micro-CT scans or other imaging techniques are
oen limited by low resolution and size. There is a trade-off
between image resolution and eld-of-view (FOV), meaning
that a wider FOV covers a larger area but reduces the pixel
density (low resolution) and vice versa. ML algorithms can be
trained for image resolution enhancement by using deep
learning techniques while capturing a larger FOV, which
improves realistic uid ow simulation, and estimating rock-
effective properties at desired scales.252 Super-resolution (SR)
reconstruction methods have shown outstanding performance
in converting low-resolution (LR) images to high-resolution
(HR) images by lowering the difference error between these
two types of images. As mentioned earlier, deep learning
approaches such as generative adversarial networks (GANs) and
CNNs are utilized regularly with SR for tackling problems.
Jackson et al.253 used an enhanced deep-super resolution (EDSR)
J. Mater. Chem. A, 2024, 12, 20717–20782 | 20749
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Fig. 11 The workflow of the hydrocarbon reservoir engineering section. The input data, such as seismic, well logs and micro-CT images, are
used for reservoir characterization, Xie et al.,246 reproduced with permission from Elsevier, and petrophysical property prediction through pore-
scale modeling, Ma,247 reproduced with permission from Elsevier, and then static and dynamic models are constructed for reservoir simulation,
Fornel and Estublier,248 reproduced with permission from Elsevier. The final step is reservoir management, where production strategies, opti-
mization, and EOR selection are conducted, Hutahaean et al.,249 reproduced with permission from Elsevier.

Fig. 12 A depiction of ML approach utilization in pore-scale imaging and modeling workflow. Gray-scale images obtained from scanners can
undergo segmentation or super-resolution through CNNs, while GANs enable synthetic image reconstruction from latent or 2D/3D information.
Petrophysical property prediction in pore-scale modeling can be enhanced using ANNs and CNNs to forecast parameters such as permeability
and fluid phase distributions, Wang et al.,251 reproduced with permission from Elsevier.

20750 | J. Mater. Chem. A, 2024, 12, 20717–20782 This journal is © The Royal Society of Chemistry 2024
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convolutional neural network to generate high-quality images
from low-resolution (LR) images. This methodology reduces the
common aws in micro-CT imaging and generates realistic HR
images for pore network modeling (PNM) and continuum
modeling. In the image resolution enhancement eld, two types
of image data are used as input variables for the ML models,
paired and unpaired images. In paired images, input and the
ground-truth image domains are aligned, while the unpaired
image refers to the data collected from various sample loca-
tions. Although paired images usually produce better results,
they are challenging to acquire. The convolutional neural
network (CNN) requires paired data as input, but methods
based on generative adversarial networks (GANs) use unpaired
images. Niu et al.254 probed the performance of these two
approaches utilizing a micro-CT sample for creating HR images
from LR images. They concluded that the unpaired GAN
method performs the same as the paired CNN approach in
creating HR images, but the unpaired GAN does not require
image registration in the data processing stage. Compared to
the paired CNN method, this feature reduces computational
costs by up to 22.5%. In another study,255 the enhanced deep
super-resolution generative adversarial network (EDSRGAN)
showed remarkable visual similarity in texture regeneration
over other approaches. Also, it reconstructs high-frequency
texture, while the super-resolution convolutional neural
network (SRCNN) retrieves large-scale edge features. Also, Liu
and Mukerji256 utilized style-based GAN and cycle-consistent
GAN to regenerate high-resolution images with a large FOV,
which is the ultimate purpose of using ML for digital rock
resolution enhancement. Their study used the style-based GAN
to tackle the overtting problem and cycle-consistent GAN for
integrating the unpaired image data from various sources.

3.4.1.2. Pore geometry generation. Another important appli-
cation of ML in pore-scale modeling is generating realistic pore
geometries. Traditional methods for generating pore geome-
tries involve manual segmentation or random generation based
on statistical parameters. However, these methods may need to
capture real-world porous media's complex geometry and
heterogeneity accurately. ML methods can be conducted on
large datasets of micro-CT scans to learn the statistical distri-
bution of pores' shapes and sizes. This information can then be
used to generate realistic 3D models that accurately represent
the geometry and heterogeneity of porous media. Due to the
high cost of 3D microscopy imaging, 3D microstructure recon-
struction from 2D cross-sectional images using deep learning
approaches is recommended as a cost-effective and accurate
solution. Fu et al.257 used a supervisedML procedure for 3D pore
reconstruction purposes. The proposed method showed supe-
rior results to conventional approaches, such as stochastic
optimization-based reconstruction and Gaussian random eld,
regarding the accuracy and maintaining microstructural
complexities within 2D images. Zheng and Zhang258 proposed
a deep learning-based method called RockGPT to generate
several types of rocks simultaneously using a single 2D image.
Hybrid superposition approaches have shown promising
performance in reconstruction problems, but they are complex,
and both low and high-resolution images are required as the
This journal is © The Royal Society of Chemistry 2024
input images. Hence, Yang et al.259 utilized a cGAN-based
method to overcome the complexity of the proposed approach
and prevent human factors that may cause severe problems.
This method used low-resolution core images as the input for
multi-scale digital rock reconstruction, while high-resolution
images with a narrow FOV opted for the training stage. In
another study, Zhang et al.260 introduced a framework named
LGCNN based on the GAN and CNN for 3D porous media
reconstruction. The LGCNN approach proved to be faster and
more precise compared to traditional reconstruction methods
with a higher construction speed (6003 voxels) and lower time
(10 min).

3.4.1.3. Pore-scale simulation. ML has also been applied to
simulate uid ow and transport properties at the pore scale.
Conventional numerical simulations involve solving partial
differential equations (PDEs) that describe uid ow through
porous media. Direct numerical simulation (DNS) and pore
network modeling (PNM) are the primary approaches for ow
simulation at the pore-scale. DNS solves Navier–Stokes equa-
tions on the realistic 3D pore geometry reconstructed from
high-resolution micro-CT images of rock samples. Using DNS
leads to accurate but computationally expensive results.
However, PNM uses a simplied ball-and-stick network ob-
tained from real pore geometry to reduce the model complexity
and computational costs of the DNS approach. However, the
main drawback of PNM is that it may not accurately capture
complex phenomena such as uid–solid interactions and pore-
scale heterogeneity as DNS. ML methods are also used in
numerical simulations to learn the relationship between input
parameters and output properties. This information can then
be used to develop surrogate models that accurately predict
uid ow and transport properties such as temperature, pres-
sure, and permeability at a fraction of the computational cost of
traditional simulations. Ting et al.261 applied a convolutional
neural network (CNN) in a uid ow simulation through the
fracture problem. The priority of the researchers was avoiding
simplied assumptions used in PNM, as it neglects the realistic
geometry of the fractures and, consequently, the effect of
capillary phenomena at the pore scale. However, the computa-
tional demands of DNS methods were also a signicant chal-
lenge. Hence, they suggested using a data processing algorithm
and CNN to tackle the disadvantages of the DNS method (LBM).
The results illustrated that the accelerated LBM effectively
simulated multiphase ow through 3D fractures in a shorter
time. Ishola and Vilcáez262 utilized a stochastic pore-scale
simulation method for permeability estimation, and then they
used the gradient boosting algorithm to reduce the number of
simulations. The outcomes exhibited that using the gradient
boosting algorithm reduced the number of simulations from
4400 to 28 while achieving the same results of rock core data
with an MAE of 10%. Sun et al.263 proposed a deep learning-
based approach for estimating permeability as a substitute for
conventional pore-scale simulation and experimental methods,
which are assumed to be time-consuming. They concluded that
the proposed framework was 100 times faster than DNS. Tian
et al.264 evaluated the performance of six different ML algo-
rithms in a permeability prediction study. These algorithms
J. Mater. Chem. A, 2024, 12, 20717–20782 | 20751
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were optimized by using particle swarm optimization (PSO) to
enhance the performance of the ML algorithms. The results
showed that PSO's hyperparameter tuning of the ML algorithm
improved their performance. Among all the ML algorithms, the
ANN-PSO approach exceeded other algorithms regarding
permeability prediction accuracy (R-value of 0.9985). Also, the
application of feature selection in ML algorithms improved
their performance and proved their supremacy over the
empirical equations in permeability prediction. Bu et al.265 used
ve different linear regression algorithms for permeability
prediction from CT images of core samples. The outcomes
revealed that the Gaussian process regression (GPR) models
achieved the highest R-squared values (minimum of 0.87),
outperforming other methods in estimating permeability
accurately. In addition, usingML-basedmethods overcomes the
computational cost issues, which makes them an excellent
alternative approach to conventional pore-scale simulation
methods such as PNM.

3.4.2. Reservoir characterization. Reservoir characteriza-
tion involves the analysis of geological, geophysical, and pet-
rophysical data to determine the properties of subsurface
reservoirs critical for estimating the total hydrocarbons present
in a reservoir. Traditionally, reservoir characterization relied on
manually interpreting logs, seismic data, and core samples.
However, human biases made these approaches time-
consuming and prone to errors. ML algorithms can be
applied to seismic and logging data to improve image quality,
remove noise, and extract more information from the data. They
can also be trained on CT scan data to predict petrophysical
properties such as mineralogical brittleness,266,267 total organic
carbon (TOC),268,269 microorganism growth,270 shear wave
velocity,271 and minimum miscible pressure (MMP).272–275

However, ML models have been applied to predict permeability
and porosity as the essential properties affecting uid ow in
reservoir engineering (Fig. 13).

In several types of research, well-logging data are used as
input since data obtained from core samples highly rely on core
experiments and have limitations in uncored areas.277 Yang
et al.278 used a deep learning approach based on the combina-
tion of a 1-D convolutional neural network (CNN) and bidirec-
tional LSTM network to predict reservoir parameters such as
permeability and porosity from logging data. In their study,
optimization algorithms and self-attention mechanisms were
conducted to nd the optimum network architecture and
weights for accuracy enhancement. The results showed that the
proposed framework accurately predicts despite using input
data from various reservoir regions. Masroor et al.279 established
the supremacy of a novel multiple-input deep residual con-
volutional neural network (MIRes CNN) with single-input deep
residual CNN methods and baseline methods such as random
forest (RF) in the permeability estimation task. Two types of
data, numerical well-logs (NWLs) and graphical feature images
(GFIs) were fed to the network. It was concluded that the MIRes
CNN's ability to handle mixed data as input features reduced
the overtting issue and computational costs compared to
conventional methods. The computational costs and conver-
gence problems related to ANNs have been addressed in some
20752 | J. Mater. Chem. A, 2024, 12, 20717–20782
studies. Matinkia et al.280 suggested that MLP neural network-
heuristic hybrid approaches optimize the network architecture
for predicting rock permeability. They compared the effective-
ness of the social ski-driver (SSD) algorithm-MLP combination
with two commonly used hybrid methods, such as particle
swarm optimization (PSO)-MLP and genetic algorithm (GA)-
MLP. It was illustrated that SSD-MLP had the highest accuracy
with a correlation coefficient (R) of 0.9928, while GA-MLP
converged faster than the other two approaches. Chao et al.281

proposed a newMLmodel that can predict the stress-dependent
gas permeability of shales with different moisture contents. The
model combines the mind evolutionary algorithm (MEA) and
adaptive boosting algorithm-back propagation ANN (ADA-
BPANN) and has higher prediction accuracy and shorter
training time than traditional ML algorithms. In another study,
Pan et al.282 used a grid search approach and genetic algorithm
for hyperparameter tuning and optimizing the XGBoost algo-
rithm in a porosity prediction problem. The proposed method
illustrated excellent generalization performance and adapt-
ability, and compared to the ve other approaches, it showed
the most accurate porosity estimation. Wang and Cao283

combined the 1-D CNN and bidirectional gated recurrent unit
(BiGRU) neural network to take advantage of both models and
overcome their drawbacks for porosity prediction from well-
logging data. The CNN network was used for learning hierar-
chical local features, and the BiGRU neural network was used to
learn global features. The porosity prediction results proved
that the novel integrated neural network outperformed other
models, such as LSTM and RNN. Despite the efficiency of the
ML models in reservoir property prediction, the “black box”
nature of these models hinders their enhancement in some
points. Water saturation, a crucial property in reservoir char-
acterization, can be determined using various correlations.
However, there are several obstacles, such as the faultiness of
presumptions and high computational demand, to using these
equations. Ibrahim et al.284 fed various types of well-logs to ML
approaches, such as random forest (RF), function network (FN),
and SVM, for the training and testing of a model that forecasts
water saturation. Compared to empirical correlations, the
introduced models showed excellent performance in water
saturation determination, with an average absolute percentage
error (AAPE) of less than 8%.

Some other researchers fed data from rock samples and
micro-CT images to ML models for training and testing. Zhao
et al.285 introduced a digital quantum mechanism-based neural
network (DQNN) to estimate rock permeability and pore-scale
variables are opted as input variables. The results showed that
pore length, size, and throat size are more important variables
than the coordinate number and porosity for predicting
permeability. Also, the evaluation results of the DQNN were
compared with those of the classical ANN and experimental
permeability in terms of computational costs and accuracy. dos
Anjos et al.286 utilized a CNN and CNN with spatial pyramid
pooling (CNN-SPP), two convolutional neural network models,
to predict petrophysical properties such as permeability from
micro-CT images. Also, an easy-to-implement model, named
the ImageNet pre-trained model, was tested and compared with
This journal is © The Royal Society of Chemistry 2024
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Fig. 13 Workflow for S-wave velocity prediction, utilizing a petrophysical model and employing a long short-termmemory (LSTM) model based
on wireline logs, Zhang et al.,276 reproduced with permission from Elsevier. The LSTM model begins by analyzing relationships between
conventional wireline logs and measured S-wave velocity, selecting sensitive logs for prediction. Subsequently, an optimal LSTM model is
established to predict the S-wave velocity. Then, the two models are compared based on factors such as rock mineral content and wireline log
combinations, with the most accurate method selected for elastic modulus calculation.
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the CNNmodels. It was shown that the pre-trained model could
achieve the most accurate prediction, although CNN models
reached satisfactory results. In addition, by using the prediction
tools, absolute permeability was obtained 100 times faster than
the Swanson method. Yet, the authors declared that the major
problem for model training was not only the quality of the input
data but also the quantity and amount of data. Alqahtani et al.287

conducted CNNmodels to estimate reservoir properties, such as
This journal is © The Royal Society of Chemistry 2024
specic surface area, porosity, and average pore size. These are
the most crucial in permeability calculation using 2D slices
generated from rock sample images. The model training and
testing images are categorized as binary and greyscale images.
The outcomes indicate that model training based on binary
images leads to the minimum value of average relative error and
maximum accuracy.
J. Mater. Chem. A, 2024, 12, 20717–20782 | 20753
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3.4.3. Reservoir modeling. ML has revolutionized the oil
and gas industry by providing a powerful tool for reservoir
modeling. Reservoir modeling creates a mathematical repre-
sentation of an oil or gas reservoir to predict its behavior over
time. This process is crucial for optimizing production and
maximizing recovery. ML algorithms have been applied to
various aspects of reservoir modeling, including upscaling,
history matching, and reservoir simulation245 (Fig. 14).

3.4.3.1. Upscaling. Upscaling refers to converting ne-scale
properties, such as permeability and porosity, into coarser-
scale data that can be used for reservoir simulation. The main
goal of upscaling is to conserve the crucial properties and
effects of heterogeneity at a lower computational cost and
shorter time, which is necessary because simulating a reservoir
at high resolution requires signicant computational resources.
Traditionally, ow-based methods are used to simulate ne-
scale grids corresponding to the coarse cell and extract the
property value that imitates the same ow value. However, this
method highly relies on boundary conditions, and it is also
considered to be time-consuming. ML algorithms can identify
which parts of the model are most important for accurate
predictions and simplify those areas while maintaining accu-
racy in other areas. Pal et al.289 presented anML approach called
the neural upscaling method that is more accurate than tradi-
tional analytical and numerical upscaling methods. They
proved the superiority of the mentioned method over analytical
and numerical upscaling methods. Also, they discussed the
limitation of the neural upscalingmethod, which is the need for
a substantial amount of training data. To overcome this limi-
tation, the authors generated pseudo-training data using clas-
sical upscaling approaches. Wang et al.290 used an ML-assisted
Fig. 14 AI-assisted history matching workflow for reservoir property tu
layers is constructed from seismic data. Then the facies model was bui
distribution. After that, an ANN is employed to optimize the selection o
multiple trials and testing iterations, ANNs rank the attributes based o
integrated ANN technique and object-based modeling is evaluated throu
from Elsevier.

20754 | J. Mater. Chem. A, 2024, 12, 20717–20782
upscaling (MLAU) approach to reduce the computational cost
of two-phase upscaling for large-scale reservoir models. The
procedure involves using a CNN-based clustering model to
select representative coarse blocks and a regression algorithm
to predict two-phase upscaled functions for the rest of the
blocks. They showed that the MLAUmethod can reach the same
coarse-scale outcomes as accurately as the full ow-based
upscaling while achieving signicant speedups compared to
ow-based upscaling and ne-scale simulations. In another
study by Wang et al.,291 an ML-assisted relative permeability
upscaling method was utilized to quickly compute upscaled
relative permeability functions for coarse blocks using ML
algorithms. The method was tested for generic ow problems
using 2D models and showed similar accuracy to full numerical
upscaling while achieving signicant speedups. The outcomes
suggest that the mentioned approach can be a promising
alternative to traditional upscaling methods for subsurface
uncertainty quantication or optimization. Santos et al.292

proposed an articial intelligence approach for upscaling
geological properties in reservoir simulation models. The
method uses ML to apprehend patterns from a portion of
datasets and extrapolate them to all other scenarios, resulting in
faster and more accurate upscaling. They concluded that the
introduced method outperformed other conventional
approaches since it reached the same results as the ne model
with less computational effort. Siavashi et al.293 presented an
upscaling method using CNNs and downsampling techniques
to predict low-resolution model properties. The results showed
a signicant reduction in computational cost and time while
maintaining a close match between the dynamic behavior of the
upscaled model through CNNs and high-resolution properties.
ning. First a high-resolution model with suitable grid cells, zones, and
lt using the SGS technique to select the most suitable fluvial channel
f seismic attributes for porosity and permeability prediction. Through
n their correlation with well-log values. Finally, the efficiency of the
gh history matching, Thanh and Sugai,288 reproduced with permission

This journal is © The Royal Society of Chemistry 2024
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The proposed method can be used for predicting multiphase
ow characteristics in low-resolution large-scale models.

3.4.3.2. History matching. History matching is a crucial step
in reservoir modeling that involves adjusting the uncertain
parameters of a model to match observed data. It is a chal-
lenging and time-consuming task that requires expertise and
experience. History matching can be performed using the
computer assistant, known as automatic history matching
(AHM). ML algorithms can automate this process by identifying
which parameters need to be adjusted to match historical data
and reducing the problem's computational costs. Alolayan
et al.294 introduced a new approach for solving the history
matching problem in reservoir simulation using reinforcement
learning. They introduced a Markov decision process formula-
tion of the problem, which allows an articial deep neural
network agent to collaborate with the simulator and speed up
the process considerably. Jo et al.295 used a deep-learning-based
history-matching method in uvial channel reservoirs without
conventional calibration processes. The method outperforms
non-convolution-based methods regarding geological
constraints and computational resources. The convolutional
denoising autoencoder (CDAE) as a post-processor of the
proposed method enhances the uncertainty assessment of
posterior production behaviors. Ma et al.296 exploited a hybrid
recurrent convolutional network (HRCN) model for surrogate
modeling conducted in automatic history matching (AHM). The
proposed model signicantly reduces the computational cost of
AHM. They illustrated that the introduced surrogate model can
obtain reliable predictions, and the surrogate-based AHM
workow can considerably reduce the computational cost. Ma
et al.297 utilized a history-matching method using a recurrent
neural network (RNN) surrogate model to estimate the param-
eters of spatially varying geological properties in large-scale
reservoirs. The proposed multilayer RNN surrogate model
with the gated recurrent unit (GRU) is used to estimate mapping
from the feature vector of geological realizations to the
production data. Numerical experiments on a 2D reservoir
model and the Brugge benchmark model demonstrate the
performance of the proposed surrogate model and history
matching method. Xiao et al.298 proposed an efficient surrogate-
assisted deterministic inversion framework for large-scale
history matching problems in reservoir modeling. The frame-
work uses a deep neural network surrogate to approximate the
gradient and stochastic gradient optimizers for quick conver-
gence. The proposed method is compared and evaluated with
a previously submitted projection-based subdomain called the
proper orthogonal decomposition and trajectory piecewise
linearization (POD-TPWL) approach regarding computational
costs and accuracy. Both models have illustrated outstanding
capacity in carrying out history-matching problems.

3.4.3.3. Reservoir simulation. Dynamic modeling involves
simulating the ow of uids through the reservoir over time,
which requires considering factors such as pressure change,
uid movement, and production rates. ML algorithms can
optimize these simulations by predicting how different vari-
ables will affect the behavior of the reservoir. For example,
neural networks can be trained on historical production rates
This journal is © The Royal Society of Chemistry 2024
based on changes in pressure or uid properties. Qubian
et al.299 discussed using a hybrid reservoir simulation model
that combines articial intelligence and numerical models. The
study uses a neural network called LSTM to learn order
dependence in sequence prediction problems. The study results
suggest that the hybrid model can be a valuable tool in reservoir
simulation. Behl and Tyagi300 explored using data-driven
reduced-order models (ROMs) as an alternative to detailed
physics-based simulations for reservoir simulation. The study
found that the case with stateless LSTM achieved the most
accurate forecasting. Also, by applying a walk-forward valida-
tion strategy, the proposed framework decreased estimation
error by 95% on average with less computational costs
compared to the conventional simulation. The physical realism
was also enhanced by adding a capacitance resistance model
(CRM) constraint, demonstrating the ROM's ability to detect
spatial irregularities. Huang et al.301 proposed an improved E2C
model for faster predictions of subsurface ow in complex
reservoirs with many wells. The proposed model signicantly
enhances the deep-learning network structure, well quantity
calculation, and loss function specication, resulting in highly
accurate predictions with substantial speedups. The results
proved the accuracy of the improved E2C model, with a median
average error of 3.1% for production, 1.0% for saturation, and
5.9% for pressure. Saberali et al.302 introduced a newmethod for
constructing a grid-based surrogate reservoir model (SRM)
using a hybrid data source based on nite differences and
streamline data. The outcomes showed that the mentioned
hybrid database allows the SRM to be utilized by fast-supply
inputs from streamline data and generate results as accurate
as the nite difference-based simulation. The delity of the
introduced approach was also approved by testing it on the 10th
SPE model. Shuaibi et al.303 discussed testing a new tool on
a browneld with over 30 years of production history. The tool
can potentially improve browneld development and optimi-
zation for future developments. The paper concluded that the AI
simulator, which utilizes an AI-physics hybrid reservoir simu-
lator, could generate a reasonable production forecast for the
tested browneld. The AI simulation results were compared to
the actual eld data, and it was found that the predictions from
the AI simulator compared better than the reference case
conventional simulator forecast. Manasipov et al.304 presented
different approaches that follow the concepts of physics-
informed models. They found that incorporating physics into
ML models can increase their accuracy and predictive power.
However, in cases where physics-based models perform poorly,
history matching or tuning of the model should be performed
in a globally constrained optimization formulation. The study
also found that generalized additive models (GAMs) can
produce comparable results to popular ML methods such as
neural networks and gradient boosting. GAMs offer exibility in
considering inter-well connectivity, inter-well distances,
production and injection rates, and average reservoir
properties.

3.4.4. Reservoir management. ML has transformed the oil
and gas industry by providing advanced tools for reservoir
management. Applying ML in oil and gas reservoir
J. Mater. Chem. A, 2024, 12, 20717–20782 | 20755
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management has enabled companies to optimize production,
design well placement, screen for IOR/EOR, and increase
recovery rates while reducing costs, ultimately increasing prof-
itability. As technology continues to advance, the application of
ML in reservoir management will continue to evolve, providing
even more advanced tools for the industry.

3.4.4.1. Production forecasting. Production forecasting is
critical to reservoir management as it helps companies plan
their operations, estimate reserves, and optimize production.
ML algorithms can examine substantial amounts of data from
various sources, such as well-logs, seismic data, production
history, and geological models, to generate accurate production
forecasts. ML models can also optimize production by identi-
fying the best operating conditions for wells. These models can
analyze real-time data from sensors installed in wells to predict
the optimal ow rate, pressure, and temperature for maximum
output. Kong et al.305 used a hybrid prediction model for oil
production based on two-stage decomposition, sample entropy
reconstruction, and LSTM forecasts. The model performed
more accurately than traditional approaches and proved to be
a useful tool for reservoir evaluation and oileld management.
Chu et al.306 utilized a data-driven proxy model using deep
learning to assess the production performance of horizontal
wells with complex fracture networks in shale gas reservoirs.
The model considers production time, variable bottom hole
pressure, and fracture network properties as input variables to
forecast production for the future period. Ibrahim et al.307

introduced a new approach to estimating the estimated ulti-
mate recovery (EUR) for oil production wells in the Niobrara
shale formation using ML techniques. The study shows that ML
tools can accurately predict EUR from completion design
parameters and initial well production rates. Although
conventional empirical decline curve analysis (DCA) models
need multiple months of production to estimate the EUR, the
developed models demand only an initial ow rate and the
completion design for EUR prediction with high certainty. Osah
and Howell308 investigated the use of supervised ML methods to
forecast the performance of oil elds on the United Kingdom
continental shelf. The study tests ve different algorithms and
nds that support vector regression is the most effective
method for predicting recovery factor and the maximum eld
rate. Al-Ali and Horne309 discussed using a transformer-based
deep learning model called the temporal fusion transformer
(TFT) to predict the oil production rates of wells in the Norwe-
gian Volve eld. It was concluded that the TFT model is
a promising approach for accurate oil rate prediction. The
model was more precise than traditional block recurrent neural
network architectures (BlockRNNs) in predicting complex
trends in oil rates. The ability of the TFT model to provide
a range of forecasting uncertainty using quantile regression is
vital for making critical decisions in well intervention and eld
development. Liu et al.310 presented a new approach for evalu-
ating the complex characteristics and production optimization
of shale oil reservoirs using an ANN. The introduced quantita-
tive evaluation approach is based on source-reservoir assem-
blage types, source rock quality, reservoir quality, migration
dynamics, and conduit conditions. The study concludes that
20756 | J. Mater. Chem. A, 2024, 12, 20717–20782
increased liquid hydrocarbon, mud gas, total organic carbon
(TOC), and normal fault percentage positively affects shale oil
production. In contrast, the increase in reverse fault percentage
negatively affects shale oil production. Ullah et al.311 proposed
using ML models to predict bio-oil yield from microalgae
pyrolysis. The best-performing model was GPR-GA with a high
R-squared value and low RMSE, and an interface was developed
for predicting bio-oil yield. Du et al.312 proposed an ensemble
framework for coalbed methane (CBM) production forecasting
using supervised and unsupervised learning. An LOF-Xgboost
governance system autonomously detects outliers and
supplies missing values. At the same time, the improved Bi-
LSTM method establishes a forecasting model of CBM
production for both long-term and short-term prediction. The
experimental analysis shows that the proposed framework
improves the short-term prediction performance and consid-
erably increases the long-term estimation capability.

3.4.4.2. Operational parameters and well placement optimi-
zation. Optimal well placement and operating conditions are
other critical aspects of reservoir management that determine
the success of oil and gas operations. ML algorithms can
analyze geological data to identify the best locations for drilling
new wells and optimum operating parameters, such as pres-
sure, rate, and temperature. These algorithms can also predict
the impact of drilling on existing wells by analyzing data from
nearby wells. Tang and Durlofsky313 presented an optimization
framework for well placement in 3D models using low-delity
(LF) models and ML error correction. LF models are con-
structed using a global transmissibility upscaling procedure
and tree-based ML methods to predict the error in the net
present value (NPV) associated with the LF models. In the off-
line stage, preliminary optimizations are conducted using LF
models, and a clustering approach is used to opt for a repre-
sentative set of well congurations for training. In the online
stage, optimization with LF models, with the ML correction, is
performed using differential evolution. The results show that
the proposed method provides a signicant speedup factor
compared to optimization using high-delity (HF) models, with
the best-case NPV within 1% of the HF result. Using ML algo-
rithms, Bertini et al.314 explored a methodology to efficiently
estimate the NPV of oil production strategies. The proposed
methodology considers binary data representation, indicating
the presence or absence of a given well in a production strategy,
reducing data dimensions and model complexity. The simula-
tions conducted in a benchmark case, based on a real eld,
showed that some regression algorithms could be used as
a surrogate model to the simulator to perform well placement
optimization considering binary data efficiently. The best
results were obtained with MLP, whose estimations covered
a wide range of NPV with a small and constant error. Zhou
et al.315 utilized an efficient multi-objective optimization
framework for well placement and hydraulic fracture parameter
optimization. The framework uses a novel hierarchical
surrogate-assisted evolutionary algorithm and multi-delity
modeling technology. The NPV and cumulative gas produc-
tion (CGP) are the bi-objective functions to be optimized. The
proposed approach is validated on a naturally fractured shale
This journal is © The Royal Society of Chemistry 2024
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gas reservoir and is found to be accurate and efficient. The ML
model used in the approach only needs to run 100 or 500
reservoir numerical simulations, making it highly efficient.
Nasir and Durlofsky316 proposed a closed-loop reservoir
management framework that uses deep reinforcement learning
to train control policies for optimal well settings. The frame-
work incorporates operational and economic constraints,
including relative-change requirements and project life opti-
mization. The purpose is to maximize the NPV while ensuring
the practical applicability of the control policy results. The
framework is applied to waterooding cases involving 2D and
3D geological models. The results show that the control-policy
approach provides comparable or superior solutions to deter-
ministic and robust optimization approaches. The optimal well
settings provided by the control policy display gradual ramping,
consistent with operational requirements. Chen et al.317 pre-
sented a newmethod called InterOpt for optimizing operational
parameters in petroleum exploration and development. This
method uses interpretable ML to assess the impact and
importance of various parameters. The experiment showed that
by modifying operational parameters, InterOpt presented
various optimization scenarios and attained an average cost
reduction of 9.7%. The transferability and scalability of Inter-
Opt to different optimization objectives are also veried based
on the optimization of test production. Yao et al.318 discussed
using surfactants to enhance oil recovery by altering the
wettability of carbonate rock surfaces. ML models are used to
predict and optimize surfactant performance. The Shapley
additive explanations approach is used to interpret the results
and provide insights into the effects of different parameters on
surfactant performance. Fabbri et al.319 discussed a screening
code that helps reservoir engineers identify potential locations
for new oil wells. The code uses data from existing wells,
production and pressure data, and geological information to
create polygons representing areas with high potential for oil
production. The code was tested by comparing the results to
a base case with no new wells and a case with a combination of
hand-picked and code-identied locations for new wells. The
results showed that the code-identied locations provided
additional value compared to the hand-picked locations alone.
Overall, the paper suggests that the screening code can be
a useful tool for optimizing oil well placement.

3.4.4.3. Screening for IOR/EOR technique selection. Improved
oil recovery (IOR) and enhanced oil recovery (EOR) are tech-
niques used to increase recovery rates from hydrocarbon
reservoirs. ML algorithms can screen potential IOR/EOR tech-
niques by analyzing geological data to identify suitable candi-
dates for these techniques. ML models can also predict the
effectiveness of IOR/EOR techniques by analyzing historical
data from similar projects. Screening potential IOR/EOR tech-
niques increases recovery rates while costs associated with
unsuccessful projects are reduced. Pirizadeh et al.320 proposed
a novel method for ranking EOR processes based on predicting
the EOR-PR values. EOR-PR is a new production rate that
represents the performance of EOR processes on particular
reservoir characteristics. The proposed approach uses multi-
gene genetic programming (MGGP), a practical ML approach,
This journal is © The Royal Society of Chemistry 2024
to predict EOR-PR values and rank EORmethods based on their
efficiency under specic reservoir conditions. The results show
that MGGP has a signicant performance in predicting EOR-PR
values, and it can be used for EOR decision-making strategies.
Pavan et al.321 proposed a PIML approach to forecasting the
performance of the in situ microbial-enhanced oil recovery
process and screening suitable microbe-nutrient combinations
based on inadequate experimental data. The method evaluates
the impact of microbial kinetic, operational, and reservoir
parameters as input variables on oil recovery and assesses their
weightage factors to screen a suitable microbe–nutrient–reser-
voir combination. Mahdaviara et al.322 aimed to study potential
EOR scenarios for low permeability reservoirs. The databank
included essential parameters such as permeability, porosity,
API, viscosity, lithology, depth, and temperature for each
reservoir. They developed EOR screening tools based on statis-
tical and intelligent procedures such as RF, GBM, XGBoost, and
gene expression programming (GEP). The introduced EOR
screening tools were valuable for this study's scope, with RF
outperforming the alternatives.
3.5. Carbon capture and sequestration

3.5.1. Adsorption and absorption. Global CO2 emissions
from the burning of fossil fuels have increased during the 1970s
by more than double and currently surpass 32 Gt of CO2 per year,
driven by economic and population development. The conclu-
sion is that human activities are thought to have led to an esti-
mated 0.8–1.2 °C increase in the world's temperature, and the
Intergovernmental Panel (IPCC) predicts that present trends will
end up resulting in 1.5 °C of warming from 2030 to 2052.323 The
ocean level increase, catastrophic storms, the disappearance of
species, and concerns for human health, stability, food, and
water supplies are just a few of the elevated hazards that warming
at these rates has been linked to both the world's people and
ecosystems.324 By creating innovative technologies for the effec-
tive management of carbon emissions, the materials sector could
play a signicant role in these initiatives. Recent years have seen
an increase in worry over climate change, which is brought on by
the release of greenhouse gases, particularly CO2.325,326 Technol-
ogies that capture carbon could be thought of as an effective CO2

emission reduction technique. Generally, CO2 removal from
point sources (such as industrial exhaust gases – power plants) or
the environment using direct air capture is referred to as carbon
capture.327–329 When CO2 is captured, it can either be kept
indenitely (for example, underground) or utilized to create high-
value goods such as fuels or specialty chemicals.330,331 Tomeet the
objectives of emission reduction, carbon capture techniques are
currently being developed.

Several porous organic, inorganic, and chemical-organic
composites have been suggested for adsorptive CO2

collection.332–335 In addition to activated carbons (ACs), MOFs, and
zeolites, porous organic polymers (POPs) have also been used as
porous materials for CO2 capture, as depicted in Fig. 15a–e. The
selectivity of an adsorbent for CO2 in the presence of other gases,
the adsorbent's CO2 swing capacity during adsorption–desorption
cycling, the kinetics of adsorption and desorption, the energy
J. Mater. Chem. A, 2024, 12, 20717–20782 | 20757
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needed to cycle or regenerate the adsorbent, the adsorbent's
resistance to mechanical and chemical stresses during recycling,
and the adsorbent's economic and environmental potential are
important metrics for evaluating its utility. In Fig. 15e, radar plots
for important sorbent criteria for choosing are shown. The key
performance indicators for selecting materials in carbon capture
applications have been qualitatively evaluated.

The development of adsorbents for carbon capture has seen
signicant advancements in the materials community. Never-
theless, more resources are required to meet requirements
along the way to industrialization. In general, lifespan issues
require more focus, and as materials move along in their
development, more thorough evaluations must be
undertaken.340–342 In particular, suggested synthetic methods
must be scalable and safe, with few steps and good space-time
yields, and starting materials must be feasible at the goal scale
(especially for MOFs, given restricted extraction rates and
deposits of specic metals).343 It is also important to consider
how easily biomass can be recycled, utilizing both experimental
and computational waste streams.344–347 ML, which makes it
possible to provide algorithms for developing new materials,348

has attracted a great deal of interest recently for its ability to
accurately predict chemical and physical properties, establish
structure–property relationships,349,350 synthesize AC adsor-
bents via various types of biomass,351 and navigate the chemical
space to direct chemical synthesis.352,353 Designing and imple-
menting process strategies that successfully extract CO2 from
Fig. 15 (a) Activated carbons (ACs), Palmer et al.,332 reproduced with
permission fromAmerican Chemical Society, (c) Zeolites Rho, Lozinska et
porous organic polymers (POPs), Bandyopadhyay et al.,338 reproduced w
evaluation of adsorbent selection in CO2 adsorption applications using
different scores for adsorption of gases through porous adsorbents, Ma

20758 | J. Mater. Chem. A, 2024, 12, 20717–20782
a gas composition with a minimal energy cost is the main
objective of ML for carbon capture deployment.

At both the molecular and process levels, ML techniques
have been effectively used in absorption and adsorption-based
processes to address the issues that these techniques are now
experiencing.356 A schematic of the ML implementation at
different resolutions for a carbon capture technology based on
multiple sources is shown in Fig. 16a. Fig. 16a illustrates the
application of ML for carbon capture techniques in several
stages, from adsorbent syntheses through adsorption steps,
using experimental and computational data. External (pub-
lished papers/databases) or internal sources (experimental/
computational data) are used as feeds for ML algorithms. One
of the applications of gas (air) separation in the power plant
industry is oxyfuel, one of several solutions that reduce the
percentage of CO2 released from the combustion chamber
output. Additional carbon cannot be produced if the air is
separated, and additional oxygen is injected into the combus-
tion chamber. One technique used in this industry to select the
right adsorbent for gas separation technology is the prediction
of the adsorption process using ML algorithms. To forecast gas
absorption using porous carbon adsorbents, Fig. 16b depicts
the architecture of the gray wolf multilayer perceptron opti-
mizer meta-heuristic algorithm.

3.5.2. Adsorption technology and adsorbents. Alternative
carbon capture systems based on adsorption are promising.
Large interior surface areas in porous material structures allow
permission from Elsevier, (b) IRMOF-5, Cai et al.,336 reproduced with
al.,337 reproducedwith permission fromAmerican Chemical Society, (d)
ith permission from American Chemical Society, and (e) radar plot for
various material class features. The radar plot is depicted in terms of
shhadimoslem et al.,339 reproduced with permission from Elsevier.

This journal is © The Royal Society of Chemistry 2024
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Fig. 16 (a) Schema of ML deployment for carbon capture systems, Rahimi et al.,354 reproduced with permission from Cell Press, (b) schema
structure of the gray wolf-multilayer perceptron optimizer (GWO-MLP) meta-heuristic ML algorithm for predicting gas absorption using porous
carbon adsorbents, Mashhadimoslem et al.,355 reproduced with permission from The Canadian Journal of Chemical Engineering.
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for the efficient collection and storage of gas molecules, making
them attractive replacements for solid adsorbents in carbon
capture industries. Adsorbents must be capable of effective
capture, regeneration, and ensuring sustainability. The
processes of vacuum swing adsorption (VSA), pressure swing
adsorption (PSA), and temperature swing adsorption (TSA) can
all involve porous material-based technologies.357 Because of
their large specic surface areas (SBET) and pore volumes, strong
chemical and thermal stability, ability to be made at low cost via
readily available raw materials, customizable textural charac-
teristics, and surface functions, porous carbons are the most
extensively investigated adsorbents for carbon capture. The
prediction of CO2 capture capacity and SBET was performed
using MLP and RBF algorithms. The MLP model has been
presented in a comparison of numerous networks to estimate
diverse biomass syntheses, and the suggested method by
Mashhadimoslem et al.351 forecasted both CO2 adsorption and
SBET of various biomass precursors via various temperatures of
syntheses (see Fig. 17e and f). Zhang et al.358 and Wang et al.359

offered CO2 adsorption capacity alongside textural characteris-
tics such as SBET, micropore, and mesopore volumes (Vmicro and
Vmeso) as input features utilizing deep neural networks (DNNs).
Pressure, as well as temperature, was incorporated into the
This journal is © The Royal Society of Chemistry 2024
input features to retrain the model aer using all the textural
characteristics described above for algorithm training. To
determine the gas–solid (N2/CO2) interactions and therefore
CO2 capture capabilities, SBET is an independent textural
parameter that could be dynamically linked with other textural
factors. CO2 adsorption depends on the intricate interaction of
textural characteristics with each parameter's sensitivities that
could be calculated. Yuan et al.360 used ML to systematically
map the relationship between CO2 adsorption and the textural
and compositional properties of BWDPCs (biomass waste-
derived porous carbons), along with adsorption parameters.
In this research, the gradient boosting decision tree (GBDT),
light gradient boosting machines (LGB), and XGBoost algo-
rithms using experimental datasets were used. Permutation
importance plots of the entire dataset revealed that the pressure
and temperature of the adsorption experiments had the most
signicant impact on the model's predictions. Textural prop-
erties, including SBET, total pore volume (TPV), and micropore
volume (MPV) also played a signicant role in decreasing the
order of importance. Compositional features ranked in
decreasing order of signicance were N > O > H > C. The feature
importance test was also performed on RPCs (regular porous
carbons) and HDPCs (heteroatom-doped porous carbons) sub-
J. Mater. Chem. A, 2024, 12, 20717–20782 | 20759
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Fig. 17 Contour maps of (a) SBET (m
2 g−1), and (b) CO2 adsorption capacities (mmol g−1) at 298 K and 1 bar,359 reproduced with permission from

the American Chemical Society, the contour maps of CO2 capture and micropore and mesopore volume under the same adsorption conditions,
(c) at 298 K and 1 bar and (d) at 5 bar,358 reproduced with permission fromWiley, (e) 3D response surface of CO2 adsorption prediction using the
MLP from different precursor biomass and activators and, and (f) prediction of SBET (m2 g−1) synthesized from different biomass materials and
activators at different temperatures using RBF algorithms,346 reproduced with permission from American Chemical Society.
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datasets. For the RPC dataset, the top three important input
features for model prediction were pressure, temperature, and
MPV. Likewise, in the HDPC dataset, the most dominant factors
were adsorption temperature, pressure, and SBET. In another
research study, Ma et al.361 developed the RF algorithm to study
the effects of the pore structure, chemical properties, and
20760 | J. Mater. Chem. A, 2024, 12, 20717–20782
adsorption conditions on CO2 adsorption performance. Their
results indicated that at low pressure (0–0.15 bar), the pressure
was a signicant factor in CO2 adsorption capacity. However, as
pressure increases, the relative importance of pressure in CO2

adsorption capacity decreases. Chemical properties and pore
structure are also key factors in CO2 adsorption, with pore
This journal is © The Royal Society of Chemistry 2024
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structure having a greater impact on adsorption capacity than
chemical properties. In terms of the pore structure and chem-
ical properties of porous carbon, N groups have the largest
impact on adsorption capacity at low pressure, followed by
ultra-micropore volume (Vu). Xie et al.362 developed an ML
model using the RF, SVM, LR, MLP, and SHAP (Shapley Additive
Explanations) algorithms that were effectively trained to fore-
cast CO2 adsorption capacity. The SHAP algorithm has been
utilized to gain insights into the unclear relationship between
each physicochemical property and adsorption capacity. The
ndings revealed that textural properties are more inuential
than chemical composition in determining CO2 uptake. The
SHAP analysis revealed that the highest CO2 adsorption capacity
occurred at low pressure and a temperature of 298 K, with an
SBET of 1100–1300m

2 g−1, micropore volume (Vm) of 0.4–0.6 cm
3

g−1, mesopore volume (Vme) of <0.1 cm2 g−1, carbon content (C)
of 72–86 wt%, hydrogen content (H) of 1–4 wt%, oxygen content
(O) of <16 wt%, and nitrogen content (N) of <1 wt%.

Wang et al.359 developed an ML model using the DNN algo-
rithm and trained the algorithm using experimental data on
CO2 and N2 uptakes in porous carbons. The training algorithm
was based on textural features such as micropore volume,
mesopore volume, SBET, temperature, and pressure adsorption
conditions. The trained DNN model was then used to screen
porous carbons and predict their CO2 and N2 uptakes and CO2/
N2 selectivity. In this study, 2500 hypothetical combinations of
micropore volume (Vmicro) and mesopore volume (Vmeso),
ranging from 0.02 to 1.00 cm3 g−1, were created. The trained
DNN-3 model was then employed to predict their SBET. Addi-
tionally, another neural network (DNN-3) was trained to predict
SBET from Vmicro and Vmeso and was used to generate 2D maps of
adsorption uptakes and selectivity (see Fig. 17a and b). The
results of this analysis suggest that introducing more meso-
pores in microporous carbons can disrupt and decrease N2

adsorption, ultimately leading to better CO2/N2 selectivity. Their
research results discovered that the highest CO2/N2 gas selec-
tivity is not necessarily obtained in the regions with the highest
CO2 uptake, but rather in the regions with the lowest N2 uptake
where mesopores can disrupt N2 adsorption. Moreover, it was
found that the best features for high CO2 uptake may not
necessarily be optimal for achieving high CO2/N2 selectivity.

Zhang et al.358 developed an ML model using SBET, Vmicro,
Vmeso, temperature, and pressure parameters for CO2 adsorp-
tion prediction. In this study, a DNN was trained as a generative
model to establish the relationship between the CO2 adsorption
of porous carbons and their corresponding textural properties.
Then, the neural network was utilized as an implicit model to
evaluate its ability to predict the CO2 adsorption capacity of
unknown porous carbons. It was found that when the Vmicro,

Vmeso, and SBET are used as input neurons simultaneously, the
trained neural network was able to achieve a remarkable
agreement between experimental and predicted CO2 adsorption
capacity values (see Fig. 17c and d). The investigations
conrmed that Vmeso is important in controlling gas uptake,
contrary to the previous belief that Vmicro is the only parameter.
Additionally, SBET is an independent textural parameter that can
work with other parameters to determine gas-uptake capacities.
This journal is © The Royal Society of Chemistry 2024
Finally, gas uptake in solid adsorbents depends on the complex
interplay of textural parameters, and the sensitivity of each
parameter can be estimated.

A further interesting possibility for carbon capture, separa-
tion, and storage is MOF adsorbents, which have a variety of
porosities, high SBET, low densities, and an extensive variety of
pore size diameters.363,364 To determine structure–performance
correlations and choose the top descriptors that can precisely
predict the CO2 adsorption capacity, efficiency, and selectivity,
ML is applied in MOFs for carbon capture technologies.365,366

Deep generative models, such as the supramolecular variational
autoencoder (SmVAE), were created by Yao et al.366 for the
converse design of MOFs exhibiting improved CO2 capacity
selectivity and separation from other gases. The autoencoder,
which was jointly trained on several top adsorbent materials
found for better gas separation, demonstrated promising opti-
mization potential in this study.

Over 14 000 new CoRE MOF 2014 database structures have
been proposed, and the MOF's structure came from several
types of sources. By compiling the new structure data to feed the
database, the full set of structures for the presence of open
metal sites (OMSs), examining the impact of bound energy on
the calculated geometric attributes, and considering real MOFs
that could be discovered in a set of computer-generated, hypo-
thetical MOFs, the understanding of the molecular ngerprint
strategy was illustrated. With the aid of the distribution of data
from experiments, the mentioned model could begin to
produce a new dataset.367 Given the assistance of data from
experiment distribution, this model could begin to produce new
data. Using the 372 MOF edges acquired through CoRE MOF
identication, this study produced an edge dataset of over 300
000. When simultaneously trained using several top sugges-
tions for improved gas separation and veried by atomistic
Monte Carlo (MC) simulations, this model demonstrated
excellent predicting and optimizing capabilities.

Researchers provide cases of ML development in various CO2

capture, storage, transport, and utilization (CCSTU) systems.
Adsorption, absorption, chemical looping, membranes,
sequestration, and hydrates are a few examples of carbon
capture or separation technology (CCST). Any research project
incorporates a synergistic approach (sequestration plus
absorption).368 Modeling and simulating solvent-based carbon
capture requires extensive effort and time owing to the
complicated governing processes of absorption, particularly
chemical absorption, involving mass transfer and chemical
reactions.356,369 The measurement of parameters such as the
mass ow rate using differential pressure-based owmeters is
unable to attain adequate precision in the measurement of
mass ow, and their substantial complexity and cost limit their
use in carbon capture, utilization, and storage (CCUS) indus-
tries. Recently, low-cost sensing methods that include ML
techniques to increase the accuracy of owmeters have been
developed.368 In oxyfuel combustion for CO2 collection, ML is
also used in applications including forecasts of combustion
characteristics and pollutants' emissions, as well as controlling
the process of combustion using ame images.370 The use of ML
algorithms for chemical looping combustion for CO2 capture
J. Mater. Chem. A, 2024, 12, 20717–20782 | 20761
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has been investigated in a few investigations, although this
subject still needs further research.371 The novel modeling and
analysis work that has been performed to examine various
elements of the CO2 adsorption, absorption, and separation
processes in porous media is the main topic of our review study.
Adsorbent materials, the adsorption process, optimization, and
simulation of the process are all included.

Zhang et al.372 developed ML techniques using experimental
and simulation datasets that revealed the most signicant
factors affecting CO2/N2 selectivity and CO2 permeability in the
MOF composite. The RF model revealed that AV is a key factor
in predicting membrane selectivity and GASA is a key factor in
predicting CO2 permeability. Guan et al.373 developed RFmodels
trained on literature experimental data for CO2/CH4 separation
to identify suitable MOFs for constructing Mixed Matrix
Membranes (MMMs). The resulting membranes showed CO2

separation performance beyond the 2008 Robeson upper bound
and agreed well with model predictions. Moosavi et al.2 devel-
oped and trained the ML model (using the XGBoost algorithm)
using DFT simulations to predict the heat capacity of solid
nanoporous sorbents, including MOFs, zeolites, and COFs. The
ML model's highly accurate heat capacity prediction allows for
quantifying the inuence of heat capacity variations onmaterial
ranking in a TSA process. Yao et al.366 developed a platform
using experimental data for nanoporous material discovery
using a super molecular variational autoencoder (SMVAE) to
create reticular frameworks with optimized properties. The
MOF structures generated using the SMVAE model showed
signicant competitiveness against some of the best-
performing MOFs/zeolites reported to date. The platform was
employed to design new MOFs with improved CO2/N2 and CO2/
CH4 separation capacity and selectivity. The developed platform
has wide-ranging applicability for various materials, such as
COFs, metal–organic polyhedra (MOP), hydrogen-bonded
organic frameworks, and coordination polymers. It serves as
a basis for creating reticular frameworks for diverse applica-
tions. Gao et al.374 employed ML using XGBoost, RF, Gradient
Boosting Machine (GBM), and MLP algorithms and simulation
datasets to gain a comprehensive understanding of the
adsorption behaviors, and an ML-assisted analysis was
employed to pinpoint the preferred CO2 adsorption sites for
each framework at various four distinct temperatures. The
center-of-mass coordinates of 800 CO2 molecules were
randomly selected and labeled with their corresponding
binding site types. Various well-known ML algorithms were
applied to learn the relationship between the CO2 molecule's C
atom coordinates and the corresponding adsorption site types.
Krokidas et al.375 for the rst time used the ML using DFR and
DTR algorithms to investigate how the substitution of basic
MOF building blocks affects the pore structure and molecular
diffusivity. While the ML approach is general, the focus was
specically on ZIFs with SOD topology. Due to the lack of
a relevant ZIF database, an ensemble of 72 new and existing
ZIFs has been created through systematic sub-unit replacement.
Forceelds were developed for each structure, and fully exible
MD simulations were conducted to determine the framework
properties and molecular diffusivity of various molecules.
20762 | J. Mater. Chem. A, 2024, 12, 20717–20782
Another study was presented by Yang et al.376 which usedML-
assisted MC computational screening to identify optimal
secondary building units (SBUs) for wet ue gas separation
using COFs. They used the DT, RF, XGBoost, and CatBoost
algorithms for the training of the experimental dataset. It has
been found that tetraphenyl porphyrin units enhanced CO2

adsorption uptake, while functional groups improved CO2/N2

selectivity. Based on these ndings, 1233 COFs were assembled
using the optimal SBUs. This research analyzed the quantitative
relationship between input descriptors and COF separation
performance. Their results showed that the IS and SBET features
had the greatest impact on CO2 uptake, whereas the IS and DF
features had the most signicant impact on CO2/N2 selectivity.
Cheng et al.377 proposed a multi-scale design framework using
an MD simulation dataset for CO2/CH4 separation via MOF-
based membranes. In this research, ANN prediction models
were created and trained using MD and GCMC simulations to
characterize the adsorption capacity and self-diffusivity of MOF
membranes. The models were subsequently employed to
determine permeability. The tanks-in-series model of a hollow
ber membrane separation process was combined with the
ANN models and simulated using the nite volume method.
Zhu et al.378 using the DFT calculations dataset developed ML
models that were employed to predict the DG and pressure of all
possible reaction intermediates and products, including
methanol, methane, and formaldehyde, during the reduction of
CO2 on 26 single-atom catalysts (SACs) in zeolites. Themulti-ML
models proposed using XGBoost, gradient boosting regression
(GBR), extra trees, KNN, DT, ANNs, SVR, multi-linear regression
(MLR), linear ridge (LR), and least absolute shrinkage and
selection operator (LASSO) algorithms exhibited good trans-
ferability and can be utilized to predict the performance of
MOFs, 2D materials, and molecular complexes. Aer
a comparison of the selected algorithms, the XGBoost algorithm
demonstrated the strongest performance with an MAE of
0.36 eV and an R2 value of 0.87. Kriesche et al.379 integrated
a newMLmodel, the ANI-2 neural network potential (NNP) with
an MD framework to model the behavior of two COF systems,
HEX COF1 and 3D-HNU-5, which share the same linking unit.
Their results indicated that the ANI-2x NNP could accurately
describe the structures of macromolecules such as COFs and
their interactions with CO2 guest molecules. The main innova-
tion of this research was the use of a DFT-based neural network
approach and a suitable MD simulation protocol to simulate
a relatively large system over an extended period. This approach
provides access to correlated properties within the long-time
limit, with a particular focus on estimating the system's diffu-
sion coefficient. The exceptional efficiency of this approach was
demonstrated by the extensive total simulation time of over 0.4
ms, which cannot be achieved using traditional DFT methods.
The use of minimum distance distribution functions (MDDFs)
can provide valuable insights into the nature of interactions
between host–gas molecule systems. In this study, MDDFs were
employed to identify similarities and differences in the host-
CO2 interactions of HEX-COF1 and 3D-HNU5. Feng et al.380

created an intelligent system for materials, which utilized the
DeepFM approach to predict multiple adsorption properties of
This journal is © The Royal Society of Chemistry 2024
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the hMOF database by integrating descriptors. The mentioned
research investigated the importance of various descriptors on
the CO2 capture capabilities of MOFs. Their results revealed
that MOFID is an extremely crucial descriptor. Excluding
MOFID, the top ve important descriptors for CO2 uptake and
CO2/N2 selectivity were the same, which included topology,
metal linker, functional group, SBET, and porosity, although
their ranking differed slightly. The DM model presented in this
study was used to predict 28 adsorption properties of 8206
screened hMOFs database. Sturluson et al.381 proposed a COF
recommendation system that matches COFs with specic
adsorption tasks. This model was achieved by training a low-
rank model of an incomplete COF-adsorption-property matrix
constructed from simulated uptakes of CH4, H2O, H2S, Xe, Kr,
CO2, N2, O2, and H2 using experimental data under various
conditions. This model was developed by tting a model of the
COF-adsorption-property matrix to the observed (COF, adsorp-
tion property) values. The mentioned research results were able
to provide predictions for missing (COF, adsorption property)
values. Additionally, this approach generated a “map” of COFs,
where COFs were represented as points and those with similar
or dissimilar adsorption properties congregated or separated,
respectively. The COF recommendation system developed in
this research was found to be capable of effectively ranking
COFs for most adsorption properties. However, the imputation
performance of the system decreased signicantly when the
fraction of missing entries in the COF-adsorption-property
matrix exceeded 60%. A knowledge engineering technology
was utilized by Kondinski et al.382 to automate the development
of MOP formulations using existing knowledge as a database. In
this study, an ontological MOP was created to establish a clear
denition of MOP and its essential properties. Raji et al.383

developed ML models, which use experimental temperature
and pressure CO2 adsorption. Themain goal of this study was to
develop efficient prediction models using so computing
methods, specically hybrid-ANFIS, particle swarm
optimization-adaptive neuro-fuzzy inference system (PSO-
ANFIS), and least-squares support vector machine (LSSVM),
for estimating CO2 adsorption on ve distinct types of zeolite
adsorbents (5A, 13X, T-Type, SSZ-13, and SAPO-34). This
research aimed to provide an alternative to the costly and time-
consuming laboratory experiments currently used for this
purpose. Based on the results, it was demonstrated that all the
proposed models are reliable and precise for estimating CO2

adsorption on various types of zeolites. Zhang et al.384 utilized
the ML using RF, XGBoost, and SHAP algorithms to investigate
the correlation between the CO2 adsorption performance of
amine-functionalized adsorbents and input descriptors. It was
found that amine loading was the most crucial factor affecting
CO2 adsorption capacity, followed by pore volume. Pore size was
the primary factor inuencing amine efficiency, while the cycle
stability of the adsorbent was mainly related to the type of
amine used. This research illustrated, that to attain the highest
possible CO2 adsorption capacity for the adsorbents, the pore
volume required for amine loading should account for 40–50%
of the support's pore volume for TEPA (Tetraethylenepent-
amine) and 65–75% for PEI (polyethyleneimine). Yan et al.385
This journal is © The Royal Society of Chemistry 2024
presented a deep learning (DL) workow for predicting the
pressure evolution of uid ows in large-scale 3D heteroge-
neous porous media. This research developed an efficient
feature technique to extract the most representative informa-
tion for DL training and prediction at the coarse scale. The
mentioned technique also allowed for the recovery of resolution
at a ne scale through spatial interpolation. By using a pre-
dened stride, feature coarsening was employed to extract the
most representative information about geology and well
controls, resulting in reduced memory consumption of feature
arrays and improved training efficiency. The effect of feature
coarsening on DL performance was investigated, and it was
discovered that it not only cut training time by more than 74%
and memory consumption by more than 75% but also main-
tained an average temporal error of 0.63%. Another research
study focused on the gas permeability database, to address
missing values in the database. Yuan et al.386 utilized the ML
model to impute or ll in the missing data. For systems with
limited experimental data, sparse feature ML was utilized. The
study suggests that once the permeability of CO2 and/or O2 for
a polymer has been measured, most other gas permeabilities
and selectivity, including those for CO2/CH4 and CO2/N2, can be
quantitatively estimated through ML techniques. The research
results suggested that KAUST-PI-1 may exhibit potentially high
CO2/CH4 selectivity and good CO2/N2 selectivity. This prediction
was later conrmed by experimental work that was not origi-
nally recorded in the database. The multivariate imputation by
chained equations (MICE), Bayesian linear regression (BLR),
and extremely randomized tree (ERT) algorithms were used to
simulate datasets (1387 datasets). The ERT algorithm showed
the best results in predicting CO2/CH4 and CO2/N2 adsorption
selectivity, based on the CO2 permeability data.

3.5.3. Carbon sequestration. The ML models created could
be used for precisely calculating the experimental data crucial
for carbon sequestration. The assessment outcomes show how
well the trainedMLmodel performed on a carbon sequestration
site with comparable geology but varied permeability distribu-
tions for the geologic strata. We could assess the feasibility of
ML models on different CO2 storage sites by employing ow
simulations with various permeability parameters using ML
algorithms. Yamaguchi et al.387 developed an ML model in
sequestration industries. In this research, a novel multiscale
numerical method was proposed to estimate the permeability of
hydrate-bearing sediments in reservoir-scale simulations
spanning several hundred meters. The method utilizes an ML
technique based on a database of results from microscopic
pore-scale simulations of a couple of hundred micrometers.
This study aimed to introduce a new framework for calculating
the normalized effective permeability (kH) resulting from
hydrate formation. The novelty of this study was in the devel-
opment of a new framework for multi-scale two-phase ow
simulation with CO2 hydrate formation, utilizing an ML
approach. Two neural networks were utilized to establish
a connection between hydrate growth on the reservoir scale and
permeability based on hydrate morphology on the pore scale.
The mentioned networks were the hydrated shape recurrent
neural network (RNN) and the permeability neural network. The
J. Mater. Chem. A, 2024, 12, 20717–20782 | 20763
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hydrated shape RNN was adopted to represent hydrate
morphology. The use of RNNs was appropriate, as the temporal
changes of geometrical parameters were strongly related to
physical parameters for hydrate shapes (SBET and tortuosity in
X, Y, and Z directions). The hydrate shape RNN was designed to
extract temporal information from the reservoir scale, which
was then used to obtain microscale geometrical parameters.
Meanwhile, the permeability neural network utilizes the
outputs of the hydrate shape RNN, along with hydrate satura-
tion and porosity, to predict the changes in permeability
resulting from hydrate formation. Among all geological storage
possibilities, deep saline aquifers tend to be the best choice for
CO2 storage. Storage aquifer properties including the tempera-
ture, pressure, water's salt, porosity, heterogeneity, perme-
ability, and the rate of CO2 injection all affect how much energy
can be stored in saline aquifers.388 Another research study on
the CO2 sequestration eld by Thanh et al.389 was performed.
This study developed three supervised ML-based models (RF,
SVR, and XGBoost algorithms) to predict the trapping efficiency
of CO2 sequestration in saline formations. The ML models were
ranked according to their accuracy, with XGBoost being the
most accurate, followed by RF and SVR. The proposed model
could serve as a valuable and practical template for predicting
CO2 trapping indices in other saline formations around the
world. The input features, in order of decreasing importance to
storage efficiency, are permeability, thickness, injection time,
injection rate, porosity, depth, salinity, residual gas saturation,
and post-injection time. Permeability, formation thickness,
time, and injection rate were the most critical parameters that
affected the volume of CO2 stored, as well as its residual and
solubility. The proposed XGBoost model has signicantly
reduced training, testing time, and computational cost
compared to previous models, making it more efficient for
evaluating the feasibility of CO2 storage projects.
3.6. Groundwater

Finding proper, cost-effective, and efficient models in hydrology
and groundwater is always challenging. On the one hand,
hydrologic cycle phenomena such as ood and streamow,
evapotranspiration, precipitation, inltration, groundwater
modeling, etc., have a complex process on a catchment scale
and cannot be predicted using simple/linear models.390 On the
other hand, developing and implementing a model that
involves all catchment phenomena, such as distributed and
semi-distributed hydrologic models/physically-based models
i.e., MIKE-SHE and SWAT (soil and water assessment tool) is
time-consuming and needs a vast amount of high-quality input
data according to ref. 391–393. Owing to substantial advance-
ments in computational power, ML algorithms have recently
achieved notable breakthroughs in managing and processing
intricate and voluminous datasets. Due to high computational
power, user-friendliness, handling big data, handling data with
different dimensions, not needing a vast amount of data like
numerical models, and high prediction/forecasting power of
any complicated process such as water resource phenomena by
formulating the relationship between inputs and output
20764 | J. Mater. Chem. A, 2024, 12, 20717–20782
variables,394–396 application of ML/DL algorithms has recently
been increasing, especially in the eld of hydrology and
groundwater resources. In addition, by expanding the applica-
tion of big data, which is available from numerous sources such
as satellite images, reanalysis data, drones, sensors, and
geophysical data,397 the use of ML/DL model has signicantly
increased. Within this context, groundwater issues have
consistently been a focal point for researchers seeking to
harness these technological strides for diverse applications.
These applications encompass areas such as hydrological
modeling, uid ow and transport in porous media, and the
characterization of geo-systems. Consequently, there exists
pervasive interest in the development of ML techniques tailored
to capitalize on the burgeoning availability of substantial
datasets from the varied above-mentioned sources. Khosravi
et al.398 compared the prediction accuracy of hybrid ML models,
including random forest (RF) and Dagging-RF (DA-RF), simple
and well-known approaches of sediment rating curve (SRC), and
the SWAT model for prediction of suspended sediment load at
Talar catchment, in the north of Iran. They revealed that the
Dagging-RF model outperformed traditional and physically
based models. Therefore, complicated models such as distrib-
uted and semi-distributed models don't guarantee higher
prediction power, and their results conrm the higher perfor-
mance of ML models in groundwater.

Groundwater resource management on a catchment scale
can be divided into two main classes, namely, surface water
hydrology (precipitation, streamow, ood, inltration, soil
moisture, and wetland/lake water level) and groundwater
hydrology. Surface water hydrology is not well matched by
porous media, but all relevant groundwater applications are in
the area of porous media. Overall, modeling of uid ow in
porous media has numerous applications, from the micro-scale
(cell membranes, lters, and rocks) to macro-scale (ground-
water, hydrocarbon reservoirs, and geothermal) and beyond,
and in the current review macro-scale application, which is
more relevant to groundwater resources, has been reviewed and
discussed. In natural science, soil and rocks are prominent
examples of porous media. Fluid ow which goes through
porous media (i.e., ground/soil) is a fascinating subject and has
a signicant impact on other hydrologic cycles.399 DL algo-
rithms employing CNNs have been used to analyze porosity,
permeability, and tortuosity in porousmedia through uid ow,
yielding accurate results. In groundwater resource manage-
ment, regression and classication-based methods can be
applied, depending on the context and objective. Generally,
a regression-based approach is used for time series prediction
(i.e., streamow, rainfall, etc.), while classication-based
methods are used for spatial modeling (i.e., ood, ground-
water, etc.).

The data inherent to porous media and subsurface systems
exhibit distinctive attributes that differentiate them from
commonplace datasets in other domains. In contrast to
conventional data encountered in elds such as image recog-
nition within computer science, the data associated with porous
media adhere to physical laws. Consequently, the direct appli-
cation of ML techniques to such data is oen impractical,
This journal is © The Royal Society of Chemistry 2024
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necessitating reformulation and customization of these tech-
niques to align with the inherent characteristics of the dataset.
The burgeoning inux of data-sensing tools, coupled with the
continuous evolution of advanced computational algorithms,
underscores the imperative to develop ML and automated
methods capable of addressing the complexities posed by such
data.

Effectively unlocking the potential of big data in geosciences
and making informed decisions mandates the development of
advanced techniques adept at identifying intricate dependen-
cies and patterns within the dataset. This involves overcoming
inherent challenges that make traditional methods difficult or
nearly impossible. As elucidated in this review, ML techniques
emerge as a highly efficient alternative for discerning patterns
within vast and multidimensional datasets. The adaptability of
ML allows for the discovery and extraction of linear and
nonlinear correlations among various physical parameters.
Such capabilities of ML techniques have proven instrumental in
unveiling the potential inherent in big data, thereby advancing
our comprehension of complex phenomena within porous
media, spanning scales from the minuscule to the expansive in
GeoMedia.397

3.6.1. Inltration. Entering the uid (herein water) into
and through any porous material (here from topsoil to soil
media) is dened as inltration, which is one of the most
interesting topics in groundwater modeling, especially for sub-
surface ow modeling. Deep inltration is called percolation
and leads to groundwater recharging. Inltration/percolation is
one of the most complicated processes on a catchment scale, as
numerous phenomena are involved including catchment slope,
soil, vegetation, and rainfall characteristics. Inltration rate is
measured using a double ring inltrometer as the standard
method. Double ring inltrometers are made of two iron rings.
Thus, a survey for inltration rate measurement is difficult and
time-consuming. Hence, an alternative and promising tool is
highly recommended, which is the ML model's applications.

Panahi et al.400 applied an optimized DL of a CNN using gray
wolf optimization (GWO), a genetic algorithm (GA), and inde-
pendent component analysis (ICA) for the prediction of two
important soil characteristics, cumulative inltration and the
inltration rate. They considered time of measuring, sand, clay,
and silt percent, bulk density and soil moisture percent from
eld survey as inputs. They showed that metaheuristic algo-
rithms enhance the CNN model's prediction power and that
they can accurately predict cumulative inltration and inltra-
tion rates. In addition, their ndings revealed that time had the
most effective impact on cumulative inltration, while silt
content was the most correlated variable with the inltration
rate. Rehman et al.401 implemented ML-based intelligent
modeling of sandy soils' hydraulic conductivity (k) considering
a wide range of grain sizes. They considered and involved
a comprehensive array of input parameters delineating
geological characteristics, including but not limited to varia-
tions in grain sizes encompassing large, medium, and small
dimensions (D), gradation parameters, and dry density (gd).
This deliberate inclusion aims to address the inherent limita-
tions of prevailing k-value predictive models, ensuring a more
This journal is © The Royal Society of Chemistry 2024
robust coverage of output variability across diverse combina-
tions of D-values within a sandy soil deposit. They applied the
ANN, multi-expression programming (MEP), and genetic
expression programming (GEP) on a large dataset. They
revealed that the GEP model is the superior model. Lu and
Mei402 applied a DL approach for predicting excess pore water
pressure of two-dimensional soil consolidation using PINN. The
effectiveness of the developed approach was evaluated by
comparison with the numerical solution of the partial differ-
ential equation (PDE) for two-dimensional consolidation. They
depicted that the excess pore water pressure could be predicted
efficiently using this developed approach. Pandhiani403 applied
different ML models, including SVM, M5 Prime (M5P),
Gaussian process (GP), RF, and multiple linear regression
(MLR) for inltration rate prediction and compared the result
with those of some empirical models such as the Kostiakove
model using different error indicators. They revealed that time
is the most inuential parameter on the inltration rate
compared with sand, silt, density, initial moisture content, etc.
In addition, they showed that the RF model outperforms other
models.

3.6.2. Soil moisture. Top-surface and sub-surface soil
moisture signicantly impacts the inltration rate, ground-
water recharge, and rainfall-runoff process. According to the
application process, soil moisture measurement at a different
temporal and spatial scale is required. Soil moisture measure-
ment is difficult, time-consuming, and costly which needs
weighing the wet soil sampled from the eld, drying it in an
oven, and then weighing the dry soil (wet soil mass minus the
dry soil mass divided by the dry soil mass is equal to the soil
moisture or water content). Tensiometers are devices for
measuring soil moisture, but they also need eld surveys and
collecting data, which makes it difficult. Recently, the applica-
tion of the ML/DL model in this eld of study has caught the
attention of researchers, as it is easy to implement and leads to
reasonable and accurate results.

Prakash et al.404 developed and compared the prediction
accuracy of MLP, SVM, and RNN for predicting soil moisture 1,
2, and 7 days ahead. Their nding revealed that the MLP model
outperforms other models by a mean square error (MSE) and
coefficient of determination (R2) of 0.14 and 0.975 for one day
ahead, 0.353 and 0.939 for two days early, and 1.59 and 0.786 for
seven days on, respectively. Singh and Gaurav405 compared the
prediction accuracy of different ML/DP models for the predic-
tion of surface soil moisture frommulti-sensor satellite images.
They developed an ANN, a generalized regression neural
network (GRNN), a radial basis network (RBN), exact RBN
(ERBN), Gaussian process regression (GPR), SVR, RF, boosting
ensemble learning (boosting EL), RNN, binary decision tree
(BDT), and an automated ML (AutoML) model. Finally, they
stated that the ANN model outperforms other models. More
papers and information about this subject can be found in
Uthayakumar et al.406

3.6.3. Water movement in vadose and saturated zone area.
A vadose zone/unsaturated area is dened as an area from
topsoil to the water table or saturated area. Less attention has
been paid to database-dependent accuracy, the uncertainty of
J. Mater. Chem. A, 2024, 12, 20717–20782 | 20765
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results, reproducibility, and delivery of ML models in vadose
zone areas.407–409 Water movement in vadose/saturated zone
areas is mainly used for groundwater ow and contaminant
transport in unsaturated and saturated areas. Sahour et al.410

evaluated different ML models of SVM, ANN, KNN, and
Gaussian classier model (GCM) for groundwater quality index
(GQI) modeling. All models showed good prediction accuracy,
but RF was considered superior. Feature selection analysis
revealed that the distance to industrial areas is the main factor
affecting groundwater quality. More papers and information
about this subject can be found in Sajedi-Hosseini et al.,411 Zhu
et al.,412 Kumar and Pati,413 and Meray et al.414

3.6.4. Groundwater potential area. Groundwater is dened
as water that lls rock and pore spaces in a saturated zone/
aquifer.415,416 Groundwater potential is the possibility of
groundwater occurrence in a specic area.417 The dynamics of
groundwater within an aquifer are inuenced by numerous geo-
environmental factors including lithology, topography, geology,
fault and fracture networks and their interconnections,
drainage patterns, and land use/land cover.418 Geological strata
serve as both conduits and reservoirs for groundwater, with the
storage and transmissivity of these formations dictating the
viability of groundwater exploitation. Topographical features
contribute to runoff generation, enhancing recharge and
inltration.419

Globally, groundwater constitutes a primary drinking water
source for approximately 2 billion individuals,420 while in the
agricultural sector, around 278.8 million hectares of land are
irrigated by groundwater.421 With population and economic
Fig. 18 Groundwater potential mapping approach using ML models, Kh
The flowchart outlines a method involving data collection, analysis, m
divided into training (70%) and testing (30%) datasets. Key impacting pa
analysis. ML models are then developed using metaheuristic optimization
the firefly algorithm, PSO, and the bees algorithm. Model performance is
tests (Friedman and Wilcoxon signed-rank) to ensure accuracy. The final
locations.

20766 | J. Mater. Chem. A, 2024, 12, 20717–20782
growth, the future demand for groundwater is expected to
rise.422 However, recognizing that groundwater is a nite
resource underscores the imperative of understanding its
potential for sustainable utilization. One of the most effective
methodologies for managing groundwater resources is the
delineation of groundwater potential zones.423

Numerous methodologies exist for groundwater potential
mapping, with traditional techniques such as drilling, geolog-
ical, geophysical, and hydrogeological methods being widely
employed.424 However, these methods are oen time-
consuming and nancially burdensome, particularly for
expansive areas. In recent years, the integration of geographic
information systems (GIS) and remote sensing has been proven
instrumental in groundwater potential mapping,425 owing to
their capacity to efficiently handle extensive spatial datasets. A
sample methodology is given in Fig. 18. This methodology has
been used in other elds of study such as groundwater recharge
area delineation, groundwater vulnerability assessment, and
even ood modeling, landslide occurrences evaluation, and
land subsidence spatial mapping.

Khosravi et al.426 optimized the ANFIS model with ve met-
aheuristic models, including weed optimization (IWO), differ-
ential evolution (DE), rey algorithm (FA), particle swarm
optimization (PSO), and the bee's algorithm (BA) for delineating
potential groundwater mapping through 2463 spring locations
in Koohdasht–Nourabad plain, Iran. They revealed that based
on the result of ANFIS–DE as a superior model, 39.33% of the
study area has a high and very high groundwater potential north
of the plain. In addition, they depicted that based on the nding
osravi et al.,426 adopted with permission from Copernicus Publications.
odel development, and validation. Initially, groundwater samples are
rameters are identified through data correlation and multicollinearity
techniques such as invasive weed optimization, differential evolution,
evaluated using metrics such as MSE and RMSE, followed by statistical
goal was to select the optimal model for mapping groundwater spring

This journal is © The Royal Society of Chemistry 2024
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of the information gain ratio (IGR) technique, land use/land
cover, lithology, rainfall, and TWI are among the most effi-
cient factors in groundwater occurrence. Hakim et al.427

compared the prediction accuracy of the CNN and LSTM
models to delineate a potential groundwater map in Anseong,
South Korea. To meet the aim, a total of 295 well locations were
separated using the median value of transmissivity data (T) and
assigned “1” as high groundwater productivity data and “0” as
the point with low groundwater productivity. Finally, they stated
that both models under a receiver operating characteristics
(ROC) curve (AUC) of more than 0.80 show good accuracy.
Morgan et al.428 applied RF models to delineate potential
groundwater zones in the desert fringes of the East Esna-Idfu
area, Nile Valley, Egypt. They revealed that the soil type factor
has the highest impact on groundwater occurrences. In addi-
tion, they showed that the RF model, with an accuracy of 97%,
selectivity (recall) of 92%, and F1-score of 94%, has an excellent
prediction power in delineating potential groundwater areas.

3.6.5. Groundwater vulnerability assessment. The
DRASTIC model, developed by Aller et al.,429 is one of the most
widely used and practical approaches in groundwater vulnera-
bility assessment of inland areas for delineating areas with
different pollution risks. At the same time, GALDIT is suitable
for coastal vulnerability assessment. DRASTIC stands for depth
to water (D), recharge (R), aquifer media (A), soil media (S),
topography (T), impact of the vadose zone (I), and hydraulic
conductivity (C). GALDIT stands for aquifer type or groundwater
occurrence (G), aquifer hydraulic conductivity (A), levels of
groundwater above the sea level (L), distance from the shoreline
(D), the impact of the current status of seawater intrusion (I),
and the aquifer thickness (T). The main drawback of empirical
models such as DRASTIC and GALDIT is the expert opinion in
determining the weights and rates of these models. Therefore,
several ML models have been combined with a DRASTIC model
to improve the prediction power of the model. In addition, the
effectiveness of DRASTIC parameters can change from one
study area to another DRASTIC model input parameter is not
obtainable, while the ML model provides a exible framework
in which different input parameters can be tested and
investigated.

Khosravi et al.431 modied the DRASTIC model using four
statistical/ML models, weights-of-evidence (WOE), Shannon
entropy (SE), logistic model tree (LMT), and bootstrap aggre-
gating (BA) to generate a groundwater vulnerability map for the
Sari-Behshahr plain, Iran. In addition, they investigated the
effectiveness of eight additional factors, including distance to
fault, fault density, distance to a river, river density, land use,
soil order, geological time scale, and altitude, to improve
groundwater vulnerability assessment for the rst time as dis-
played in Fig. 19. They stated that additional factors could
enhance the result of groundwater vulnerability assessment.
They demonstrated that all models have improved themodeling
performance of the original DRASTIC model. Their results
showed that considering the input variable for groundwater,
vulnerability directly depends on the plain characteristics and
the input variable in original models may lead to higher error
and need to be removed from the modeling. In another study,
This journal is © The Royal Society of Chemistry 2024
Khosravi et al.396 implemented metaheuristic (DE and BBO) and
multi-attribute decision-making (MADM), stepwise weight
assessment ratio analysis (SWARA), and statistical index (SI)
methods to improve the GALDIT model at the Gharesoo-Gorgan
Rood coastal aquifer in Iran. Metaheuristic models were used to
improve weight, while MADM models were applied to enhance
the rating of the GALDIT model. Based on the ndings, all
models improved the prediction power of GALDIT, while the
GALDITSI-DE model outperformed all other models. Their
nding showed that integrating intelligent ML-based models
can improve the results of empirical models. Ijlil et al.430

developed ve hybrid ML models of DRASTIC-RF, DRASTIC-
SVM, DRASTIC-MLP, DRASTIC-RF-SVM, and DRASTIC-RF-
MLP, for groundwater pollution assessment in the Saiss
basin, in Morocco. DRASTIC-RF-MLP (AUC = 0.953) and
DRASTIC-RF-SVM (AUC = 0.901) showed higher performance,
followed by DRASTIC-RF (AUC = 0.852), DRASTIC-SVM (AUC =

0.802), and DRASTIC-MLP (AUC = 0.763).

4. Challenges and future outlook

This section presents the challenges and future outlook perti-
nent to the previous chapter. In the eld of heat exchanger and
storage, research has a rich history dating back to the applica-
tion of thermal systems in various industries. The extensive
volume of currently available data, accumulated over the years,
provides a valuable resource for categorization and future
predictions through the application of ML approaches. The
rapid development of ML technology sparks optimism and
enthusiasm for leveraging more sophisticated tools in research,
aiming to predict target functions and optimize thermal
systems. An exciting avenue for advancement lies in the devel-
opment of image-processing systems complementing ML
methods. Such systems can potentially create online optimiza-
tion tools on a real scale, reducing reliance on time-consuming
numerical modeling. However, a signicant challenge arises
from the limited availability of comprehensive data, particularly
for complex thermal systems or those involving hazardous
uids, posing a potential threat to the reliability of ML outputs.
To address this challenge, the deployment of accurate thermal
and hydrodynamical sensors is imperative, along with meticu-
lous avoidance of random errors in experiments. Additionally,
conducting high-delity numerical simulations becomes
crucial to prevent the incorporation of noisy and imprecise data
into ML models. The careful consideration of feature selection
further contributes to rening the accuracy of predictions.

One notable concern in ML applications for thermal systems
with simple physics is the risk of undertting. Reliance on
heavy numerical simulations and expensive experiments
currently hampers the ability to feed a sufficiently large volume
of data to ML models, impacting the precision of their outputs.
Furthermore, as thermal systems become increasingly inte-
grated into daily life, it becomes crucial to balance ML optimi-
zation with customer-friendly necessities, such as appearance
and space occupation, to avoid potential adverse effects on
marketing. A noteworthy aspect of current ML versions is their
lack of interpretability and discussion on the outputs,
J. Mater. Chem. A, 2024, 12, 20717–20782 | 20767
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Fig. 19 Flowchart of the methodology for groundwater vulnerability assessment, Khosravi et al.,431 adopted with permission from Elsevier. This
flowchart outlines a systematic method to analyze nitrate levels in groundwater, focusing on data segmentation, model building, and verification.
It starts by evaluating key factors such as groundwater depth, recharge rates, aquifer and soil media, and topography. The DRASTIC method is
used to evaluate potential groundwater contamination. Data are divided into two categories based on the nitrate concentration: above and
below 50 PPM, with each category split into 70% training and 30% testing datasets for modeling and validation. Model effectiveness is verified
through the ROC curve for model performance evaluation and comparison.
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potentially leading to incorrect interpretations. Despite these
challenges, the outlook for ML in thermal science remains
optimistic, with the potential for higher precision, reduced data
feeding requirements, and improved identication and elimi-
nation of noisy input values. The realization of these advance-
ments will largely depend on the continuous development of
hardware capabilities.

When it comes to energy storage and combustion using
porous media and ML, there are a few challenges and future
outlooks to keep in mind. The rst challenge is the availability
and quality of data. ML algorithms require large amounts of
data for training and validation, but obtaining comprehensive
and high-quality data for some of the energy storage processes
and combustion systems using porous media can be difficult.
Limited data availability can affect the accuracy and generaliz-
ability of ML models. According to the literature, there is
limited research on the integration of ML and geothermal
energy storage, thermo-chemical energy storage, natural gas
energy storage, and combustion using porous media. Thermo-
chemical energy storage with porous media offers several
20768 | J. Mater. Chem. A, 2024, 12, 20717–20782
advantages, including high energy density, long-term storage
capability, and reduced heat losses compared to some other
storage technologies. However, there are also challenges asso-
ciated with material selection, reaction kinetics, heat and mass
transfer, and system design. Efficient utilization of porous
media and optimal reaction conditions are crucial for achieving
high storage capacity and fast heat transfer rates. Apart from
lithium-ion batteries, experimental data for other batteries such
as sodium-ion batteries and potassium-ion batteries are limited
and it is hard to use ML to design and characterize battery
materials.

Additionally, there are available hybrid energy storage
options, such as electrical-gas hybrid energy storage and
electrical-gravitational systems. This hybrid system combines
electrical energy storage, such as batteries, with hydrogen gas
storage using porous media. Excess electricity generates
hydrogen through electrolysis and is stored in porous media,
such as metal hydrides or adsorbents. When there is an elec-
tricity demand, the stored hydrogen can be utilized in a fuel cell
to generate electricity. This hybrid storage system allows for the
This journal is © The Royal Society of Chemistry 2024
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storage of electrical energy in the form of hydrogen, providing
longer-duration energy storage and enabling the use of
hydrogen as an energy carrier. In another hybrid system, elec-
trical energy storage is combined with gravitational potential
energy storage using porous media. Excess electricity is used to
li heavy masses, such as concrete blocks or weights, against
gravity, storing the energy as gravitational potential. When
electricity demand is high, the potential energy is released, and
the weight is lowered, driving a generator to produce electricity.
Porous media can be used to support and control themovement
of the weights, ensuring efficient energy storage and retrieval.
An effective way to overcome this issue is through physics-
informed ML (PIML). This approach combines principles
from physics-based modeling with ML techniques to enhance
the modeling, prediction, and understanding of complex
physical systems. By incorporating domain knowledge, physical
constraints, and governing equations into the ML framework,
PIML recognizes that physical laws and governing equations
provide valuable insights into the behavior of physical systems.
This approach allows for more robust and interpretable models
compared to purely data-driven ML models, as ML models can
learn from limited data more effectively and make predictions
that align with the underlying physical laws. Overall, PIML aims
to leverage the strengths of both disciplines to provide more
accurate and insightful predictions for complex physical
systems.

Interpretability is also a challenge, especially with deep
learning approaches that can be considered black boxes. It's
crucial to understand the underlying physical phenomena
within the porous media for gaining insights, optimizing
system performance, and ensuring safe and reliable operation.
Some challenges associated with thermal energy storage using
porous media include heat transfer limitations, thermal
degradation of the porous media, system efficiency, and
economic viability. Overcoming these challenges requires
advancements in materials science, system design, and opti-
mization techniques. Another challenge is the complex and
nonlinear dynamics of these systems. Modeling and under-
standing them accurately can be difficult due to the intricate
interplay between uid ow, heat transfer, chemical reactions,
and porous media properties. Finally, ensuring the generaliza-
tion and transferability of ML models across different scenarios
and applications is a challenge that needs to be addressed.
Energy storage and combustion systems using porous media
can exhibit signicant variations due to factors such as material
properties, operating conditions, and system congurations.

Looking ahead, there are several exciting developments in
the eld of energy storage and combustion using porous media
that are being facilitated by ML techniques. First, ML can
greatly enhance the accuracy and optimization of these
processes. Advanced algorithms such as deep learning and
reinforcement learning can capture complex relationships and
improve system performance. Secondly, by extracting valuable
insights from large datasets, ML can help us better understand
the intricate phenomena that occur within porous media. This
understanding can then be used to improve materials, develop
better system designs, and optimize operational strategies.
This journal is © The Royal Society of Chemistry 2024
Thirdly, ML algorithms can enable real-time control and
monitoring of energy storage and combustion systems, allowing
for informed decisions and optimized performance. Fourthly,
combining ML with experimental and computational methods
can lead to more robust and reliable solutions. Finally, ML can
also contribute to the development of safer and more sustain-
able energy storage and combustion systems by identifying
potential risks and optimizing safety protocols. Overall, the
future of energy storage and combustion using porous media
aided by ML is bright. This technology can greatly improve
system performance while advancing the adoption of sustain-
able energy technologies.

In the eld of electrochemical devices, although ML has
shown practical achievements, its application in porous media
in electrochemical devices is still in its early stages, presenting
several unexplored research prospects. There is ample oppor-
tunity for further advancements in the utilization of ML and DL
to enhance the exploration of porous electrocatalysts for elec-
trochemical devices. Additional efforts should be dedicated to
advancing novel approaches that can enhance the efficiency
and precision of ML in the identication of prospective porous
electrocatalysts. Due to the intricate nature of the fuel cell
system, current ML algorithms fall short of meeting the
demands for both superior performance and cost-effectiveness.
Consequently, there is a need for new ML methodologies to
enhance the overall system performance. Supervised learning
currently dominates the eld of ML applications, requiring
researchers to gather extensive sets of annotated data to train
MLmodels. Whether obtained through resource-intensive high-
throughput experiments or computationally demanding
numerical simulations, the associated costs are signicant. To
tackle this challenge, new approaches need to be proposed. The
integration of AI technologies is expected to enable the targeted
design of porous media, provide guidance for experimental
synthesis, validate predicted outcomes, and greatly advance the
eld of electrocatalysis.

Research into the manufacturing steps of LIBs, including
electrolyte inltration, formation, and electrochemical perfor-
mance, continues to be a dynamic eld where ML has demon-
strated its potential. However, several challenges persist that
necessitate further exploration and innovation. Notably, the
robustness and adaptability of ML models for real-world
applications need ongoing renement and validation. These
models must evolve to improve the accuracy of quantifying
active material volume fractions, accommodate non-spherical
particle morphologies, and address intricacies related to esti-
mating the properties of actual electrodes, particularly in
scenarios involving highly aligned platelets and high current
densities. Bridging the gap between simulated and real micro-
structure data remains an important endeavor. To this end, the
integration of additional data sources and the creation of
accurate representations for reconstructed models are impera-
tive. Furthermore, enhancing the computational efficiency of
deep learning models for real-time battery management
systems is paramount. As we look to the future, addressing
these challenges will contribute to elevating the performance,
longevity, and safety of LIBs across various applications.
J. Mater. Chem. A, 2024, 12, 20717–20782 | 20769
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Research in RFBs has made signicant strides in optimizing
various components, aided by the application of ML tech-
niques. However, several challenges persist, and the path
forward is marked by ongoing exploration and innovation. One
critical challenge is the need for more realistic and manufac-
turable microstructures in electrode optimization. The
assumptions made during microstructure generation, though
helpful in discovering superior microstructures, may impact the
practicality of their implementation. Future research should
focus on bridging the gap between idealized designs and real-
world manufacturability. Additionally, the generalizability of
results in studies involving a limited number of simulations or
small datasets needs to be addressed to ensure the applicability
of ndings to diverse scenarios. Furthermore, the character-
ization of electrode microstructure remains an essential aspect,
and improvements in control and accuracy are vital for more
precise estimations of specic surface area and porosity. In
terms of future work, the optimization of manufacturing
parameters, especially in designing porous materials for
enhanced ion transport, remains a primary focus. ML offers the
potential to revolutionize the design of porous materials to
achieve specic transport characteristics. Moreover, the
mechanical strength, heat transfer, and electron transfer
properties of microstructures play pivotal roles in RFB perfor-
mance. ML applications are well-suited to ne-tuning micro-
structure designs for improved strength, heat management,
and electron transfer efficiency, thus advancing the overall
capabilities of redox ow batteries.

ML techniques have been successfully applied to use existing
literature data to optimize the properties of supercapacitor
electrodes. Although there is still some scope for improvement
in material performance by rst creating accurate and valid
physics-based models and then subsequently training neural
networks on the performance metrics of those models to create
fast surrogate-based models, these models should then be free
of experimental error, noise, or inconsistency in experimental
data reporting, allowing the microstructure of supercapacitor
electrodes to be optimized. ML will likely be an invaluable tool
for screening chemical compositions and structures for more
durable cycle lifetimes and specic capacitance.

The oil and gas industry has always been at the forefront of
technological advancements. With the advent ofML, the industry
has been presented with new challenges that need to be
addressed before ML can be fully integrated into the industry.
One of the challenges of using ML in reservoir engineering is the
lack of physical nature ofML algorithms.ML algorithms are data-
driven and rely on nding patterns and correlations in data to
make predictions. However, these algorithms do not inherently
incorporate the underlying physical principles that govern the
behavior of reservoirs. This can result in models that are not able
to accurately capture the complex phenomena that occur in
subsurface reservoirs. In contrast, traditional reservoir simula-
tion models are based on physical equations that describe the
ow of uids through porous media. While these models can be
computationally expensive and require a high level of expertise to
develop and use, they can accurately capture the underlying
physics of reservoir behavior. The lack of physical nature of ML
20770 | J. Mater. Chem. A, 2024, 12, 20717–20782
algorithms can result in models that are less accurate and less
reliable than traditional simulation models. To address this
challenge, it is suggested to work on developing hybrid
approaches, such as PIML, that combine ML with traditional
simulation methods. These approaches aim to leverage the
strengths of both methods to develop more accurate and reliable
models for reservoir engineering.

Data quality and quantity are other issues mentioned in
previous research. ML algorithms rely on large amounts of high-
quality data to make accurate predictions. Data quality refers to
the accuracy and reliability of the data used to train machine
learning models. In reservoir engineering, data are oen
collected from sensors and instruments that are deployed in the
eld. These sensors can be subject to various sources of error,
such as measurement noise, calibration errors, and environ-
mental interference. As a result, the data collected may not
accurately reect the true state of the reservoir. One way to
improve data quality is by implementing rigorous data valida-
tion and cleaning processes to help identify and correct errors
in the data. Furthermore, data is oen collected at discrete
points in time and space. This can result in sparse datasets that
do not provide enough information to accurately capture the
complex behavior of subsurface reservoirs. Using data
augmentation techniques to produce synthetic data can
increase data quantity. These techniques use existing data to
generate new data that are similar but not identical to the
original data. This can help enlarge the size of the dataset and
enhance the accuracy of ML models.

Transfer learning has the potential to address some of the
challenges associated with using ML in reservoir engineering,
such as data scarcity. By leveraging knowledge gained from other
reservoirs, transfer learning can help improve the accuracy and
reliability of ML models in reservoir engineering. Transfer
learning is an ML technique that allows the knowledge gained
from one task to be applied to another related task. This can help
enhance the performance of ML models when there is limited
data available for the new task. Transfer learning could be used to
apply knowledge gained from one reservoir to another similar
reservoir. In other words, if a machine learning model has been
trained on data from one reservoir to predict production rates,
transfer learning could be used to apply this knowledge to
another reservoir with similar characteristics. This could help
enhance the accuracy of the model and lower the amount of data
needed to train the model on the new reservoir. In a nutshell,
solving ML challenges in hydrocarbon reservoirs requires
a combination of domain expertise and technical skills in areas
such as data science and reservoir engineering. By leveraging
advanced analytics tools, it is possible to gain valuable insight
into reservoir behavior that can help improve production and
efficiency and reduce costs over time.

For carbon capture and sequestration, there are still certain
obstacles to be overcome, despite the recent successes, for the
eld to reach new levels. Prospects would be illustrated for
investigation in using ML to create porous materials, adsorp-
tion techniques, and carbon capture optimization, as well as
potential solutions to these problems. Despite the feasible
extraction of meaningful experimental data from the literature's
This journal is © The Royal Society of Chemistry 2024
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papers, the calculating techniques would result in a signicant
amount of information being lost. It is recommended that they
be standardized in order to disseminate the technique, basic
information, and outcomes more effectively in detail. A
different recommendation is to digitize lab notes in ML-code
formats for future research and extensive data communica-
tion. This approach would be helpful and extend the rapid
expansion of materials science data communities. Large-scale,
high-quality experimental and computational data are neces-
sary for developing ML models that function robustly and
generally. Getting enough data in the eld of materials science,
particularly for computational and experimental purposes,
requires a cost impact. To deal with the lack of data, new
approaches have been developed, such as transfer learning,
data wrapping, augmentation, and dimension transformation.
Traditionally, nding, gathering, and interpreting literature
takes a lot of effort and time. Natural language processing (NLP)
has recently made it feasible to automatically gather data for
creating a materials database so that it can be more effectively
incorporated into ML workows for material design and
experimental mechanization. Therefore, autonomous literature
extraction of porous media for carbon capture using NLP will be
an exciting approach. The last issue is that gathering experi-
mental data is expensive because training ML models with
adequate prediction accuracy oen necessitates a large volume
of data. To overcome the issues outlined above, researchers
have recently begun to merge physics-based principles with ML
models. These methods embed physical limitations, cutting-
edge physics-based normalization, symmetries, invariances,
and equivariants into ML models, which could improve gener-
alizing, speed up training, and improve transparency.
Advancements in materials research and adsorption/absorption
process optimization for carbon capture are expected to be
fueled by the eld's research developments.

In the eld of groundwater resources, modeling natural
resources and water-related issues using ML is very popular.
Based on the literature review for all aspects of water science,
several items and steps signicantly impact the modeling
performance of ML models. These are data quality, length,
splitting ratio, hyperparameter tuning, optimum input vari-
ables, hybridization/ensemble, and model prediction power
(model structure). Also, in each literature review, authors stated
that their models are robust and have high accuracy; therefore,
selection of an optimum model is challenging. Data quality has
a signicant impact on other models (numerical, physically
based, etc.) and has a meaningful effect on ML models.
Involving poor-quality data can bring about degradation in the
ndings and have further consequences when decisions are
made on those results. The length of the dataset is another
important and inuential factor in modeling prediction power.
The larger the data, the higher the probability of extracting
trends, and nally, the higher the prediction power of models.

ML models are attracting the interest of researchers, and
their implementation is on the rise. The issue with ML models
is that they need to consider the physics underlying catchment
modeling, which must still be addressed. In addition, the
implementation of need-based physical models and the vast
This journal is © The Royal Society of Chemistry 2024
quantity of data persist. In certain situations, their integration
is highly recommended, such as the prediction of missing data
and the prediction of unavailable data (e.g., inadequate data
capture) or the prediction of some input parameters such as
effective rainfall via Identication of unit Hydrographs and
Component ows from Rainfall, Evaporation and Streamow
data (IHACRES) model and feed to ML models.

It is worth mentioning that for further knowledge and
reading, a list of available online databases in the six elds of
the review is given in Table S1 of the ESI,† which can be used as
an exercise to train ML models with the relevant data given in
these databases. Also, all the reviewed literature in the manu-
script is displayed as spreadsheets containing relevant infor-
mation on each of the references in the ESI.†

5. Conclusion

The review paper provided an overview of the present status quo
of the interface of ML and porous media in six different appli-
cations, namely, heat exchanger and storage, energy storage
and combustion, electrochemical devices, hydrocarbon reser-
voirs, CCS, and groundwater resources. A comprehensive elab-
oration of different ML models employed in the study of porous
media such as supervised learning, unsupervised learning, and
deep learning methods was carried out. Additionally, particular
models that have been deployed, such as decision trees,
random forests, support vector machines, and neural networks,
followed by evaluation metrics, were noted. The advances made
in the application of ML to porous media were stressed and
insights into the challenges and opportunities for future
research were offered. In the realm of heat transfer research, ML
holds promise for predicting target functions and optimizing
thermal systems through the extensive available data. Chal-
lenges arise in image processing systems due to limited
comprehensive data for complex thermal systems, urging the
deployment of accurate sensors and high-delity numerical
simulations to enhance ML reliability. In energy storage and
combustion, ML faces challenges such as limited data avail-
ability for various storage processes and combustion systems.
PIML models are proposed to address complexities in material
selection and reaction kinetics. Electrochemistry applications
of ML are in the early stages, with opportunities for enhancing
the exploration of porous electrocatalysts, and challenges
include the need for newMLmethodologies to improve fuel cell
system performance. ML in hydrocarbon reservoirs encounters
challenges due to its lack of inherent physical principles, sup-
porting hybrid approaches such as PIML. CCS faces obstacles
related to data standardization, digitization, and the cost
impact of obtaining high-quality experimental data. In the
groundwater resources framework, there are challenges and
crucial considerations, including data quality and dataset
length. It is concluded that the application of ML in a spectrum
of elds holds promise for optimizing systems and processes,
but it also faces challenges. These challenges include the need
for high-quality data, addressing the lack of physical nature in
ML algorithms, and nding ways to overcome data scarcity.
Despite these obstacles, there is an opportunity to improve
J. Mater. Chem. A, 2024, 12, 20717–20782 | 20771
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accuracy and efficiency through hybrid approaches that
combine ML with physics-based principles. The outlook for ML
in these domains is optimistic, with a focus on enhancing
precision, reliability, and sustainability, as well as addressing
ongoing issues related to data quality and the integration of
physical principles, contingent on continuous hardware pro-
cessing development. Ongoing research and innovation are
essential to harness the full potential of machine learning in
these elds.

Abbreviations
AAPE
20772 | J.
Average absolute percentage error

AC
 Activated carbon

ADLSTM
 Adaptive dropout long short-term memory

AE
 Activation energy

AEM
 Anion exchange membrane

AHM
 Automatic history matching

AI
 Articial intelligence

ANN
 Articial neural network

APS
 Average pore size

ARM
 Association rule mining

ASL
 Airway surface liquid

BET
 Brunauer, Emmett, and Teller

BiLSTM
 Bidirectional long short-term memory

BLR
 Bayesian linear regression

BP
 Back-propagation

BPNNs
 Back propagation neural networks

BRR
 Bayesian ridge regression

BWDPCs
 Biomass waste-derived porous carbons

CBM
 Coalbed methane

CCL
 Cathode catalyst layer

CCS
 Carbon capture and sequestration

CCST
 Carbon capture or separation technology

CCSTU
 Carbon capture, storage, transport, and utilization

CCUS
 Carbon capture, utilization, and storage

CFD
 Computational uid dynamics

CGP
 Cumulative gas production

CHP
 Combined heat and power

CL
 Catalyst layer

CNN
 Convolutional neural network

COBYLA
 Constrained optimization by linear approximation

COFs
 Covalent organic frameworks

COP
 Coefficient of performance

CT
 Computed tomography

Da
 Damkohler number

DCA
 Decline curve analysis

DCGAN
 Deep convolutional generative adversarial network

DFT
 Density functional theory

DL
 Deep learning

DNN
 Deep neural network

DNS
 Direct numerical simulation

DT
 Decision tree

DTR
 Decision tree regression

ECPEM
 Evaluation criterion of the proton exchange

membrane

EES
 Electrochemical energy storage

EOR
 Enhanced oil recovery
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ERT
 Extremely randomized tree

FFNN
 Feed-forward neural network

FIB-SEM
 Focused ion beam scanning electron microscopy

FOV
 Field-of-view

GA
 Genetic algorithm

GAN
 Generative adversarial network

GBDT
 Gradient boosting decision tree

GBR
 Gradient boosting regression

GBM
 Gradient boosting machine

GCMC
 Grand canonical Monte Carlo

GDL
 Gas diffusion layer

GPR
 Gaussian process regression

GRNN
 Generalized regression neural network

GRU
 Gated recurrent unit

HER
 Hydrogen evolution reaction

HDPCs
 Heteroatom-doped porous carbons

HOLE
 Highly ordered laser-patterned electrode

HPC
 High-performance computing

HVAC
 Heating, ventilation, and air conditioning

IGWO
 Improved gray wolf optimizer

IOR
 Improved oil recovery

IPCC
 Intergovernmental panel on climate change

KELM
 Kernel extreme learning machines

KNN
 k-Nearest neighbors

KNR
 k-Nearest neighbor regression

LASSO
 Least absolute shrinkage and selection operator

LBM
 Lattice Boltzmann method

LGB
 Light gradient boosting

LIBs
 Lithium-ion batteries

LIME
 Local interpretable model-agnostic explanations

LINMAP
 Linear programming technique for

multidimensional analysis of preference

LM
 Levenberg–Marquardt

LR
 Linear regression

LSSVM
 Least-squares support vector machine

LSTM
 Long short-term memory

M&V
 Monitoring and verication

MAE
 Mean absolute error

MAPE
 Mean absolute prediction error

MC
 Monte Carlo

MDDFs
 Minimum distance distribution functions

MFO
 Moth-ame optimizer

MICE
 Multivariate imputation by chained equations

ML
 Machine learning

MLP
 Multi-layer perceptron

MLR
 Multi linear regression

MLP-NN
 Multi-layer perceptron neural network

MMMs
 Mixed matrix membranes

MMP
 Minimum miscible pressure

MOF
 Metal–organic framework

MPV
 Micropore volume

MSE
 Mean squared error

NDCs
 Nitrogen-doped catalysts

NLP
 Natural language processing

NNP
 Neural network potential

NPV
 Net present value

NSGA
 Non-dominating sorting genetic algorithm

ODE
 Ordinary differential equation

OER
 Oxygen evolution reaction
This journal is © The Royal Society of Chemistry 2024
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OMSs
This journal
Open metal sites

ORR
 Oxygen reduction reaction

PBI
 Polybenzimidazole

PCA
 Principal component analysis

PCM
 Phase change material

PDE
 Partial differential equation

PEC
 Performance evaluation criteria

PEI
 Polyethyleneimine

PEM
 Proton exchange membrane

PEMFC
 Proton exchange membrane fuel cell

PEMWE
 Proton exchange membrane water electrolyzer

PIML
 Physics-informed machine learning

PINN
 Physics-informed neural network

PLS
 Partial least squares

PNM
 Pore network modeling

POD-
TPWL
Proper orthogonal decomposition and trajectory
piecewise linearization
PSA
 Pressure swing adsorption

PSO
 Particle swarm optimization

PSPM
 Pore-scale porous media

PTL
 Porous transport layer

RBF
 Radial basis function

REPT
 Reduced error pruning trees

RF
 Random forest

RFR
 Random forest regression

RMSE
 Root mean squared error

RNN
 Recurrent neural network

ROM
 Reduced order models

RPCs
 Regular porous carbons

RSM
 Response surface methodology

RUL
 Remaining useful life

SACs
 Single-atom catalysts

SBUs
 Secondary building units

SCG
 Scaled conjugate gradient

SCR
 Selective catalytic reduction

SDGs
 Sustainable development goals

SHAP
 Shapley additive explanations

SML
 Supervised machine learning

SmVAE
 Supramolecular variational autoencoder

SoC
 State-of-charge

SOFCs
 Solid oxide fuel cells

SoH
 State-of-health

SOM
 Self-organizing map

SPC
 Straw pyrolytic carbon

SRM
 Surrogate reservoir model

SSA
 Specic surface area

SVM
 Support vector machine

SVR
 Support vector regression

TCES
 Thermochemical energy storage

TEPA
 Tetraethylenepentamine

TES
 Thermal energy storage

TOC
 Total organic carbon

TOPSIS
 Technique for order of preference by similarity to

ideal solution

TSA
 Temperature swing adsorption

VE
 Voltage efficiency

VSA
 Vacuum swing adsorption

XGBoost
 Extreme gradient boosting
is © The Royal Society of Chemistry 2024
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M. Asgari, Ö. Kadioglu, C. Charalambous, A. Ortega-
Guerrero, A. H. Farmahini, L. Sarkisov, S. Garcia, F. Noé
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C. Noubactep, Clean, 2013, 41, 275–282.

20 Md. S. Hossain, L. I. Stephens, M. Hatami, M. Ghavidel,
D. Chhin, J. I. G. Dawkins, L. Savignac, J. Mauzeroll and
S. B. Schougaard, ACS Appl. Energy Mater., 2020, 3, 440–446.

21 J. Lin, Z. Liu, Y. Guo, S. Wang, Z. Tao, X. Xue, R. Li, S. Feng,
L. Wang, J. Liu, H. Gao, G. Wang and Y. Su, Nano Today,
2023, 49, 101802.

22 T. Yasuda, S. Ookawara, S. Yoshikawa and H. Matsumoto,
Chem. Eng. J., 2023, 453, 139540.

23 D. A. Nield and A. Bejan, in Convection in Porous Media,
Springer International Publishing, Cham, 2017, pp. 1–35.

24 N. Nishiyama and T. Yokoyama, J. Geophys. Res.: Solid Earth,
2017, 122, 6955–6971.

25 J. M. McKinley, Encyclopedia of Mathematical Geosciences:
Encyclopedia of Earth Sciences Series, ed. B. S. Daya Sagar,
Q. Cheng, J. McKinley and F. Agterberg, 2022, pp. 1–3.

26 C. Wang, Y. Mehmani and K. Xu, Proc. Natl. Acad. Sci. U. S.
A., 2021, 118, DOI: 10.1073/pnas.2024069118.

27 S. Bakhshian, Z. Shi, M. Sahimi, T. T. Tsotsis and K. Jessen,
Sci. Rep., 2018, 8, 8249.

28 S. Fagbemi, P. Tahmasebi and M. Piri, Water Resour. Res.,
2018, 54, 6336–6356.

29 M. E. Rosti, S. Pramanik, L. Brandt and D. Mitra, So
Matter, 2020, 16, 939–944.

30 M. Kohr and G. P. R. Sekhar, Eng. Anal. Bound. Elem., 2007,
31, 604–613.

31 A. Lenci, F. Zeighami and V. Di Federico, Transp. Porous
Media, 2022, 144, 459–480.

32 K.-K. Phoon, T.-S. Tan and P.-C. Chong, Geotech. Geol. Eng.,
2007, 25, 525–541.

33 Y. Da Wang, T. Chung, R. T. Armstrong and P. Mostaghimi,
Transp. Porous Media, 2021, 138, 49–75.

34 M. R. M. Talabis, R. McPherson, I. Miyamoto, J. L. Martin
and D. Kaye, in Information Security Analytics, Elsevier,
2015, pp. 1–12.

35 H. Huo, Z. Rong, O. Kononova, W. Sun, T. Botari, T. He,
V. Tshitoyan and G. Ceder, npj Comput. Mater., 2019, 5, 62.
20774 | J. Mater. Chem. A, 2024, 12, 20717–20782
36 K. M. Jablonka, D. Ongari, S. M.Moosavi and B. Smit, Chem.
Rev., 2020, 120, 8066–8129.

37 J. Abdi, F. Hadavimoghaddam, M. Hadipoor and
A. Hemmati-Sarapardeh, Sci. Rep., 2021, 11, 24468.

38 A. Banerjee, S. Pasupuleti, K. Mondal and M. M. Nezhad,
Int. J. Heat Mass Transfer, 2021, 179, 121650.

39 D. Thakur, A. Chandel and V. Shankar, Water Pract.
Technol., 2022, 17, 2625–2638.

40 S. M. Alirahmi, S. F. Mousavi, P. Ahmadi and
A. Arabkoohsar, Energy, 2021, 236, 121412.

41 A. C. Cinar, Arabian J. Sci. Eng., 2020, 45, 10915–10938.
42 S. M. Alirahmi and A. Ebrahimi-Moghadam, Appl. Energy,

2022, 323, 119545.
43 K. Kim, W. H. Lee, J. Na, Y. J. Hwang, H. S. Oh and U. Lee, J.

Mater. Chem. A, 2020, 8, 16943–16950.
44 R. Ding, Y. Ding, H. Zhang, R. Wang, Z. Xu, Y. Liu, W. Yin,

J. Wang, J. Li and J. Liu, J. Mater. Chem. A, 2021, 9, 6841–
6850.
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Soc. Rev., 2015, 44, 1777–1790.

169 F. Zhang, T. Zhang, X. Yang, L. Zhang, K. Leng, Y. Huang
and Y. Chen, Energy Environ. Sci., 2013, 6, 1623–1632.

170 T. Gao and W. Lu, iScience, 2021, 24, 101936.
171 N. Variji, M. Siavashi, M. Tahmasbi and M. Bidabadi, J.

Energy Storage, 2022, 50, 104690.
172 M. M. Heyhat, S. Mousavi andM. Siavashi, J. Energy Storage,

2020, 28, 101235.
173 M. Boujelbene, M. Goodarzi, M. A. Ali, I. M. T. A. Shigidi,

R. A. Pashameah, R. Z. Homod, E. Alzahrani and
M. R. Safaei, J. Energy Storage, 2023, 58, 106331.

174 M. Krishnamoorthi, R. Malayalamurthi, Z. He and
S. Kandasamy, Renewable Sustainable Energy Rev., 2019,
116, 109404.

175 W. Jiang, X. Xing, X. Zhang and M. Mi, Renewable Energy,
2019, 130, 1216–1225.

176 A. Banerjee and D. Paul, Energy, 2021, 221, 119868.
177 L. Zhou, Y. Song, W. Ji and H. Wei, Energy AI, 2022, 7,

100128.
178 H. Mai, T. C. Le, D. Chen, D. A. Winkler and R. A. Caruso,

Chem. Rev., 2022, 122, 13478–13515.
179 A. Mistry, A. A. Franco, S. J. Cooper, S. A. Roberts and

V. Viswanathan, ACS Energy Lett., 2021, 6, 1422–1431.
180 C. Song, S. Lee, B. Gu, I. Chang, G. Y. Cho, J. D. Baek and

S. W. Cha, Energies, 2020, 13, 1621.
181 P. Satjaritanun, M. O'Brien, D. Kulkarni, S. Shimpalee,

C. Capuano, K. E. Ayers, N. Danilovic, D. Y. Parkinson
and I. V Zenyuk, iScience, 2020, 23, 101783.

182 A. M. Nassef, A. Fathy, E. T. Sayed, M. A. Abdelkareem,
H. Rezk, W. H. Tanveer and A. G. Olabi, Renewable
Energy, 2019, 138, 458–464.

183 B. Wang, B. Xie, J. Xuan and K. Jiao, Energy Convers.
Manage., 2020, 205, 112460.

184 S. N. Steinmann, Q. Wang and Z. W. Seh, Mater. Horiz.,
2023, 10, 393–406.

185 W. Xia, Z. Hou, J. Tang, J. Li, W. Chaikittisilp, Y. Kim,
K. Muraoka, H. Zhang, J. He, B. Han and Y. Yamauchi,
Nano Energy, 2022, 94, 106868.

186 W. Zhou, L. Yang, X. Wang, W. Zhao, J. Yang, D. Zhai,
L. Sun and W. Deng, JACS Au, 2021, 1, 1497–1505.

187 E. O. Ebikade, Y. Wang, N. Samulewicz, B. Hasa and
D. Vlachos, React. Chem. Eng., 2020, 5, 2134–2147.

188 A. Zheng, Y. Wang, F. Zhang, C. He, S. Zhu and N. Zhao,
iScience, 2021, 24, 103430.

189 M. Pourali, J. A. Esfahani, H. Jahangir, A. Farzaneh and
K. C. Kim, J. Energy Storage, 2022, 55, 105804.

190 Y. Chen, J. Feng, X.Wang, C. Zhang, D. Ke, H. Zhu, S. Wang,
H. Suo and C. Liu, Environ. Sci. Technol., 2023, 57(46),
18080–18090.
This journal is © The Royal Society of Chemistry 2024
191 R. Ding, Y. Chen, Z. Rui, K. Hua, Y. Wu, X. Li, X. Duan, J. Li,
X. Wang and J. Liu, J. Power Sources, 2023, 556, 232389.

192 M. E. Günay, N. A. Tapan and G. Akkoç, Int. J. Hydrogen
Energy, 2022, 47, 2134–2151.

193 M. E. Günay and N. A. Tapan, Energy AI, 2023, 13, 100254.
194 Y. Zhang, Y. Tao, H. Ren, M. Wu, G. Li, Z. Wan and J. Shao,

J. Power Sources, 2022, 543, 231847.
195 G. Zhang, L. Wu, K. Jiao, P. Tian, B. Wang, Y. Wang and

Z. Liu, Energy Convers. Manage., 2020, 226, 113513.
196 J. Wang, H. Jiang, G. Chen, H. Wang, L. Lu, J. Liu and

L. Xing, Energy AI, 2023, 14, 100261.
197 H. Pourrahmani and J. Van herle, Energy, 2022, 256,

124712.
198 H. Pourrahmani and J. Van herle, Appl. Therm. Eng., 2022,

203, 117952.
199 H. W. Li, B. X. Qiao, J. N. Liu, Y. Yang, W. Fan and G. L. Lu,

Energy Convers. Manage., 2022, 271, 116338.
200 T. Cawte and A. Bazylak, Electrochem. Sci. Adv., 2023, 3,

e2100185.
201 X. Liu, K. Park, M. So, S. Ishikawa, T. Terao, K. Shinohara,

C. Komori, N. Kimura, G. Inoue and Y. Tsuge, J. Power
Sources Adv., 2022, 14, 100084.

202 Y. Lou, M. Hao and Y. Li, J. Power Sources, 2022, 543,
231827.

203 N. Vaz, J. Choi, Y. Cha, J. kong, Y. Park and H. Ju, J. Energy
Chem., 2023, 81, 28–41.

204 G. Xu, Z. Yu, L. Xia, C. Wang and S. Ji, Energy Convers.
Manage., 2022, 268, 116026.

205 X. Liu, S. Zhou, Z. Yan, Z. Zhong, N. Shikazono and S. Hara,
Energy AI, 2022, 7, 100122.

206 A. Fathy, H. Rezk and H. S. Mohamed Ramadan, Energy,
2020, 207, 118326.

207 A. Sciazko, Y. Komatsu, A. Nakamura, Z. Ouyang, T. Hara
and N. Shikazono, Chem. Eng. J., 2023, 460, 141680.

208 M. H. Golbabaei, M. Saeidi Varnoosfaderani, A. Zare,
H. Salari, F. Hemmati, H. Abdoli and B. Hamawandi,
Materials, 2022, 15, 7760.

209 Y. Wang, C. Wu, S. Zhao, Z. Guo, M. Han, T. Zhao, B. Zu,
Q. Du, M. Ni and K. Jiao, Sci. Bull., 2023, 68, 516–527.

210 S. Wan, X. Liang, H. Jiang, J. Sun, N. Djilali and T. Zhao,
Appl. Energy, 2021, 298, 117177.

211 R. van Gorp, M. van der Heijden, M. Amin Sadeghi,
J. Gostick and A. Forner-Cuenca, Chem. Eng. J., 2023, 455,
139947.

212 J. Bao, V. Murugesan, C. J. Kamp, Y. Shao, L. Yan and
W. Wang, Adv. Theory Simul., 2020, 3, 1900167.

213 B. A. Simon, A. Gayon-Lombardo, C. A. Pino-Muñoz,
C. E. Wood, K. M. Tenny, K. V. Greco, S. J. Cooper,
A. Forner-Cuenca, F. R. Brushett, A. R. Kucernak and
N. P. Brandon, Appl. Energy, 2022, 306, 117678.

214 I. Arganda-Carreras, V. Kaynig, C. Rueden, K. W. Eliceiri,
J. Schindelin, A. Cardona and H. Sebastian Seung,
Bioinformatics, 2017, 33, 2424–2426.

215 J. J. Patil, C. T. C. Wan, S. Gong, Y. M. Chiang, F. R. Brushett
and J. C. Grossman, ACS Nano, 2023, 17, 4999–5013.

216 T. Li, W. Lu, Z. Yuan, H. Zhang and X. Li, J. Mater. Chem. A,
2021, 9, 14545–14552.
J. Mater. Chem. A, 2024, 12, 20717–20782 | 20777

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4ta00251b


Journal of Materials Chemistry A Review

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

9 
 1

40
3.

 D
ow

nl
oa

de
d 

on
 0

9/
11

/1
40

4 
10

:3
2:

16
 ..

 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
217 Y. Yang, N. Li, B. Wang, N. Li, K. Gao, Y. Liang, Y. Wei,
L. Yang, W. L. Song and H. Chen, Electrochem. Commun.,
2022, 136, 107224.

218 M. Duquesnoy, C. Liu, D. Z. Dominguez, V. Kumar,
E. Ayerbe and A. A. Franco, Energy Storage Mater., 2023,
56, 50–61.

219 M. F. Niri, K. Liu, G. Apachitei, L. A. A. Román-Ramı́rez,
M. Lain, D. Widanage and J. Marco, Energy AI, 2022, 7,
100129.

220 J. Xu, A. C. Ngandjong, C. Liu, F. M. Zanotto, O. Arcelus,
A. Demortière and A. A. Franco, J. Power Sources, 2023,
554, 232294.

221 C. Sommer, C. Straehle, U. Kothe and F. A. Hamprecht, in
Proceedings – International Symposium on Biomedical
Imaging, 2011, pp. 230–233.

222 J. J. Bailey, A. Wade, A. M. Boyce, Y. S. Zhang, D. J. L. Brett
and P. R. Shearing, J. Power Sources, 2023, 557, 232503.

223 A. F. Frangi, J. A. Schnabel, C. Davatzikos, C. Alberola-López
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