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A novel Ta/Os heterobimetallic complex, [Ta(CH,tBu)z(u-H);OsCp*], 2, is
prepared by protonolysis of Ta(CHtBu)(CH,tBu); with Cp*OsHs. Treat-
ment of 2 and its iridium analogue [Ta(CH,tBu)s(u-H),IrCp*], 1, with CO,
under mild conditions reveal the efficient cleavage of CO,, driven by the
formation of a tantalum oxo species in conjunction with CO transfer to
the osmium or iridium fragments, to form Cp*Ir(CO)H, and Cp*Os
(CO)Hg3, respectively. This bimetallic reactivity diverges from more classi-
cal CO, insertion into metal—X (X = metal, hydride, alkyl) bonds.

The design of synthetic bimetallic complexes associating dif-
ferent metals with complementary Lewis acidic/Lewis basic
behaviour has raised interest for cooperative reactivity,'
including CO, activation."*™” In many instances, these bifunc-
tional complexes lead to CO, adducts or insertion products, in
which a bent CO, fragment binds across the two metals."®* ™ In
contrast, only a few heterobimetallic complexes have clearly
exhibited the capability to cleave the C-O bond within CO,. Thomas
and colleagues reported oxidative CO, cleavage across the early/
late heterobimetallic complex Co(iPr,PNMes);Zr(THF), yielding
(OC)Co(iPr,PNMes),(1-O)Zr(iPr,PNMes) at ambient temperature
(Scheme 1a)®® The Mazzanti group reported the potassium-
assisted reductive cleavage of CO, by a U(m) siloxide complex,
resulting in CO evolution and the formation of a pentavalent
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uranium oxo complex (Scheme 1b). When the potassium cation
is encapsulated in 18-crown-6, bimetallic cooperativity no
longer occurs, and a carbonate complex is formed instead.
Our group has developed an Ir/Al-based heterobimetallic
complex proficient in CO, deoxygenation, yielding Cp*Ir
(CO)H,, Cp*IrH,, and [Al(Py)(OAr)(iBu)],(1-O) at room tempera-
ture (Scheme 1c).>® Recently, Campos and coworkers reported
the use of Al(C4Fs); for triggering the bimetallic cleavage of Fe-
bound CO, moiety, to form an oxo carbonyl complex
(Scheme 1d). The choice of the Al-based Lewis acid partner
plays a pivotal role in initiating this reaction, as boron, zinc, or
gold Lewis acids did not exhibit activity in this transfor-
mation.”” Finding right bimetallic combinations therefore
remains a major challenge for controlling reactivity.
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Scheme 1 Reports of CO, cleavage by heterobimetallic complexes rele-
vant to the present study.?>28-30
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The alkane elimination reaction between metal (poly)alkyls
and (poly)hydride species has proven efficient for accessing
heterobimetallic complexes.*'*® We used this strategy to synthesize
compound [Ta(CH,tBu);IrH,Cp*] 1 from the tantalum tris-neopentyl
neopentylidene complex Ta(CHtBu)(CH,¢Bu); and the iridium tetra-
hydride complex Cp*IrH, (Scheme 2-top).”” This prompted us to
extend this chemistry by investigating the reactivity of Ta(CH¢Bu)
(CHytBu); towards related 6d metal polyhydrides. Treating Ta
(CHfBu)(CH,tBu); with Cp*OsH5>** in a 1:1 stoichiometric ratio
in pentane at room temperature yields the heterobimetallic complex
[Ta(CH,tBu);(1-H);0sCp*] 2 in 98% isolated yield, accompanied by
the elimination of one equivalent of neopentane (Scheme 2-middle).
'H NMR monitoring of the reaction of 2 with Cp*OsH; (1 equiv.)
suggests the slow formation of a trinuclear TaOs, species (see Fig. 57,
ESI¥), analogous to the Talr, species previously reported.”® Surpris-
ingly, Cp*ReHs"" shows no reactivity towards Ta(CHtBu)(CH,tBu);
either in pentane at room temperature or in C¢Dg at 80 °C. DFT
calculations indicate that the Ta/Re analogue should be thermo-
dynamically stable: this observed lack of reactivity is thus surprising,
and might be due to the lack of available coordination site at Re
(see ESIt for discussion).

Identification of 2 is confirmed through a range of analytical
methods including infrared (IR) and multinuclei (‘H, **C, '"H-'H
COSY, 'H-"*C HSQC and HMBC) solution NMR spectroscopy,
elemental analysis, and X-ray diffraction studies. In the "H-NMR
spectrum of 2 obtained in a toluene-dg solution, the hydride
resonance appears as a high-field singlet at 6 = —6.90 ppm,
integrating for 3H. The hydride resonance in 2 exhibits a shift of
AJ = +4.3 ppm from Cp*OsH; which is reminiscent of the observed
shift from Cp*IrCH, to 1, of approximately Ad = +3.5 ppm.”” The IR
spectrum of compound 2 displays a characteristic metal-hydride
stretching vibration signal at 1961 cm™*, consistent with bridging
hydrides. This value deviates significantly from that of complex
[Ta(CH,tBu);IrCp*(H),], 1, featuring two terminal hydrides (v =
2061 cm ™, see Fig. S6, ESIT) and that of the Cp*OsH; precursor,
which exhibits a strong absorption at 2083 (s) cm " with a minor
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Scheme 2 Reactivity of Ta(CHtBuU)(CH,tBu)s towards Cp*IrH,, Cp*OsHs
and Cp*ReHg.
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Fig. 1 Solid-state molecular structure of 2 (30% probability ellipsoids). Hydro-
gen atoms from the hydrocarbon ligands are omitted for clarity. Selected bond
distances (A) and angles (°): Tal-Osl 2.4817(2), Tal-Cl 2132(3), Tal-
C2 2.136(3), Tal-C3 2.143(3), Os1-H1 1.45(5), Os1-H2 1.56(5), Os1-H3 1.48(8),
Tal-H1 2.07(5), Tal-H2 2.03(5), Tal-H3 2.07(8), Tal-0Os1-Cp*centroia 178.1(1).

one at 2214 (w) cm™ ".** For comparison, the metal-hydride

stretch is observed at 1982 cm ™" in [Hf(CH,tBu);(u-H);IrCp*]**
and at 1952 and 1970 cm™ " for [Cp,Zr(X)(1-H);0s(PMe,Ph);]
(X = Cl or H respectively),”> where the two metal centres are
bridged by three hydride ligands.

Single crystals of 2 suitable for X-ray diffraction were grown
from a saturated pentane solution at —40 °C. The solid-state
structure is depicted in Fig. 1. The nearly linear Ta-Os-Cp*centroid
angle (178.1(1)°), indicates the presence of three bridging
hydrides between the two metals, arranged in a tripod geometry
around the {Cp*Os} core. This angle aligns well with values
reported for systems featuring similar bridging hydride motifs,
such as [CpRu(u-H),0sCp*] (179.2(9)°)** and [Hf(CH,tBu);
(1-H),IrCp*] (179.2(3)°),>* but starkly contrasts with that found
in complex 1, featuring two terminal Ir-H moieties (151.3(1)°).
The Ta-Cy;, bond lengths (with an average value of 2.137(5) A) are
consistent with neopentyl groups.””™” The Ta-Os distance in
compound 2 is 2.4817(2) A, which is 0.115 A shorter than the
sum of the metallic radii of tantalum (1.343 A) and osmium
(1.255 A).*® This difference results in a formal shortness ratio
(FSR) slightly below unity (FSR = 0.95)," suggestive of some
degree of metal-metal interaction, although the presence of
bridging hydrides could also explain the proximity. This FSR
value lies between those of complex [Hf(CH,tBu)s;(u-H);IrCp*]
(FSR = 0.99),>* where the close proximity between the Hf and Ir
centres likely results from bridging hydrides, and the Ta/Ir
complex 1 (FSR = 0.90),>” which exhibits clear double metal-
metal bonding.

To explore the potential of these heterobimetallic complexes
in promoting cooperative reactivity, we investigated the reac-
tion of 1 and 2 with CO, (1 atm, ca. 6 equiv.). The reactions were
carried out in tetrahydrofuran (THF) at ambient temperature,
resulting in rapid discoloration of the reaction mixture within
ca. 10 minutes in both cases. Analysis of the crude reaction
mixtures by 'H NMR reveals the complete consumption of
complexes 1 and 2, with clean and quantitative formation of
compounds Cp*Os(CO)H; 3 and Cp*Ir(CO)H, 4, respectively derived
from complexes 1 and 2, alongside the generation of a tantalum oxo
complex, [Ta(O)(CH,tBu)s], 5 (refer to Fig. S9 and S10 in the ESI}).

Chem. Commun., 2024, 60, 7878-7881 | 7879


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4cc02207f

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

Open Access Article. Published on 18 1403. Downloaded on 16/11/1404 01:02:34 ..

(cc)

ChemComm

%ﬁ * _"“CT;

3: M=Ir;n=2 5
4:M=0s;n=3

W

o -
R
=

=
| n
¥|~°
//II

1: M=Irpn=2
2:M=0s;n=3

Scheme 3 Reaction of compounds 1 and 2 with CO,, yielding Cp*Ir
(CO)H, and Cp*Os(CO)Hs, respectively, together with the formation of
Ta(O)(CH,tBu)s, 5.

The insolubility of compound 5 in pentane facilitated its
separation from the reaction mixtures by simple evaporation
of THF followed by pentane extraction of 3 or 4. Compound 3
was isolated in 96% yield; "H and *C NMR data are in
agreement with the literature (Scheme 3).°°°

The "H-NMR spectrum of 4, recorded in THF-dg, indicates
that the three hydrides are not equivalent in solution, resulting
in two signals at —10.48 ppm and —12.50 ppm integrating for
1H and 2H, respectively and coupling in the "H-"H COSY NMR
spectrum (Fig. S15, ESIf). These signals are assigned to
hydrides in -trans and -cis positions relative to the CO group,
respectively, which is consistent with literature data.’" The IR
spectrum for 4 displays a broad terminal hydride stretching
signal at 2075 cm !, and vgo bands at 1932-1898 cm !, as
expected.”’ Diluted THF solutions of complex 4 are stable at
room temperature in the dark. Yet compound 4 is reported to
be unstable in the solid-state,> spontaneously eliminating H,
upon drying, which could explain the moderate 45% isolated
yield. Regardless, single crystals suitable for X-ray diffraction
were obtained by avoiding visible light and crystallisation from
pentane at —40 °C. The solid-state structure of 4, determined
for the first time in this study, is shown in Fig. 2. The Os1-C1
(1.851(3) A) and 0O1-C1 (1.162(4) A) distances are consistent
with those observed in compound [Cp*Os(CO)(p-H)J,, featuring
0s-C bond lengths of 1.833(9) A and C-O bond lengths of
1.18(1) A.»°

The '"H-NMR spectrum of 5 indicates that the three CH,tBu
groups are equivalent in solution, resulting in two signals at
0.55 ppm and 1.12 ppm for the CH, and ¢Bu moieties, respec-
tively. Analysis of the "*C{"H}-NMR spectrum of 5 reveals three
distinct characteristic resonances at 104.3, 35.1 and 34.4 ppm

Fig. 2 Solid-state molecular structure of 4 (30% probability ellipsoids).
Hydrogen atoms from the Cp* ligand are omitted for clarity. Selected bond
distances (A) and angles (°): Osl-H1 1.53(4), Os1-H2 1.58(4), Osl-
H3 1.51(4), Os1-C1 1.851(3), O1-C1 1.162(4), Os1l-Cp*centroia 1.916(1),
C1-0s1-Cp*centroia 132.5(1).
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assigned to the TaCH,, C(CH3); and C(CHj3); moieties, respec-
tively. These assignments are confirmed by the 2D "H-"H COSY
and "H-">C HSQC and HMBC data (Fig. $19-521, ESIf). Unfor-
tunately, we were unable to determine the XRD structure of 5,
which probably adopts oligomeric structures, given that term-
inal Ta-oxo species are rare in the literature.>*>* To confirm the
identity of 5, we thus carried out a high resolution mass
spectrometry analysis using an APCI source, which shows a
clear signal for the ion [Ta(O)(CH,tBu); + H]" at 411.2086 m/z
(see Fig. S22, ESIY).

The computed reaction mechanism (DFT, B3PW91) is simi-
lar for 1 and 2. CO, undergoes first a kinetically accessible
(13 keal mol ™ for 1, 11 keal mol ™" for 2) nucleophilic attack by
the Ir (or Os) center, which is assisted by oxygen-coordination
to Ta. This results in 4-member metallacyclic intermediates
shown on Fig. 3. The next step is a C-O bond breaking TS
(barrier of 9 kcal mol ™" for 1 and 14 kcal mol " for 2) to yield to
products 3 (or 4) and 5, which formation is strongly exothermic
(see ESIf for reaction profiles).

In summary, the reaction between Cp*OsH; and Ta(CHtBu)
(CH,tBu); affords a heterobimetallic Ta-Os complex, 2, in high
yields via alkane elimination. Complex 2, along with its Ta-Ir
analogue, 1, exhibit clean CO, cleavage reactivity, driven by the
formation of a tantalum oxo species in conjunction with late
metal carbonyls. Given the propensity of related transition
metal alkyls and hydrides for CO, insertion,*>° the selective,
divergent bimetallic reactivity observed herein is notable. These
results clearly further demonstrate how the synergistic action of
early/late metal assemblies - particularly those based on tanta-
lum - can facilitate the deoxygenation of CO,. This under-
standing contributes to advancing knowledge in CO, activa-
tion and could lead to future applications in deoxygenative
chemistry.
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