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TiO, nanomaterials, especially one-dimensional TiO, nanofibers
fabricated by electrospinning, have received considerable attention
in the past two decades, for a variety of basic applications.
However, their safe use and easy recycling are still hampered by
the inherently subpar mechanical performance. Here, we tough-
ened polycrystalline TiO, nanofibers by introducing Al**-species at
the very beginning of electrospinning. The resultant long-and-
continuous TiO, nanofibers achieved a Young’s modulus of
653.8 MPa, which is ca. 25-fold higher than that of conventional
TiO, nanofibers. Within each nanofiber, amorphous Al,O3;-based
oxide effectively hindered the coalescence of TiO, nanocrystals and
potentially repaired the surface groves. The solid-state O-NMR
spectra further revealed the toughening strategy on a molecular
scale, where relatively flexible Ti—O—-Al bonds replaced rigid
O-Ti-O bonds at the interfaces of TiO, and Al,Osz. Moreover, the
modified TiO, nanofibers exhibited superb sinter-resistance, with-
out cracking over 900 °C, which was dynamically monitored by
TEM. Therefore, flexible-in-rigid TiO, fibrous mats can be facilely
folded into 3D sponges through origami art. As a potential show-
case, the TiO, sponges were demonstrated as a duarable and
renewable filtrator with a high filtration efficiency of 99.97% toward
PM, 5 and 99.99% toward PM; after working for 300 min. This work
provides a rational strategy to produce flexible oxide nanofibers
and gives an in-depth understanding of the toughening mechanism
from the macro-scale to the molecular-scale.
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New concepts

This research offers a fresh concept and a thorough understanding of
how to toughen electrospun TiO, nanofibers from the macro to the
molecular scales. A combination of finite element analysis and structure
observations revealed that TiO, nanofibers can be effectively reinforced
by promoting the length-diameter ratio, restricting crystal size, and
repairing surface grooves. At the interfaces of neighboring nanocrystals,
an amorphous solid solution can serve as a lubrication zone, dissipating
the localized stress. More inherently, the replacement of rigid Ti-O-Ti
bonds by relatively soft Ti-O-Al bonds allows various deformations
including twisting, switching, and vibration. The in situ heating TEM
observation further showcased the superb sinter-resistance of the
modified TiO, nanofibers, avoiding undesirable thermal-stress-induced
break into short segments. By taking advantage of the origami craft, such
thermally stable, flame resistant, and mechanically strong fibrous mats
can be engineered into 3D sponges, holding broad application promise,
such as renewable air filters. It therefore demonstrates a proof-of-concept
for the continuous and controlled production of flexible oxide nanofibers,
hastening the transition of TiO,-based nanomaterials from the fab to
the lab.

Introduction

Titanium dioxide (TiO,) has attracted much attention and is
widely used in the photocatalytic degradation of pollutants,*
photocatalytic CO,/CH, conversion into energy fuels,® water
splitting,® and solar cells.” Its global market size is expected to
reach USD 26.87 billion by 2028 and its compound annual
growth rate was forecast to be as high as 6.0% from 2021 to
2028.° Compared with conventionally explored powder TiO,
materials, one-dimensional (1D) TiO, nanostructures featuring
distinctive chemical and physical properties offered new oppor-
tunities for the scientific community and industry.® In specific,
the millimeter length scale together with the nanometer
diameter scale of TiO, nanofibers allows them to connect the
macroscopic world with nanoscience and nanotechnology.
Since the first report of electrospun TiO, nanofibers in 2003,
a number of TiO,-based nanofibers have been elegantly and

Mater. Horiz., 2023, 10, 65-74 | 65


https://orcid.org/0000-0003-2504-4520
https://orcid.org/0000-0001-5268-6807
https://orcid.org/0000-0002-2210-4017
https://orcid.org/0000-0003-1935-1620
https://orcid.org/0000-0002-2750-5004
https://orcid.org/0000-0002-4913-7492
http://crossmark.crossref.org/dialog/?doi=10.1039/d2mh01255c&domain=pdf&date_stamp=2022-12-06
https://doi.org/10.1039/d2mh01255c
https://doi.org/10.1039/d2mh01255c
https://rsc.li/materials-horizons
https://doi.org/10.1039/d2mh01255c
https://pubs.rsc.org/en/journals/journal/MH
https://pubs.rsc.org/en/journals/journal/MH?issueid=MH010001

Published on 04 1401. Downloaded on 10/11/1404 04:21:26 ..

Communication

continuously produced through electrospinning, and have
shown great potential in energy conversion and environmental
governance in the past two decades.®® However, these carefully
prepared TiO, nanofibers generally suffered from breaking into
short segments and therefore lost all the merits arising from
the 1D nanostructure, during use and/or fabrication.

On a nano-scale, low dimension and small size result in a
lower melting point and higher surface energy for TiO, nano-
fibers, in comparison with those for the bulk TiO, counterparts.
Therefore, TiO, nanocrystallites, the building block for each
nanofiber, would severely sinter during the indispensable heat
treatment, despite high crystallinity and the corresponding
(photo)catalytic activities. In this case, macrogrooves can form
on the bamboo-like nanofiber surface and propagate along the
grain boundaries quickly under external loading.'® On a mole-
cular scale, the firm and solid ionic bonds make TiO, inher-
ently brittle in shearing and tension,'" being quite different
from the recently demonstrated flexible SiO, nanofibers featur-
ing an amorphous nature.' Generally, the continuous random
network of Si-O-Si bonds has multitudinous angles ranging
from 120° to 180°. As a result, the switchable bond lengths and
bond angles in silicon oxygen tetrahedra endow a single SiO,
nanofiber with surprising flexibility."> However, it is still a
challenging task yet fascinating to produce flexible nanofibers
composed of robust and polycrystalline TiO,, and some other
functional oxides with low crystalline temperatures, such as
ZrQ,, Fe,03, ZnO, and CeO,.

One recent research study demonstrated that the structural
resilience of ZrO, nanofibers can be optimized by embedding
ZrO, nanocrystallites into an amorphous zircon matrix.™* Upon
loading, the relatively flexible zircon would lubricate the brittle
ZrO, nanocrystallites and allow more deformations to disper-
sive stress. As an alternative tactic, the grain growth in oxide
nanofibers can be effectively hampered by coating an Al,O;
shell outside the surface via co-axial electrospinning, therefore
enhancing their thermal and mechanical stability.'® Indeed,
coating soft materials outside each oxide nanocrystal or indi-
vidual nanofiber is a valid protocol to improve the elasticity
and toughness, but will be achieved with a sacrifice of the
functional surfaces of nanocrystallites with an ideal crystalline
structure more or less. Therefore, boosting the intrinsic strength
and toughness of oxide nanofibers while retaining functionality is
still an exciting and unattained goal.

Herein, we demonstrate a facile strategy to reinforce poly-
crystalline TiO, nanofibers from a macro-scale to a molecular-
scale, by introducing Al**-species at the very beginning of
electrospinning. The resultant modified TiO, nanofibers were
endowed with restricted crystal size, repaired surface grooves,
lubricated interstitial regions, and a high length-to-diameter
ratio, and hence achieved an optimized tensile breaking
strength of 2.24 MPa, being one of the strongest TiO,-based
fibrous mats rarely demonstrated. Moreover, the flexible-in-
rigid TiO,-based nanofibers exhibited superb sinter-resistance
over 900 °C, which was dynamically revealed by in situ TEM
observation. Due to the remarkable flexibility, thermal stability,
flame resistance, and (photo)catalytic activity, the modified
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TiO,-based nanofibers offered new opportunities for renewable
air filters in a safe and cost-effective manner.

Results and discussion
Fabrication of flexible-in-rigid TiO, nanofibers

Electrospinning is an electrohydrodynamic technique in which
a liquid droplet is electrified to form a jet, which is then
stretched and elongated to form nanofibers. The jet solidifies
quickly when it is stretched to smaller dimensions, resulting in
the deposition of solid nanofibers on the grounded collector.**
One great concern disturbing the integrity of the as-spun
fibrous mat is to keep a balance between the rates of volatiliza-
tion and nanofiber deposition. As illustrated in Fig. 1a and b,
preserving sufficient solvent can help cross-link nanofibers,
thus assuring good integrity of the as-spun fibrous mat without
cracking, and also making it possible to obtain large-scale and
self-supporting oxide fibrous mats even after the necessary
heat-treatment. On the contrary, the as-spun fibrous mat would
suffer from severe fracture when the deposition speed is too
slow or the solvent evaporation/solidification process is too
quick. Therefore, accelerating the nanofiber deposition with
the aid of multiple-needle electrospinning becomes a promis-
ing protocol. Remarkably, the finite element simulation for the
distribution of electric field during single-needle and multiple-
needle electrospinning demonstrates that there is no charge
accumulation in both the two modes (Fig. 1c). As schemed in
Fig. 1d, we upgraded the electrospinning setup by employing
an array of three-needle spinnerets and adding a cyclic recipro-
cating device to help deposit nanofibers fast and uniformly on
the collector surface.

Commonly, TiO, nanofibers can be facilely fabricated by
electrospinning a homogenous precursor containing polyvinyl-
pyrrolidone (PVP), titanium isopropoxide (TTIP), ethanol, and
acetic acid, followed by calcination in the air over 500 °C
(Fig. S1, ESIY). In the precursor solution, Ti** serves as coordi-
nation centers to build stable Ti-O-Ti networks, in the form
of Ti(OR),(CH3COO),_,. Once the electrospinning process
begins, the homogeneous sol is stretched into nanofibers,
along with solvent evaporation and solidification. However,
after the indispensable calcination over 500 °C, which is aimed
at removing the polymer matrix and converting metal-salt to
metal-oxide with the ideal phase, the resulting mat becomes
extremely fragile and even difficult to be handled (Fig. Sia,
ESIT). The representative TEM image in Fig. S1b (ESIt) gives
more detailed information to understand the brittle nature of
pristine TiO, nanofibers. As shown, a bamboo-like morphology
can be observed, with distinctive surface grooves. Upon external
loading, the surface grooves will serve as dislocation sources
where the dislocations pile up, and a crack first appears, and
then propagates along the grain boundaries.’® As a result,
continuous nanofibers as long as several hundreds of micro-
meters break into short segments (several micrometers) and
the integrated fibrous mat generally suffers from undesirable
fragility.

This journal is © The Royal Society of Chemistry 2023
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Fig. 1 (a) Integrity of the as-spun fibrous mat with regard to the balance of the rates of volatilization and the nanofibers deposition. (b) Scheme of the

simultaneous solvent evaporation and the wetting at the cross-linking point within the as-spun nanofibers. (c) Simulation of the electric field lines during
electrospinning with single and multiple needles. (d) Schematic illustration for the preparation of flexible-in-rigid TiO,-based nanofibers (denoted as
AT-n nanofibers). (€) SEM image of the bent AT-30 fibrous mat calcined at 900 °C. (f) Optical images of the AT-30 fibrous mat after patterning, bending,
winding, and twisting. (g) Optical images of large-scale AT-30 fibrous mats before and after folding as layer-by-layer structures and 3D sponges with the
aid of origami art. The scale bars in g represent 1 cm. (h) Young's modulus of AT-n fibrous mats. (i) Comparison of the physiochemical properties of AT

fibrous mats and recently reported oxide fibrous mats.

When Al(acac); and acetone were introduced into the elec-
trospinning precursor, a stable sol of metal-organic groups
bridged by O (ie., CH3COO-Ti-O-Al-----Ti-OOCCH;3) was
formed. In each composing unit of Ti-O-Al, oxygen links Ti
and Al atoms steadily and allows more deformation of chemical
bonds in the forms of vibration, rotation, and distortion.
Therefore, flexible-in-rigid TiO,-based fibrous mats could be
surprisingly obtained after calcination at temperatures ranging
from 500 to 900 °C at least. The resultant nanofibers were
denoted as AT-n, where n represents the atomic dosing percen-
tage of Al to Ti.

As shown in the SEM image (Fig. le), the resultant AT-30
fibrous mat after calcination at 900 °C could withstand severe
bending to a radius below 100 pm. Furthermore, the flexible-in-
rigid AT-30 fibrous mats preserved their structural integrity
even after being deformed in a variety of ways, such as
patterning, bending, winding, and folding, with no distinctive
crack (Fig. 1f). Due to the remarkable flexibility, large-scale
TiO,-based fibrous mats (determined from the size of the

This journal is © The Royal Society of Chemistry 2023

collector only) can be easily fabricated by folding the as-spun
composite fibrous mat into a roll and keeping it in a mini-sized
muffle furnace (0.10 x 0.10 x 0.13 m®) to be calcined at a given
temperature, as schemed in Fig. 1d. The obtained TiO, fibrous
mat could be unfolded into a flat and intact mat, and then
refolded into various shapes repeatedly (Fig. 1g and Video S1,
ESIT). Such an elegant protocol opens a brand-new avenue for
scaling-up the production of oxide fibrous mats and breaks the
limitations imposed by the space of muffle furnaces for the
unavoidable calcination processes.

Although oxide nanofibrous sponges offer exceptional
qualities such as high porosity, large surface areas, out-
standing flame resistance, and thermal-insulation ability,
the construction of three-dimensional (3D) oxide nanofibrous
sponges without binders and templates is still difficult
because of the brittleness and defect sensitivity of the building
block, ie., individual oxide nanofibers. Due to the remark-
able flexibility and foldability, the AT fibrous mat could
be easily constructed into 3D sponges by simply combining

Mater. Horiz., 2023,10, 65-74 | 67


https://doi.org/10.1039/d2mh01255c

Published on 04 1401. Downloaded on 10/11/1404 04:21:26 ..

Communication

with origami craft, achieving an average density of only
22 mg cm ° (Fig. 1g and Video S2, ESIt). Such an ultralow
density is even lower than that of recently demonstrated TiO,
aerogels.'® Moreover, the oxide nature allows the sponge to
feature superb flame retarding ability and thermal insulation
at a high temperature of 1300 °C (Fig. S2 and Video S3,
S4, ESIY).

For a more intuitive understanding of the mechanical
performance of the TiO,-based nanofibers, tensile stress—strain
tests were conducted on a series of fibrous mats. As shown in
Fig. 1h and Fig. S3 (ESIt), Young’s modulus increased strikingly
from 26.6 MPa for nonwoven traditional TiO, fibrous mats
to 514.9 MPa for nonwoven AT-30 fibrous mats, and then
declined to 176.3 MPa for AT-30 nonwoven fibrous mats.
To further improve the mechanical performance, we simply
aligned the nanofibers by applying a drum collector with a
rotation speed of 1500 rpm during electrospinning (Fig. S4,
ESIt). As expected, Young’s modulus of the nonwoven AT-30
fibrous mat was highly improved to 653.8 MPa after being
aligned. This optimization should be ascribed to the high
orientation of nanofibers along with macroscopic and mole-
cular arrays, which increases the fracture resistance under the
effects of high-speed stretching. Compared with previous
reports (Fig. 1i),"’ > the resultant fibrous mats exhibited
superior mechanical strength. Specifically, the tensile break-
ing strength of aligned AT-30 nanofibers reached to 2.24 MPa,
making them the strongest TiO,-based fibrous mat ever
achieved. Moreover, the Young’s modulus of the aligned AT-
30 fibrous mat is 2-times higher than that of the SiO, fibrous
mat (calcined at 900 °C).

View Article Online
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Toughening strategy on a macro-scale

On a macro-scale, the length-diameter ratio plays a significant
role in the mechanical performance of fibrous mats. For a
deeper understanding, we simulated the stress distribution on
individual nanofibers (300 nm in diameter) with different
length-diameter ratios, ie, 5:1 and 25:1, respectively, as
shown in Fig. 2a. During finite element analysis, the vertical
upward force was applied along the z-axis direction. There is no
doubt that the flexibility could be highly improved by increas-
ing the length-diameter ratio, instead of breaking it into short
segments. Accordingly, the typical SEM image of unmodified
TiO, nanofibers evidenced the cracks after harsh aging at
900 °C. After incorporating a handful of Al,O;-based species,
the continuity of AT nanofibers improved greatly, thereby
enhancing the good integrity of the resultant fibrous mats.

Toughening strategy on a nano-scale

On a nano-scale, the pore structure, including surface grooves
(volumetric defects located on or adjacent to the surface) and
internal defects, is a key factor determining the mechanical
performance of nanomaterials.>® Cracks were observed to initi-
ate and then propagate along the surface micro-notches and
the internal defects. As simulated (Fig. 2b), the loaded stress
was highly localized on the surface notch, while the nanofiber
without surface defects had a considerably more uniform stress
dispersion. The SEM images of one individual nanofiber gave
strong evidence that the surface of the modified nanofibers was
surprisingly decorated with abundant heterojunctions, which
somewhat tended to remain and “fill” the surface grooves, and
therefore accounted for the improved mechanical performance.
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Fig. 2 (a—c) Finite element analysis at a single-nanofiber level for the stress distribution with different (a) length—diameter ratios, (b) surface defect
structures, (c) pore sizes and pore densities, upon external loading (indicated by the black arrows). The insets in a and b show the SEM images of AT-0 and
AT-30 fibrous mats and individual nanofibers calcined at 900 °C. (d) TEM, HAADF-STEM images, corresponding elemental mappings, (e) HRTEM image,
and (f) Raman mapping along with the Eg (144 cm™?) direction of one individual AT-30 nanofiber calcined at 900 °C.
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Besides, in order to reveal the impact of internal pores
within nanofibers on the mechanical performance, we con-
ducted simulations of stress distribution on nanofibers with
different pore sizes and densities (Fig. 2c). As shown, the
nanofibers with restricted small pore size and high pore density
could maintain homogeneous dispersion of loaded stress.
Nitrogen physisorption isotherms give initial evidence of the
enriched internal pores in the AT blended nanofibers with
increasing Al,Oz-based species (Fig. S5, ESIf). In the low
relative pressure ranges (P/P, < 0.9), the nitrogen adsorption
content of AT-n increased with the increasing atomic ratio of Al
to Ti. Additionally, the AT-30 and AT-50 nanofibers showed
higher hysteresis loop effects than the AT-10 and AT-0 nano-
fibers. As summarized in Fig. S5b (ESIt), the pore volume
increased strikingly from 0 to 0.0045, 0.020, and 0.072 cm® g™/,
when the atomic ratio of Al to Ti increased from 0 to 50%. Taking
the theoretical density of these samples (4.1 g cm ™) into con-
sideration, the raw porosities of AT-0, AT-10, AT-30, and AT-50
can be calculated as 0, 1.89%, 8.20%, and 28.7%, respectively.
As shown in Fig. S5c (ESIt), on increasing the porosity from 0 to
8.20%, the mechanical strength increased gradually. But a further
increase in the porosity resulted in a decline of Young’s modulus.

On the other hand, decreasing the crystal size could decen-
tralize the loaded tension on abundant nanocrystals and
restrict the stress-induced crevice propagation along the grain
boundaries, which is known as the Hall-Petch effect.?* Both the
TEM images (Fig. 2d and Fig. Sib, ESIf) and XRD patterns
(Fig. S6, ESIf) clearly confirmed that the sintering of TiO,
nanocrystals can be finely suppressed by introducing Al,O;-
based oxide. According to the Scherrer formula,> the crystal
size can be estimated based on the most intensive peak. It is
shown that the crystal size of AT-10, AT-30, and AT-50 declined
to 22.4, 22.1, and 31.1 nm, respectively, from 60.2 nm in
the unmodified TiO, nanofibers. No characteristic diffraction
peak indexed to Al,O; or Al,O5;-TiO, solid solution could be
observed, indicating their amorphous nature and/or high dis-
persity. More intriguingly, 47.0% anatase was observed in AT-30
blended nanofibers at temperatures up to 900 °C (Fig. Séc,
ESIY), despite the fact that the phase transition from anatase to
thermodynamically favorable rutile commonly starts at 600 °C.
Considering that a mixture of anatase and rutile confers higher
activity for photocatalytic applications,>® the AT blended nano-
fibers offer significant potential in broad fields of energy
conversion and environmental remediation.

As shown in a representative HRTEM image (Fig. 2e), the
rutile phase of nanocrystals can be identified from the distinct
fringes with a lattice distance of 3.2 A, which are ascribed to the
(110) facet. Within the nanocrystals, there were plentiful point
defects and line defects. These long-range-disordered areas
were insensitive to rupture, and thus allowed high elastic strain
in the forms of the elastic elongation of bonds and changes
in the bond-angle distribution. The crystallinity and grain
boundaries were further assessed using a Raman spectral
map (Fig. 2f and Fig. S7, ESIt). As seen in the map plotted
along the E, (144 cm™ ') direction, the crystallinity of the grains
at the center of one nanofiber is obviously higher than that on

This journal is © The Royal Society of Chemistry 2023

View Article Online

Communication

the surface or at the grain boundaries. This can be understood
by taking into consideration the directional distribution of
amorphous oxide and solid solution on the surface of nano-
fibers and at the grain boundaries. Therefore, these soft oxides
would lubricate the adjacent TiO, nanocrystals and allow more
deformations upon loading.

Taken together, it was reasonable to deduce that small
crystal size and intricate grain boundaries lacking interstitial
pores could scatter and dissipate the stress concentration on a
large scale, when bending the nanofiber via microscale move-
ments, which greatly contributed to the high mechanical
stability. However, excessive porosity results in loose stacking
of the nanocrystals within each individual nanofiber, making
the fibers susceptible to breaking under external force, despite
a small crystal size.

Toughening strategy on a molecular-scale

To shed light on the toughening mechanism on a molecular
scale, the coordination environments of AI’** and Ti*" were
further investigated using X-ray photoelectron spectroscopy
(XPS) spectra (Fig. 3a and b). As shown in Fig. 3a, partially
reduced Ti*" and Ti** can be surprisingly observed on AT-30
nanofibers, which is in clear contrast to the observation on
pure TiO, nanofibers. When the Al/Ti atomic ratio was further
increased to 30%, the Ti*" peaks disappeared, leaving Ti*" and
Ti** peaks only. Such a partial reduction of Ti*" in an oxygen-
rich atmosphere can be somewhat ascribed to Al"" doping,
through which the Al"" ions entered the TiO, lattice and
replaced the lattice oxygen. More intriguingly, a binding energy
of 76.4 eV was visualized in the AT-30 and AT-50 nanofibers,
which should be indexed to the Al-O-Ti bonds.

Fig. 3c shows the solid-state ’O-nuclear magnetic resonance
(NMR) spectra of AT-30 blended nanofibers, along with those of
pure Al,O; nanofibers and pure TiO, nanofibers as references.
The characteristic ranges of the chemical shifts corresponded
with various coordination environments of 0>~ because the 7O
resonance is mainly determined from its neighboring anions.
The characteristic shift at around 350 ppm was a clear indica-
tion of the presence of Al-O-Ti in the AT blended nanofibers.
These results strongly verified the formation of an Al,0;-TiO,
solid solution.

As illustrated in Fig. 3d, the replacement of rigid Ti-O bonds
with a vibrational energy of 503 k] mol ' with soft Al-O bonds
with a lower vibrational energy of 488 kJ mol ' can lead to
toughening of the TiO,-based nanofibers intrinsically.” In the
blended nanofibers, the multifarious bonds with different
lengths and angles allow various molecular-scale deformations,
including rotation, twist, and vibration upon loading, and can
thereby significantly decentralize the local stress.

Dynamic observation of the sinter-resistance of TiO,-based
nanofibers

In addition to mechanical stress, thermal stress is another
important external stimulus affecting the structural stability
of nanomaterials. For exploring the sinter-resistance, one
representative AT-30 nanofiber (pre-calcined at 700 °C in

Mater. Horiz., 2023,10, 65-74 | 69
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AT-30, pure TiO,, and Al,Os nanofibers calcined at 900 °C. (d) Molecular structure of the Al-doped rutile and anatase TiO,. Note that these structures are

provided for the purpose of illustration but are not calculated structures.

the air) was dynamically monitored in a TEM chamber at
temperatures ranging from 700 °C to 900 °C. The in situ heating
temperature profile is supplemented in Fig. S8a (ESIt). Before
heating, an amorphous shell with a maximum thickness of
17.2 nm, which was colored pink for distinction, was observed
to be coated at the interfaces of TiO, nanocrystals (Fig. 4a).
As discussed above, this amorphous shell should result from a
segregation of Al,O; and/or Al,0;-TiO, solid solution. When
the heat treatment proceeded, the amorphous shell became
densified and was segmented into small nanoparticles
anchored to the grooves of neighboring TiO, nanocrystallites,
finally generating a particle-on-fiber structure. Such a targeted
location of Al,O;-based oxide could be ascribed to a low surface
energy in the grooves of polycrystalline oxides."

At the same time, the grain boundaries of TiO,, marked by
dashed lines, advanced faster as the amorphous shell became
thinner (indicated by white arrows), suggesting accelerated
sintering of TiO, nanocrystals. To quantitively estimate the
thermodynamic driving force for the surface-initiated crystal
growth,”® the dihedral angle (y) in the surface groove between
TiO, crystals 1 and 2 was measured and tracked during the
whole heating process. As plotted in Fig. S8b (ESIt), the
presence of amorphous shells outside the TiO, nanocrystals
helped retard the increase in the dihedral angle at high
temperatures. A smaller dihedral angle in the surface groove
provided a greater pinning effect for surface crystals to grow
(i.e., “drag” the grain boundary migration perpendicularly to
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the polycrystalline oxide surface). When the amorphous shell
became thinner and even condensed into nanoparticles in the
grooves of the grain boundaries, the dihedral angle started
increasing in an accelerated fashion with an accelerated
sintering rate.

Although there are some minor changes on the surface at
high temperatures, the integrity of the TiO,-based nanofibers is
still remarkably impressive, indicating their superior sinter-
resistance. As illustrated in Fig. 4b, the amorphous oxide
homogeneously dispersed along the TiO, grain boundaries at
a lower temperature, effectively hindering the advancement
of grain boundaries and the sintering of TiO, nanocrystals
upon heating. At an ultra-high temperature (>900 °C), the
amorphous oxide is densified and then ‘pinned’ to the surface
grooves of TiO, nanocrystals, repairing the surface defects and
lowering the thermodynamic driving force for TiO, sintering.

In sharp contrast, severe densification can be visualized on
pure TiO, nanofibers after heat-treatment at 700 °C for a short
period of only 10 min (Fig. 4c and d). When the heating process
proceeded, two neighboring TiO, nanocrystallites sintered
rapidly into one with a larger size. The cracks, once initiated,
immediately propagated in an unstable (often catastrophic)
fashion on the prototypical strong yet brittle TiO, nanofibers.
At 800 °C, the TiO, nanofiber suffered from catastrophic
structure collapse and broke into two short nanorods
(Video S5, ESIf). Hence, it is extremely obvious how crucial
soft amorphous oxide is, for TiO, nanofibers, to maintain the

This journal is © The Royal Society of Chemistry 2023
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structural integrity under thermal stress and to optimize the
flexibility of the resulting nanofibers.

Renewable air filters

Air pollution has long-lasting impacts on the atmospheric
environment and public health. Specifically, PM, 5, PM;,, and
virus-containing particles can easily infiltrate into the human
body, causing fatal and infectious diseases, such like lung
cancer and the COVID-19 pandemic, and therefore worldwide
social and economic disruption.*® Electrospun nanofibers are
widely used as efficient air filters, due to their high porosity,
good interconnectivity, micrometer-sized interstitial space, and
large surface-to-volume ratio.'* Compared with the commonly
used polymeric fibrous mats, oxide fibrous mats, if endowed
with desirable mechanical performance, can serve as air filters
particularly in harsh environments such as at extremely
high temperatures, without the flammability issue. Moreover,
the oxide fibrous mats also have the potential to degrade or
decompose the contaminants, extending the lifespan of the
filter and reducing the likelihood of producing secondary
pollution, due to the photo- and/or thermo-catalytic activities
of oxides.

Generally, the removal of submicron aerosol particles using
fibrous mats is primarily based on the following mechanisms:
Brownian diffusion, direct interception, inertial impaction,
gravity, and chemical/physical attraction.*® The naturally over-
lapping nanofibers with interconnected intra-fiber pores and
channels facilitate the effective trapping for submicron aerosol
particles. More importantly, the permanent dipole orientation
and the trapping of adequate space charges, arising from the
particle-on-fiber structure of the AT blended nanofibers, con-
tributed to the remarkable filtration performance by enhancing

This journal is © The Royal Society of Chemistry 2023

long-range electrostatic interactions between the nanofibers
and the pollutants.*®

Herein, the filtration performance of TiO,-based fibrous
mats was quantitively evaluated by testing the removal effi-
ciency of NaCl particles at room temperature. As shown in
Fig. 5a, the filtration efficiencies for 2 pm-particulates under
airflows of 32, 64, and 80 L min~' on AT-30 mat were tested to
be 96.31, 99.95, and 99.97%. The filtration efficiency of 99.97%
meets the requirement of high efficiency particulate air (HEPA)
filter standards,® and is competitive with that of various
recently reported filters (Fig. 5b).>**° The corresponding pres-
sure drops were 17, 30, and 48 Pa, respectively. On this basis,
the quality factor (QF) could be calculated to be 0.15, 0.21, and
0.05, respectively. A better filter is one that possesses a higher
filtration efficiency and/or lowers pressure drop, which corre-
sponds to a higher QF value.

Moreover, incense smoke, which contains PM particles of
various sizes, CO, CO,, NO,, SO,, volatile organic compounds
(VOCs), and other air pollutants,*” was utilized to evaluate the
high-temperature filtration efficiency. As known, many harmful
particulate matter particles come from high-temperature gas
(150-260 °C), such as automobile exhaust and industrial waste
gas, extremely threatening the service life of the involved filters.
By taking advantage of the superb thermal stability and flame
retardancy, the TiO,-based fibrous mats, as well as the fibrous
sponge, a achieved filtration efficiency toward PM, s and PM;,
over 99.98% for at least 200 min (Fig. 5c). To be noted, the
3D sponge exhibited enhanced durability than that of two-
dimensional (2D) mats after continuously filtering for 300 min,
keeping a high filtration efficiency for PM, 5 of 99.97% and
PM;, of 99.99%. This could be ascribed to the ultrahigh poro-
sity and ultralow packing density of the 3D fibrous sponges.
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The hierarchical pores and channels in the inter- and intra-
nanofibers can provide longer residence time to ultrafine particles
that undergo Brownian motion. The increase in filtration effi-
ciency would only be accompanied by a small increase in pressure
drop owing to the ultralow packing density and unique airflow
regime of the 3D filters. Moreover, the slip flow of air molecules at
the periphery of nanofibers becomes significant when the fiber
diameter decreases to < 500 nm,*® which also helps to reduce the
pressure drop.

As schemed in Fig. 5d, the 2D AT-30 mat could be engi-
neered into a serpentine structure by origami technique to
efficiently capture the PM particulates layer-by-layer. More
excitingly, the folded filter could be unfolded, and further, be
regenerated by in situ decomposing the captured PM parti-
culates with the aid of light irradiation or heat treatment.
As shown in the SEM images in Fig. 5e, the captured pollutants
can be thermally decomposed by facile calcination in air at
500 °C, without destroying the oxide fibrous filter. Besides, the
coexistence of anatase and rutile in the fibrous mat exhibited
photocatalytic efficiency toward hazard degradation.®® After
being exposed to light irradiation for 4 h, the polluted filter
can be regenerated in an environmental-friendly manner.

72 | Mater. Horiz., 2023, 10, 65-74

After being equipped with an automobile exhaust purifier (inset
in Fig. 5f) in the forms of layer-by-layer mats or sponges, the
flexible-in-rigid nanofibers can facilitate the capture of high-
temperature exhaust dust in a long term and minimize the
unnecessary cost of filter replacement. This self-regenerative
filtration system could work safely at harsh temperatures and
potentially in situ capture and decompose the PM pollutants
leveraging the burning heat, solving the PM pollution at its
source.

Conclusions

In summary, we have demonstrated flexible-in-rigid TiO, nano-
fibers reinforced from a macro-scale to a molecular-scale. The
doping of AI**-species into TiO, nanocrystals and the formation
of an Al,0;-TiO, solid solution generated abundant flexible
Ti-O-Al bonds, toughening the nanofibers on a molecular
scale. The amorphous oxide at the TiO, grain boundaries
restricted the coalescence of TiO, nanocrystals, and smartly
filled the intergranular pores and the surface grooves. The
resultant TiO,-based nanofibers were endowed with an extremely
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slender structure and therefore achieved a Young’s modulus of
653.8 MPa and a tensile strength of 2.24 MPa. This free-standing
TiO, fibrous mat can be easily constructed into a sponge with a
density as low as 22 mg cm >, using a simple origami craft. The
folded fibrous sponges achieved 99.99% filtration efficiency
toward PM,, after working for 300 min, and could be regenerated
by calcination or sunlight irradiation due to their (photo)catalytic
activity inherited from their anatase/rutile mixture nature. This
work sheds light on scaling-up the production of flexible TiO,
nanofibers, which represent an attractive fibrous material with
functional and mechanical capability.
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