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Charging dynamics of electrical double layers
inside a cylindrical pore: predicting the effects
of arbitrary pore size†

Filipe Henrique, a Pawel J. Zuk bc and Ankur Gupta *a

Porous electrodes are found in energy storage devices such as supercapacitors and pseudocapacitors.

However, the effect of electrode-pore-size distribution on their energy storage properties remains

unclear. Here, we develop a model for the charging of electrical double layers inside a cylindrical pore

for arbitrary pore size. We assume small applied potentials and perform a regular perturbation analysis to

predict the evolution of electrical potential and ion concentrations in both the radial and axial directions.

We validate our perturbation model with direct numerical simulations of the Poisson–Nernst–Planck

equations, and obtain quantitative agreement between the two approaches for small and moderate

potentials. Our analysis yields two main characteristic features of arbitrary pore size: (i) a monotonic

decrease of the charging timescale with an increase in relative pore size (pore size relative to Debye

length); (ii) large potential changes for overlapping double layers in a thin transition region, which we

approximate mathematically by a jump discontinuity. We quantify the contributions of electromigration

and charge diffusion fluxes, which provide mechanistic insights into the dependence of charging time-

scale and capacitance on pore size. We develop a modified transmission circuit model that captures the

effect of arbitrary pore size and demonstrate that a time-dependent transition-region resistor needs to

be included in the circuit. We also derive phenomenological expressions for average effective

capacitance and charging timescale as a function of pore-size distribution. We show that the capaci-

tance and charging timescale increase with smaller average pore sizes and with smaller polydispersity,

resulting in a gain of energy density at a constant power density. Overall, our results advance the

mechanistic understanding of electrical-double-layer charging.

1 Introduction

Batteries and fuel cells are traditional porous-material-based
electrochemical devices. Over the past 60 years, new devices such
as supercapacitors1 have started to emerge. They are comprised
of porous electrodes – typically made up of dispersions of
activated carbon spheres – immersed in aqueous, organic, or
ionic liquid electrolytes. The electrodes store charge through
the physical adsorption of dissociated ions onto their pore
surfaces, forming a charged region commonly referred to as
the electrical double layer.2,3 Obviating the need for redox
reactions, these devices charge faster than batteries and present
better cyclability. Nevertheless, their energy density and capacitance

are limited by their available specific surface area.3 In view of these
characteristics, supercapacitors bridge the gap between traditional
capacitors and batteries, being used in situations where fast
response and moderate energy output are required, e.g., stabili-
zation of energy fluctuations in power grids4 and memory
protection in electronic devices.5 More recently, hybrid capaci-
tors have been designed in an effort to utilize the energy storage
mechanisms of both electrical double layers and reduction-
oxidation (redox) reactions.6,7 They consist of two distinct
electrodes, one supercapacitor-like which stores charge physically
into double layers, and another metal oxide pseudocapacitor-like
which accumulates energy by performing fast oxidation surface
reactions.6 While there have been significant advances in the
material design of supercapacitors and hybrid capacitor electrodes,
the effect of pore-size distribution on the energy storage properties
of these devices remains unclear.6

The earliest models for electrode charging address the geo-
metry of an electrolyte between flat plates, dating back to the
works of Gouy,8 with later contributions from Chapman9 and
Stern10 to consolidate the well known Gouy–Chapman–Stern model.
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Notably, a wealth of different effects have been studied to complete
this simplified geometrical picture of flat plate charging. Bazant
et al.11 reviewed the previous flat plate charging studies and
developed an approach to solve the Poisson–Nernst–Planck (PNP)
equations, from the linear regime at low voltages to the nonlinear
effects at high voltages. Feicht et al.12 compared one-dimensional
PNP solutions with the experimentally observed reverse peaks in
electrolytic cell discharging. Kilic and Bazant13,14 derived modified
PNP equations including ion-radius effects to study the influence
of ion crowding in charge storage. For higher electrolyte concen-
trations, other effects such as multi-component diffusion given by
Stefan–Maxwell fluxes,15 and ion correlations16–18 have been
studied, for instance in some continuum models.19–21

The porous geometry is incorporated in the form of equivalent
circuit representations, widely used in the modeling of pore
charging in supercapacitor electrodes,22–26 stemming from the
pioneering work of de Levie.27,28 Later, Biesheuvel and Bazant2

extended the circuit to high potentials for capacitive deionization
applications. Recent papers26,29 further discuss the relationship
between the equivalent circuit and the corresponding transmis-
sion line continuous equation for pores with finite lengths.
Throughout most pore charging models, common assumptions
are either of thin double layers2,27,28,30,63 within the pores, i.e.,
such that the length of the charged region is much smaller than
the pore size, or overlapping double layers,31,32 where the charged
regions extending from the opposite sides of the surface meet.
However, pore sizes can range from less than 2 nm for micropores
to more than 50 nm for macropores.6,25 Thus, a first-principles
approach that extends pore charging models to arbitrary pore
sizes is required in order to accurately describe the charging of
supercapacitors and predict their properties, such as capacitance,
energy density, and power density. Some of the works which
address pore-size dependence focus on the equilibrium response,33

while others propose transient transport-equation-based numerical
schemes that describe porous network charging for arbitrary pore
sizes.34,35 However, to the best of our knowledge, the relative
importance of charge transport mechanisms for arbitrary pore
sizes and their implications on transmission line circuits have
not been reported.

In our previous work,36 an analytical model based on the
PNP equations was proposed to describe the charging of pores
at low applied potentials in the limit of overlapping double
layers. Here, inspired by perturbation models on electro-
kinetics,37–42 we develop a perturbation expansion model for
arbitrary pore sizes – i.e., pore radii – in the limit of small
applied potentials. We compare the predictions of the model to
direct numerical simulations to show that the perturbation
solution yields good results even for moderate applied poten-
tials (E50 mV). We demonstrate that a modified transmission
line circuit (compared to classic supercapacitor literature27,28)
includes a resistor representing finite changes in electric
potential at a thin entrance region at the mouth of a pore.
We derive an effective capacitance to study the effect of pore-
size distribution on energy and power densities. Besides
addressing transient charging, the solution developed here
quantifies the contributions of diffusion and electromigration

and provides mechanistic insights into the charging process of
pores of arbitrary sizes.

2 Problem formulation

We consider an ideally conducting porous electrode that consists
of tortuous pores of different radii, filled with an electrolyte; see
the schematic in Fig. 1a. Once a voltage difference is applied,

Fig. 1 A schematic of the problem setup. (a) A porous electrode is
subjected to an applied voltage. The electrode pores are filled with an
electrolyte with cations (in red) and anions (in blue). The pore electrolyte is in
contact with a static diffusion layer. (b) Schematic representation of a single
cylindrical pore (using dimensionless variables) and the division of the domain
into bulk, static diffusion layer (SDL), transition, and pore regions. The bulk has
C = 0 and equal concentration of both ionic species c� = 1. The SDL radial
boundary, with vanishing normal gradients, is represented by dashed lines.
The potential at the surface of the pore is CD, the lengths of the static
diffusion layer and pore are cs/cp and 1, respectively. The radii of SDL and the
pore are as/ap and 1, respectively, and the Debye length is l/ap.

Paper Soft Matter

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

5 
 1

40
0.

 D
ow

nl
oa

de
d 

on
 2

6/
11

/1
40

4 
07

:5
9:

26
 ..

 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d1sm01239h


200 |  Soft Matter, 2022, 18, 198–213 This journal is © The Royal Society of Chemistry 2022

counterions are attracted to the pore surfaces, forming electrical
double layers of thicknesses that may be thin or comparable to
the pore size.3,43 We follow common practice2,11,36 in assuming
the formation of a static diffusion layer (SDL), an electroneutral
region beside the electrode. Fig. 1b shows a simplified setup with
a cylindrical pore of length cp and radius ap, where the radial and
axial directions are denoted by r and z, respectively. The SDL, of
length cs and radius as, is adjacent to the pore. We denote the
cation and anion concentrations by c�(r, z, t) and electric potential
by c(r, z, t), where t is time. The position z = 0 represents
the interface between the pore and the SDL. We assume that
the SDL is in contact with the bulk such that c�(r, �cs, t) = c0 and
c(r, �cs, t) = 0. At t = 0, the concentration of ions everywhere is
c�(r, z, 0) = c0. At t 4 0, since the electrode material is an ideal
conductor, the potential at the surface of the pore c(ap, z, t) = cD.
We also assume that the pore surface is ideally blocking, i.e., the
flux of ions across the pore surface is zero. In addition, we assume

that
ap

‘p
� 1,

‘s
‘p
¼ Oð1Þ, the ions are monovalent, that ion diffu-

sivities inside the pore are equal and given by Dp. The ion
diffusivities outside the pore are also assumed equal and are
given by Ds. We note that the ion diffusivities inside and outside
the pore may be different due to confinement effects. As we show

later, the ratio of diffusivities – i.e.,
Dp

Ds
– dictates the interaction

between the pore and the SDL. We denote Debye length by l

such that l ¼
ffiffiffiffiffiffiffiffiffiffiffi
ekBT
2e2c0

r
, where e is the electrical permittivity. For

reference, a 1 M aqueous electrolyte at room temperature has a
Debye length l E 0.3 nm. The objective of this article is to
determine the value of c(r, z, t) and c�(r, z, t) for an arbitrary

relative pore size
ap

l
.

Physically, when the potential is applied on the surface of a
pore, oppositely charged ions migrate inside the pore, while the
similarly charged ions transport out of the pore. This relative
transport of ions produces an electrical current. In addition,
due to the charge imbalance, an electrical double layer forms
adjacent to the surface. As time progresses, the potential drop
across the electrical double layer starts to saturate, ions stop
migrating, and the current ceases.

To solve for c and c�, we start by writing the Poisson–
Nernst–Planck equations44–46

@c�
@t
þr �N� ¼ 0; (1a)

�er2c = e(c+ � c�), (1b)

where N� are the ion fluxes. Inside the pore

N� ¼ �Dprc� �
Dpec�
kBT

rc; (1c)

and outside the pore

N� ¼ �Dsrc� �
Dsec�
kBT

rc: (1d)

We note that N� = erN�r + ezN�z by angular symmetry. We
introduce dimensionless charge density r ¼ cþ � c�

c0
, salt

concentration s ¼ cþ þ c�
c0

, potential C ¼ ec
kBT

, time t ¼ tDp

‘p2
,

axial position Z ¼ z

‘p
, radial position R ¼ r

ap
, and gradient

operator �r ¼ ‘pr. Note that �‘s
‘p
� Z � 1. In addition, 0 r

R r 1 for 0 r Z r 1 (i.e., the pore region), and 0 � R � as

ap
for

�‘s
‘p
� Zo 0 (i.e., the static diffusion layer region; see Fig. 1b).

With these substitutions, the set of eqn (1) becomes

@r
@t
þ �r � J ¼ 0; (2a)

@s

@t
þ �r �W ¼ 0; (2b)

� l
‘p

� �2

�r2C ¼ r
2
; (2c)

where �r ¼ eR
‘p
ap

� �
@

@R
þ eZ

@

@Z
, J ¼ Nþ �N�

Dpc0
�
‘p

is the dimension-

less charge flux and W ¼ Nþ þN�

Dpc0
�
‘p

is the dimensionless salt

flux. Inside the pore

J ¼ � �rrþ s �rCð Þ; W ¼ � �rsþ r �rCð Þ; (2d)

and outside the pore

J ¼ �Ds

Dp

�rrþ s �rCð Þ; W ¼ �Ds

Dp

�rsþ r �rCð Þ: (2e)

At t = 0+, inside the pore, the potential is constant and equal to
the wall potential since the electrical double layer hasn’t
developed yet. In contrast, the potential is linear in the SDL
due to electroneutrality. Therefore, eqn (1) are subjected to the
following initial conditions

r(R, Z, 0+) = 0, (3a)

s(R, Z, 0+) = 2, (3b)

CðR;Zo 0; 0þÞ ¼ CD 1þ Z‘p
‘s

� �
; (3c)

C(R, Z Z 0, 0+) = CD. (3d)

The boundary conditions (BCs) at Z ¼ �‘s
‘p

are given by the
bulk condition, or

r R;�‘s
‘p
; t

� �
¼ 0; (4a)

s R;�‘s
‘p
; t

� �
¼ 2; (4b)
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C R;�‘s
‘p
; t

� �
¼ 0: (4c)

At the end of the pore, i.e., Z = 1, the BCs are that gradients
of potential and concentration vanish for lp c ap, implying

@r
@Z

����
Z¼1
¼ @s

@Z

����
Z¼1
¼ @C
@Z

����
Z¼1
¼ 0: (5)

Due to the symmetry, the BCs at the center of the system, i.e.,
R = 0, are simply

@r
@R

����
R¼0
¼ @s

@R

����
R¼0
¼ @C
@R

����
R¼0
¼ 0: (6)

At the surface of the pore, i.e., R = 1 and Z Z 0, the BCs are of
ideally blocking electrode and constant potential, which are
given by

JR|R=1 = 0, (7a)

WR|R=1 = 0, (7b)

C(1, Z 4 0, t) = CD. (7c)

We note that eqn (1c) represents the ideally conducting electrode

BC. Finally, at the boundaries of the SDL, i.e., R ¼ as

ap
and Z o 0,

the BCs are vanishing gradients, or

@r
@R

����
R¼as

ap

¼ @s

@R

����
R¼as

ap

¼ @C
@R

����
R¼as

ap

¼ 0: (8)

This assumption is valid for non-interacting pores where the
radial currents are identically zero, consistent with the treatment
of SDL in the literature.2,29,36 We solve the set of eqn (2)–(8)
numerically using OpenFOAM.47,48 The details of geometry, mesh,
and algorithm have been described in ref. 36. We refer to the
solution from OpenFOAM as direct numerical simulations (DNS).
Next, we perform a regular perturbation analysis44 to obtain an
analytical expression for r(R, Z, t) and C(R, Z, t).

3 Regular perturbation analysis

In this section, we focus on the small potential limit, i.e., |CD|
{ 1, and conduct a regular perturbation analysis to describe
the charge and potential inside the pore. To this end, we divide
the solution into three regions: (I) SDL, (II) inside the pore,
and (III) transition region between the SDL and the mouth of
the pore.

3.1 Static diffusion layer

The SDL is characterized by electroneutrality, i.e., r = 0.
Furthermore, for |CD| { 1, s = 2.2,36 Therefore, as per
eqn (2c) and the boundary conditions in eqn (4c), (6), and (8),

it is straightforward to show that C is linear in Z and is
independent of R. Mathematically, we write

C ¼ Cleft 1þ Z‘p
‘s

� �
for Zo 0; (9)

where Cleft = C(R, 0�, t), i.e., the centerline potential to the left
of the SDL–pore interface, and is to be determined.

3.2 Inside the pore

The region inside the pore consists of ion concentration and
potential varying in time as well as in both radial and axial
directions. In the low-potential limit, we propose regular
perturbation expansions of the dependent variables in the
small parameter CD, i.e.,

r = r0 + r1CD + O(CD
2), (10a)

s = s0 + s1CD + O(CD
2), (10b)

C = C0 + C1CD + O(CD
2). (10c)

We also introduce variables rm(Z, t) and Cm(Z, t) that represent
the centerline charge and density. As per our proposed pertur-
bation expansion,

rm = rm0 + rm1CD + O(CD
2) (10d)

Cm = Cm0 + Cm1CD + O(CD
2). (10e)

In this article, we only focus on the leading-order and first-
order terms.

The leading-order terms, i.e., r0, s0 and C0 are obtained from
the response in the absence of an applied potential, i.e., CD = 0.
Thus, it can be seen that the leading-order coefficients
r0 = 0, s0 = 2 and C0 = 0 satisfy the set of eqn (2) with the
initial conditions (3) and boundary conditions (5)–(7).

Inserting the expansions provided in eqn (10) (with r0 = 0,
s = 2 and C0 = 0) in eqn (2a) and (2d) and collecting the first-
order terms in CD yields

@r1
@t
¼ �r2r1 þ 2 �r2C1: (11)

Similarly, Poisson’s equation – eqn (1b) – after substitution of
the perturbation expansions takes the form

� l
‘p

� �2

�r2C1 ¼
r1
2
: (12)

Only the known leading-order term in the salt concentration
enters eqn (11), such that eqn (11) and (12) suffice to determine
first-order corrections to charge density and potential in the
low potential regime. Therefore, we do not need to further solve
eqn (2b).

Since
ap

‘p
� 1, the diffusion in the radial direction is much

faster than in the axial direction and we can assume quasie-
quilibrium in the radial direction.34 Thus, with symmetry
and ideally blocking conditions (see eqn (6) and (7)), we have
JR = 0. Utilizing this condition in eqn (2d) and collecting the
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first-order terms in the perturbation expansion, we get

JR1 ¼ �
@r1
@R
� 2

@C1

@R
¼ 0; (13)

which implies that36

r1 + 2C1 = rm1 + 2Cm1, (14)

where rm1(Z, t) and Cm1(Z, t) are to be determined. Next, by

utilizing
ap

‘p
� 1 in eqn (12), we get36

�1

R

@

@R
R
@C1

@R

� �
¼ ap

l

� �2r1
2
: (15)

Integrating eqn (15) with
@C1

@R

����
R¼0
¼ 0 and C1(Z, 1, t) = 1 yields

C1 �Cm1 �
rm1

2

1�Cm1 �
rm1

2

¼
I0 R

ap

l

� �
I0

ap

l

� � ; (16)

where In is the modified Bessel function of the first kind of
order n. By substituting R = 0 in eqn (16), we obtain

rm1 ¼
2 Cm1 � 1ð Þ
I0

ap

l

� �
� 1

: (17)

Next, by combining eqn (16) and (17), substituting the leading-
and first-order coefficients in eqn (10), and neglecting higher-
order terms, we get

C ¼ Cm

I0
ap

l

� �
� I0 R

ap

l

� �
I0

ap

l

� �
� 1

0
B@

1
CAþCD

I0 R
ap

l

� �
� 1

I0
ap

l

� �
� 1

0
B@

1
CA: (18)

Similarly, substituting eqn (16) and (17) into eqn (14) and
neglecting higher-order terms in the perturbation expansion
of r, we get

r ¼
2 Cm �CDð ÞI0 R

ap

l

� �
I0

ap

l

� �
� 1

: (19)

Next, we note that since JR = 0, so we can simplify eqn (11)
to obtain

@r
@t
¼ @2r
@Z2
þ 2

@2C
@Z2

: (20)

To determine the axial dependence, we average eqn (20) over
the cross-sectional area of the pore (integrating across the
radial direction) by utilizing the known radial dependence in
eqn (18) and (19). Mathematically,

ð1
0

@r
@t

RdR ¼
ð1
0

@2r
@Z2

RdRþ 2

ð1
0

@2C
@Z2

RdR: (21)

We emphasize that this crucial step enables us to derive a

solution for arbitrary
ap

l
, thereby bridging the previously reported

trends in thin and overlapping double layer limits.2,27,28,36 Now,
substituting eqn (18) and (19) into eqn (21), we obtain

2l
ap
I1

ap

l

� �
I0

ap

l

� � @Cm

@t
¼ @

2Cm

@Z2
: (22)

The boundary conditions for eqn (22) include Cright = Cm(0+, t)

and
@Cm

@Z

����
Z¼1
¼ 0, where Cright, i.e., the centerline potential to the

right of the SDL-pore interface, is to be determined.

3.3 Transition region

We now focus on the transition region between the SDL and the
mouth of the pore. First, we emphasize that the transition
region is only relevant for overlapping double layer limits.
In the thin double layer limit, r = 0 inside the majority of the
pore as well as the SDL region, and thus the transition region
becomes irrelevant. This is consistent with the derivations in
Biesheuvel et al.,2,30 who assume a continuous variation in C
across the SDL–pore interface in the thin double layer limit,
thereby implicitly neglecting the transition region.

In contrast, in the overlapping double layer limit, r inside
the pore is non-zero whereas r in the SDL region is zero, and a
transition region is required to connect the two regions.
Accordingly, inside the transition region, r varies from zero
to the value inside the pore. To estimate the thickness of the
transition region d (scaled by cp), we emphasize that charge
density is related to the length scale of the charge gradients by
the Poisson equation; see eqn (2c). Because the radial variation
inside the SDL can be ignored, the dimensionless length scale
over which charge gradients could be present inside the SDL is
‘s
‘p
¼ Oð1Þ. Therefore, using eqn (2c) and assuming

l
ap
¼ Oð1Þ,

it is straightforward to show that
r
CD
¼ O

ap

‘p

� �2

� 1, enabling

us to assume electroneutrality inside the SDL. In contrast,
the smallest length scale over which the charge gradients are

present inside the pore is
ap

‘p
, which implies

r
CD
¼ Oð1Þ;36,44,49–51

see also eqn (29). Next, in the transition region, r varies from zero
to the value inside the pore. Therefore, r inside the transition
region is on the same order of magnitude as that inside the pore.
Accordingly, the relevant length scale is the same as that of the

pore, or d ¼ O
ap

‘p

� �
� 1. In summary, the transition region is

thin due to geometrical features of the pore.
In the limit of

ap

l
¼ Oð1Þ, the transition region may

present finite electric potential and charge density changes.36

Therefore, in our perturbation expansion model, we approxi-
mate this region as a jump discontinuity. Defining Jleft = JZ|Z=0�

and Jright = JZ|Z=0+, the charge flux in the SDL is given by

Jleft ¼ �2
Ds

Dp

Cleft‘p
‘s

where Cleft = Cm(0�, t); see eqn (2e) and (9).

In contrast, the charge flux inside the pore is given by
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Jright ¼ �
2I0

ap

l

� �
I0

ap

l

� �
� 1

@Cm

@Z

�������
Z¼0þ

; see eqn (2d), (18) and (19).

Therefore, since the transition region is thin and thus has
negligible charge storage, we ensure current conservation
across it by requiring JleftAs = JrightAp, i.e.,

Ds

Dp

‘p
‘s

as
2

ap2
Cleft ¼

I0
ap

l

� �
I0

ap

l

� �
� 1

@Cm

@Z

�������
Z¼0þ

: (23)

Eqn (23) consists of two variables, i.e., Cleft and Cright, and we
need an additional equation to solve Cm.

To relate Cleft and Cright, we require current conservation
also on the left surface of the transition region (see Fig. 1b),
relating its charge flux to that of the SDL. To do so, we define
rleft = rm(0�, t) = 0 and rright = rm(0+, t). The charge flux inside

the transition region can be approximated by JZ;int ¼

�
rright
d
þ 2

Cright �Cleft

d

� �
with a O(d) error, where d is the

dimensionless thickness of the region, scaled by cp. The
current conservation relation, JZ,int = Jleft, reads

rright
d
þ 2

Cright �Cleft

d
¼ 2

Ds

Dp

Cleft‘p
‘s

: (24)

For d { 1, the right-hand side can be neglected, so rright +
2Cright = 2Cleft. Eqn (17) can then be used to derive

Cleft ¼
I0

ap

l

� �
Cright �CD

I0
ap

l

� �
� 1

: (25)

Eqn (25) shows that when
ap

l
� 1, Cleft = Cright, which is

expected for thin double layers. In contrast, when
ap

l
� 1,

Cright = CD, which is also expected, since the potential will be
close to the surface potential everywhere inside the pore.
Substituting eqn (25) in eqn (23) yields

@Cm

@Z

����
Z¼0þ
¼ Bi Cright �

CD

I0
ap

l

� �
0
B@

1
CA; (26)

where Bi ¼ Ds

Dp

‘p
‘s

as
2

ap2
is the Biot number.

3.4 Governing equation

We can now combine eqn (22) and (26) to rewrite the governing
equation for centerline potential as

@f
@T
¼ @2f
@Z2

; (27a)

where T ¼
I0

ap

l

� �
2l
ap
I1

ap

l

� �t and f ¼ Cm �
CD

I0
ap

l

� �. Here, T and f are

the effective dimensionless time and potential, respectively.

Eqn (27a) is subjected to fðZ; 0Þ ¼
I0

ap

l

� �
� 1

I0
ap

l

� � CD,
@f
@Z

����
Z¼0
¼

Bifð0;TÞ and
@f
@Z

����
Z¼1
¼ 0. The analytical solution of eqn (27a)

yields44

f¼
I0

ap

l

� �
�1

I0
ap

l

� �
0
B@

1
CACD

X1
n¼1

4sinkn
2knþsin2kn

expð�kn2TÞcosðknðZ�1ÞÞ;

(27b)

where kn tan kn = Bi. Eqn (27b) can be used to derive

Cm ¼ fþ CD

I0
ap

l

� �, which can then be used to evaluate C and

r inside the pore using eqn (18) and (19). Finally, eqn (9) and
(25) enable us to evaluate C inside the SDL.

We emphasize that eqn (18), (19) and (27) are the key result
of this paper. To the best of our knowledge, this is the first
solution of the charge density and potential profiles within a
cylindrical pore for arbitrary pore size in the limit of low
potentials, formally justified by a regular perturbation expan-
sion. This paper highlights that the mathematical structure of

C remains identical irrespective of
ap

l
. However, the effect of

ap

l
modifies the charging timescale

tc ¼
t

T
¼

2l
ap
I1

ap

l

� �
I0

ap

l

� � ‘p
2

Dp
: (27c)

In the thin-double-layer limit, i.e.,
l
ap
� 1, tc 	

2l
ap

‘p
2

Dp
, consistent

with the results reported previously.2 In the overlapping-

double-layer limit, i.e.,
l
ap
� 1, tc 	

‘p
2

Dp
, consistent with the

results reported in Gupta et al.36 We illustrate this timescale
dependence on pore size with contour plots of the time evolu-
tion of the electric potential in Fig. 2, and rationalize its
mechanism in the following discussion.

In the thin-double-layer limit, the pore remains uncharged
except in the vicinity of its surface. As shown in Fig. 2 and the
ESI Video (ESI), for ap/l = 10, t = 0.2 displays a charge density
profile very close to that of t = 1, indicating an earlier saturation
of the profile and therefore a lower timescale. This is also
backed up by the calculations, which predict tc E 0.19 for
ap

l
¼ 10; see eqn (27c). In contrast, when double layers are not

thin, i.e.,
ap

l
¼ 2, a radial distribution of charge propagates

throughout the pore, producing a transient axial gradient of
charge. The charge profiles continue to develop in both radial
and axial directions and appear to saturate around t = 1. This is
also consistent with our prediction since tc E 0.7; see

eqn (27c). The charging of
ap

l
¼ 5 lies between the two other

scenarios described. Finally, we also note that while the
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overlapping double layers take longer to charge, they also store
more charge throughout the pore, resulting in a trade-off of
charge density and charging timescale.

The characteristic feature that sets the charging timescale
of arbitrary pore sizes is the interplay of electromigrative and
diffusive fluxes. Therefore, we construct a vector plot of

diffusive and electromigrative fluxes by employing our analy-

tical derivation; see Fig. 3. First, we note that for both
ap

l
¼ 2

and
ap

l
¼ 10, the radial diffusive flux is always balanced by

the radial electromigrative flux, even though the radial diffusive
and electromigrative fluxes increase with time; see Fig. 3.

Fig. 3 Vector field plots of negative charge diffusive and electromigrative fluxes in the pore for different relative pore sizes. Arrow lengths are
logarithmically scaled. Charge flux is only driven by electromigration for thin double layers, but set by a balance of diffusion and electromigration for
overlapping double layers. All the plots share the same axes.

Fig. 2 Contour plots of the time evolution of the charge density in the SDL–pore region for different relative pore sizes. Charge density profiles reveal
different charging timescales and screening lengths corresponding to different relative pore sizes. All the plots share the same axes.
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This is a classical feature of double-layer charging; see ref. 11
for more details. Overall, the balance in the radial direction
implies that the timescale of pore charging is controlled by the

fluxes in the axial direction. For
ap

l
¼ 10, the axial gradient of

charge vanishes and electromigration is the only mechanism
promoting axial transport of charge, in consonance with the

literature.2,27,28,30 In contrast, for
ap

l
¼ 2, both electromigration

and diffusion cooperate in driving charge transport; see Fig. 3.
However, this increase of charge flux in the overlapping double
layer limit is smaller than the boost in charge density, leading
to a longer charging timescale.

4 Results: potential, charge and
current

In this section, we analyze the analytical predictions of the
electrical potential and charge density profiles. We also validate
our analytical predictions with the results from DNS.

4.1 Axial dependence of potential and charge profiles

The centerline potential, given by eqn (27b) with Cm ¼ fþ CD

I0
ap

l

� �,

and the charge density distribution, given by eqn (17), are shown
in Fig. 4. We note that we obtain excellent agreement between the
analytical results and DNS for both Cm and rm.

Fig. 4b and d show that the centerline charge density

increases monotonically as
ap

l
is reduced, vanishing in the

thin-double-layer regime, and approaching twice the applied

potential for overlapping double layers. At steady state, f - 0,

Cm !
CD

I0
ap

l

� �, and rm ! �
2CD

I0
ap

l

� �; see eqn (17). The increase in

centerline charge induces a larger potential change at the
SDL–pore transition in order to balance diffusion and electro-
migration in this region.

4.2 Radial dependence of potential and charge profiles

The radial dependence of the pore potential and charge dis-
tribution, given by eqn (18) and (19), are shown in Fig. 5 for
ap

l
¼ 2. The charge distribution propagates gradually along

the Z-direction, being larger near the mouth of the pore.
The potential and charge distributions are related in the
radial direction in such a way that the net radial flux
vanishes for all times. Fig. 5a and b show opposite dependences
of charge density and electric potential on the axial coordi-
nate – r decreases and C increases with Z. Essentially, the
effect of the charge flux in the SDL is to transport charge into
the pore, which subsequently diffuses from the mouth to the
end of pore. On the other hand, potential is screened, i.e.,
reduced, by the charge transported from the SDL. Thus, it is
lower closer to the mouth of the pore and increases with Z. At
steady state, the charge and potential distributions become
independent of Z. Using eqn (18) and (19), the distributions for
potential and charge throughout the pore at steady state are
found to be

C! CD

I0
Rap

l

� �

I0
ap

l

� � (28)

Fig. 4 Centerline potential and charge as a function of the axial coordi-
nate for different

ap

l
. (a) and (b) for t = 0.15. (c) and (d) for t = 0.42. cD = 0.4

and Bi = 8 for all plots. Smaller
ap

l
results in an increased centerline

potential and charge density, and a larger potential jump at the mouth
of the pore. The solid lines are predictions from the perturbation expansion
model and the dashed lines are results from DNS.

Fig. 5 Potential and charge over the applied potential as a function of the
radial coordinate for different axial locations. (a) and (b) For t = 0.15. (c) and
(d) For t = 0.42. cD = 0.4, ap/l = 2 and Bi = 8 for all plots. The solid lines are
predictions from the perturbation expansion model and the dashed lines
are results from DNS.
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and

r! �2CD

I0
Rap

l

� �

I0
ap

l

� � : (29)

We note that smaller
ap

l
implies higher charge density

throughout the pore. However, we reiterate that this comes at

the cost of a higher charging timescale, since tc ¼
2
l
ap
I1

ap

l

� �
‘p

2

I0
ap

l

� �
Dp

.

4.3 Dependence of charge flux on relative pore size

The centerline potential gives an important physical descriptor
of the charging process in the dimensionless charge flux.

Eqn (2e), (25), and (27b) can be utilized to show that

Jright ¼ �4BiCD

X1
n¼1

sin 2kn
2kn þ sin 2kn

expð�kn2TÞ: (30)

The charge flux comes out to be initially independent of the
relative pore size since double layers have not yet formed in the
initial state, and the SDL is subjected to the potential gradient

imposed by the applied potential; see eqn (3). The effect of
ap

l
is

thus to control the charging timescale. In fact, recall that

T ¼
I0

ap

l

� �
2l
ap
I1

ap

l

� �t and note that Jright = Jright(T), alternatively

demonstrating that narrower pores take longer to charge. This
is illustrated in Fig. 6, which shows exponential-like behavior at

large times, with steeper descents for larger
ap

l
.

4.4 Dependence of charge flux on the Biot number

The ratio of diffusion coefficients in the static diffusion layer

and in the pore,
Ds

Dp
, may not be unity. This might be due to

different diffusion mechanisms in the SDL and the pore,
i.e., bulk diffusion in the former vs. Knudsen diffusion in the

latter due to its narrow size.52 The influence of this ratio is

encompassed in the Biot number, Bi ¼ AsDs‘p
ApDp‘s

, which in this

case is a ratio of charge transport resistance in the pore vs. in
the SDL. Fig. 7 illustrates the dependence of pore charging on
the Biot number. It shows that the higher the Biot number, the
lower the resistance to charge transfer in the SDL, producing an
intuitive effect: enhancement of charge flux for short-times
(e.g., owing to higher SDL diffusivity), but also quicker satura-
tion of the pore charge storage. Thus, the order of the curves for
different Biot numbers swaps over time. We also find that the
long-time charging is given by the dominant timescale tc/k1

2,
where k1 is the first eigenvalue satisfying the characteristic
equation kn tankn = Bi. This is illustrated by the good agree-
ment between the charge fluxes and their approximation by the
first mode in the Fourier series of eqn (30), represented by
dash-dotted lines. It should be noted that net charge storage is
not influenced by Bi, as will be shown in Section 5.2.

4.5 Validity for higher potentials

For higher applied potentials, the full PNP equations assuming
radial equilibrium and relaxing the constraint of constant salt
follow from eqn (2) as

@r
@t
¼ @2r
@Z2
þ @

@Z
s
@C
@Z

� �
; (31)

@s

@t
¼ @2s

@Z2
þ @

@Z
r
@C
@Z

� �
: (32)

The main simplification that comes from the linear regime CD

{ 1 is the neglect of the term r
@C
@Z

, whence the salt transport

equation resumes to a transient diffusion equation. Given
the initial and boundary conditions for salt, the trivial solution
s(R, Z, t) = 2 holds, i.e., we can assume salt to be constant. For
higher potentials, though, that approximation ceases to be
valid and the variation of salt density in the domain influences
the strength of electromigration of charge.

Fig. 6 Dimensionless charge flux at the mouth of the pore (Z = 0+) vs.
time with cD = 0.4 and Bi = 8. Charge flux decreases monotonically as a
function of relative pore size, with exponential decays at late times. The
solid lines are predictions from the perturbation expansion model and the
dashed lines are results from DNS.

Fig. 7 Influence of the Biot number on the dependence of charge flux
with time. Higher Biot implies faster diffusion in the SDL, with an enhance-
ment of the initial charge flux for short-times, but also quicker saturation
of the pore charge storage. Continuous lines represent analytical results
and the dash-dotted lines show the first mode of the Fourier series in
eqn (30). Relative pore size:

ap

l
¼ 2.
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In order to assess the validity of our analysis, beyond which
the neglect of higher-order corrections in CD becomes unwar-
ranted, we compare our results to the DNS for different applied
potentials in Fig. 8. We obtain good agreement between poten-
tials and charge profiles until the applied potential reaches
approximately twice the thermal potential, or approximately 50
mV at room temperature. Above that threshold, a non-linear
potential response in the SDL is observed in the DNS, and thus
the first-order corrections underpredict the potential in the
pore and overpredict the charge stored. Indeed, Fig. 8e shows
that the charge flux predictions agree with DNS results for early
times (to 0.1), even for moderately high applied voltages, with
an error of 8% for 200 mV (but of 15% for 100 mV). However,
for late times, non-linear terms become important, introducing
electromigration of salt which can affect the transport of
charge.

5 Analysis of capacitance

Several studies on electrode charging invoke transmission
line representations, theoretically developed for thin double

layers,27–29 to address electric potential and capacitance in
these systems.22–25 In this section, we demonstrate that a
similar transmission line model can be constructed for arbi-
trary pore sizes. However, a time-dependent transition-region
resistor makes it challenging to compare it directly with experi-
ments. We also derive an effective capacitance for arbitrary pore
sizes from the steady-state charge density profiles.

5.1 Transmission line circuit

First, we derive the value of conductivity for arbitrary
ap

l
. Briefly

restoring dimensions and utilizing eqn (2e), (18) and (19), we
find that axial charge flux Jz inside the pore is given as

Jz ¼ �
2Dpe

2c0

kBT

I0
ap

l

� �
I0

ap

l

� �
� 1

@cm

@z
¼ �~sp

@cm

@z
; (33)

such that dimensional pore conductivity is given by

~sp ¼
2Dpe

2c0

kBT

I0
ap

l

� �
I0

ap

l

� �
� 1

. Note that the conductivity for
ap

l
� 1

is only based on electromigrative charge flux. In contrast, the

conductivity for
ap

l
� 1 is enhanced because both diffusive and

electromigrative fluxes contribute to current; see Fig. (3).
Next, we derive the dimensional capacitance per unit surface

area, C̃p. We note that 2papC̃p(cm � cD) should yield the total
charge stored per unit axial length. By utilizing eqn (19) and
integrating along the radial direction, it is straightforward to

show that ~Cp ¼
e
l

I1
ap

l

� �
I0

ap

l

� �
� 1

. In the thin-double-layer limit

ap

l
� 1, we recover the usual expression that ~Cp !

e
l

. In con-

trast, in the thick-double-layer limit
ap

l
� 1, we obtain ~Cp !

2e
ap

.

This result is intuitive since it demonstrates that the length
scale of capacitance in the overlapping-double-layer limit is
controlled by the pore size. Based on these expressions, we can

also recover tc ¼
2pap ~Cp

pap2~sp
‘p

2 ¼

2l
ap
I1

ap

l

� �
I0

ap

l

� � ‘p
2

Dp
, consistent with

eqn (27c).
The linear relation between average diffusive and electro-

migrative axial fluxes allowed us to determine expressions
for pore capacitance and resistance that satisfy Ohm’s law
and the definition of a capacitive element. However, the key
distinguishing feature from the classical thin double layer
analysis27,28 is the inclusion of potential change across the
transition region as derived in eqn (25), which comes from the
charge flux matching. In order to account for this change in
potential, we add a resistor representing the interface, as shown
in Fig. 9a. Its dimensional resistance is determined from

Fig. 8 Validity of analytical results. Comparison of the proposed model
(continuous lines) with DNS results (dashed lines) for different applied
potentials. (a) and (b) t = 0.07, (c) and (d) t = 0.15. (e) Time dependence of
the charge flux for ap/l = 2. Good agreement is obtained up to twice the
thermal potential (E50 mV at room temperature). The current shows
good agreement for early times even for moderate potentials, but salt
corrections to charge electromigration must be taken into account for
long times.
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Ohm’s law,

~Rt ¼
2l2‘p
eDpAp

Cleft �Cright

Jright
: (34)

We derive an expression for dimensionless transition-region
resistance Rt(t) in Appendix A along with the traditional expres-
sion for SDL resistance, since their final expressions are not
utilized for further analysis.

Fig. 9b and c show the pore capacitance and charging time
as per the transmission line model. The sharp increase in pore

capacitance per unit surface area for smaller
ap

l
may suggest a

blowup of charge flux for overlapping double layers, which is
not observed in Fig. 6. In fact, though pore capacitance
increases, pore resistance decreases commensurately, in a
way that yields tc B 1 for overlapping double layers. Even more

importantly, pore capacitance of arbitrary
ap

l
reported in our

manuscript is useful for the transmission circuit analysis that
predicts centerline potential, but since it’s based on the
potential difference Cm � CD, it is not representative of
experimental measures of capacitance, which are based on
CD.3,43 This is the motivation for the definition of an effective
capacitance that we develop in the next section.

5.2 Macroscopic perspective

Despite the possibility of representing pore charging by the
transmission line circuit described in Section 5.1, its time-
dependent transition-region resistor enters as an additional
factor influencing the pore charging performance. In addition,
the definition of pore capacitance based on the potential

difference Cm � CD makes it incompatible with experimental
measures. Therefore, in the interest of facilitating the analysis
of pore-size effects on charging performance, our focus lies on a
direct comparison via a macroscopic perspective, i.e., from
characterizing the total charge stored by the pore at steady
state. We employ the definition of effective volumetric capaci-
tance Ceff as the ratio of total charge stored per applied voltage
and unit volume. Going back to dimensionless variables and
performing a radial integration of the steady-state charge
density profile of eqn (29), it is straightforward to obtain

Ceff ¼

2l
ap
I1

ap

l

� �
I0

ap

l

� � ; (35)

where capacitance is scaled by
e
l2

. Eqn (35) shows that Ceff = tc,

i.e., dimensionless volumetric capacitance is equal to dimen-
sionless charging time; see Fig. 9c and 10. The latter shows that
the volumetric capacitance decreases with an increase in rela-
tive pore size, that is, overlapping double layers present optimal
energy storage. A similar behavior of energy density increase
with width reduction due to a decrease of the electroneutral
region has been reported in ref. 53 for nanopores, and ref. 33
for pores ranging from 0.5 to 10 nm. However, in our model,
this comes at a cost of a corresponding increase in the charging
time tc. From an engineering perspective, this prediction
means that an increase in the energy density, E = CeffCD

2, with
a change in relative pore size is unaccompanied by changes in
power density, P = E/tc; see the inset in Fig. 10. In fact, this
relationship between energy and power density is consistent

Fig. 9 (a) Top panel: Transmission line circuit schematic for arbitrary pore size. (I) SDL, (II) transition region, (III) pore. SDL and transition resistances given
by eqn (A2) and (A5). Bottom panel: Equivalent representation of the charge balances in an infinitesimal volume in a pore. (b) dimensionless pore

capacitance per unit surface area, Cp ¼ ~Cp
l
e
, (c) dimensionless charging time, tc ¼ tc

Dp

‘p2
. With the presence of a transition-region resistor, the transmission

line model becomes more intricate and loses some applicability.
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with experiments; see Fig. 1 of ref. 6. To the best of our
knowledge, this interplay between energy and power density
and its dependence on pore sizes hasn’t been derived
previously.

5.3 Effect of pore-size distribution

An important advantage of our analysis is that it is valid for an

arbitrary
ap

l
, thus it can also be conducted for distributions of

pore sizes to study the impact of polydispersity. Within the
limitations of our model, i.e., specificity to non-interacting
pores, we propose a simplified model to examine the influence
of double-layer thickness over electrode charging. To this end,
we assume a log-normal probability distribution function
of pore sizes, in consonance with experimentally measured
pore-size distributions,54,55 and perform averages of the pore
properties described in Section 5.2 over the pore-size distri-
bution; see Appendix C. In our analysis, we determine the
effects of pore-size average and polydispersity. Fig. 11 shows
that distributions with lower averages or polydispersities of
relative pore sizes present higher average capacitances (i.e., the
electrode capacitance) due to elevated volumetric capacitance

of pores with low relative pore size. Though this conclusion
is specific to the probability density function employed, the
principle of boosting average capacitance with regards to
double layer thickness by increasing the frequency of narrow
pores should hold in general. Optimal energy density for
monodisperse pore distributions has also been reported in
Monte Carlo simulations of nanopores53. Nevertheless, the
one caveat that also follows from our analysis is the accom-
panying increase in electrode charging time.

There is an ongoing debate about the experimentally
observed behavior of capacitance for sub-nanometer pores.
While some studies report an anomalous areal capacitance
(i.e., capacitance per unit area) increase in sub-nanometer
pores,6,56,57 other works claim that it is roughly independent
of pore size in that regime,58,59 the discrepancy being attributed
to inaccuracies in BET isotherm surface area determination for
subnanometer pores. The results of our work seem to support
the latter hypothesis, showing only a mild increase of areal

capacitance with pore size for
ap

l
4 2 (corresponding to ap 4

0.6 nm for 1 M electrolytes at room temperature); see Appendix
B for calculations details. However, we acknowledge that our
model may fail to capture intricacies of subnanometer pores,
such as anomalous capacitance increases due to loss of solva-
tion shells.6,57 This is expected since the Poisson–Nernst–
Planck equations do not take into account finite ion-radius
and confinement effects,60 which will become crucial in the
subnanometer regime.

6 Conclusion

In summary, in this article:

 A regular perturbation expansion model for double layer

charging at arbitrary pore sizes is proposed. The effects of
arbitrary pore size include a charge flux matching condition
that sets the potential change at the pore–SDL transition
region;

 The proposed model predicts the potential and charge

density profiles inside a nanopore. The predicted profiles using
eqn (18), (19) and (27) show quantitative agreement with the
results from DNS even for moderate applied potentials;

 Physical insight into the mechanisms setting capacitance

and charging timescale of pores with arbitrary sizes is obtained:
the influence of electromigration and charge diffusion is
quantified;

 Electrical-double-layer charging for arbitrary pore sizes can

be represented in the form of a transmission line circuit, but
with the inclusion of a time-dependent interfacial capacitance.
To mitigate this complexity, eqn (30) should be utilized to
calculate charge flux;

 The electrode capacitance derived from an average of the

total charge stored in the pore is able to capture some effects of
pore size on pore capacitance reported in the literature.6,59

Our methodology provides valuable insight into the effects
of electromigration and diffusion in double-layer charging for
arbitrary pore sizes. For thin double layers, electromigrative

Fig. 11 (a) Dimensionless average electrode capacitance per unit volume

over the electrode porosity hCeffi/f vs. average relative pore size
ap

l

D E
for a

log-normal size distribution. (b) dimensionless averaged electrode capa-
citance per unit volume vs. polydispersity of the pore-size distribution, G,
i.e., standard deviation of relative pore size over average relative pore size.
An increase in the polydispersity implies a higher frequency of wider pores,
which results in a decrease of the electrode capacitance.

Fig. 10 Dimensionless effective volumetric pore capacitance versus
relative pore size. Narrower pores account for higher volumetric capaci-
tances. The inset shows power density versus effective volumetric pore
capacitance. Gains in capacitance for a change in pore size occur at
constant power density.
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flux controls the charge flux and the charging timescale.
In contrast, for overlapping double layers, the diffusive and
electromigrative fluxes cooperate, enhancing the total charge
flux. Yet, this increase in flux for overlapping double layers is
less than the corresponding boost in charge density. This leads
to a longer charging timescale in narrow pores, and thus a
trade-off between charge stored and charging timescale. We
also report a simplified model example of the influence of
double layer thickness over electrode charging for non-interacting
pores via phenomenological averages under a proposed log-
normal distribution. In this case study, the same single-pore
proportional increases of capacitance and charging timescale
manifest in a distribution of isolated pores, predicting a constant
electrode power density regardless of relative pore size.

Our approach can be extended to studying hybrid super-
capacitors by adding reactions to the boundary conditions.
The perturbation expansion analysis proposed here can also
be utilized for asymmetric ionic valences19 and diffu-
sivities,41,42,61,62 scenarios which are commonly observed
in electrochemical devices. Finally, to compare directly with
cyclic voltammetry data obtained from experiments, a similar
approach can also be employed for higher and/or time-
dependent applied potentials.

Conflicts of interest
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Appendix A: transmission line circuit
resistances

In order to complete the transmission line circuit description
in Fig. 9a, we derive the expressions of dimensional SDL and
transition-region resistances. We start with the SDL resistance,
which is given by Ohm’s law as

~Rs ¼
2‘pl2

eDpAp

Cleft

Jleft
: (A1)

Utilizing eqn (2e) and (9), we have

~Rs ¼
‘sl2

eDsAs
: (A2)

From eqn (25), the potential difference across the transition
region is given by

Cleft �Cright ¼
Cright �CD

I0
ap

l

� �
� 1

: (A3)

Using eqn (27b), it can be written as

Cleft �Cright ¼ �
CD

I0
ap

l

� � 1� 2
X1
n¼1

sin 2kn
2kn þ sin 2kn

expð�kn2TÞ
" #

:

(A4)

Therefore, the dimensional transition-region resistance follows
from eqn (30) as

~Rt ¼
‘pl2

eDpAp

1� 2
P1
n¼1

sin 2kn
2kn þ sin 2kn

expð�kn2TÞ

2BiI0
ap

l

� � P1
n¼1

sin 2kn
2kn þ sin 2kn

expð�kn2TÞ
: (A5)

We choose the scale
‘pl2

eDpAp
for the resistances, such that their

dimensionless expressions read

Rs ¼
1

Bi
(A6)

and

Rt ¼
1� 2

P1
n¼1

sin 2kn
2kn þ sin 2kn

expð�kn2TÞ

2BiI0
ap

l

� � P1
n¼1

sin 2kn
2kn þ sin 2kn

expð�kn2TÞ
: (A7)

Fig. (12) shows a plot of the transition resistance over time
for different relative pore sizes. As the relative pore size
decreases, the resistance imposed by the transition region to
the charge flux increases. This is due to the larger potential
differences across the transition region for lower relative pore
sizes, caused by their increased charge density.

Appendix B: areal capacitance

Most experiments report results on a per unit surface area
basis, hence we briefly present our results for areal capacitance
here in order to compare them qualitatively to experiments.
Denoting dimensionless areal capacitance by Careal,eff and scal-

ing it by
e
l

, it follows from eqn (35) that

Careal;eff ¼
I1

ap

l

� �
I0

ap

l

� �: (B1)

We plot this result in Fig. 13.

Fig. 12 Resistance of the transition region as a function of time for
different relative pore sizes. The resistance is larger for narrower pores
and increases in time to maintain a potential difference (see eqn (25))
across the entrance region.
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Appendix C: electrode average
properties

We note that the methodology presented here assumes non-
interacting pores and overlooks pore-network configuration,
pore intersections, connectivity, among others. To extend
single-pore analysis for a distribution of non-interacting pores,
we first consider a continuous log-normal distribution of
pore sizes,

p
ap

l

� �
¼ lffiffiffiffiffiffiffiffiffiffi

2ps2
p

ap
exp �

ln
ap

l

� �
� m

� �2
2s2

0
B@

1
CA; (C1)

where the parameters m and s are given in terms of relative

pore size average and variance by
ap

l

D E
¼ exp mþ s2

2

� �
and

Var
ap

l

� �
¼ ½expðs2Þ � 1� expð2mþ s2Þ.

Next, we formally derive the averaging procedure employed
in Fig. 11. The average volumetric capacitance is defined as the
total charge stored inside the electrode Q divided by its total
volume V and applied potential CD, compatible with what
experiments denote as volumetric capacitance43

Ceff ¼
Q

CDV
: (C2)

Charge is the integral of the charge density over the entire
electrode volume,

Q ¼
ð
V

rdV ¼
ð
Ve

rdV þ
ð
Vp

rdV ; (C3)

where Ve and Vp are volumes of electrode material and pores,
respectively. Furthermore, r = 0 inside the electrode material
(an ideal conductor). Therefore, the results integral can be
written as a sum over all pores

Q ¼
XN
i¼1

ð
Vp;i

rdV ¼
XN
i¼1

qi; (C4)

where qi is the charge of a pore with volume Vp,i, both known
from the single-pore model. N represents the total number of
pores. We insert eqn (C4) into eqn (C2) and take averages,
denoted by h i, over an ensemble of sample electrode pore
configurations drawn from the same pore-size distribution.
In this way, we have

Ceffh i ¼

PN
i¼1

qi

	 

cDV

¼ Nhqii
cDV

: (C5)

For a non-interacting pore model, the average charge of the i-th
pore only depends on its relative pore size, i.e.,

hqii ¼ hqi ¼
ð1
0

qp ap
� �

d ap
� �

: (C6)

Substituting eqn (C6) into eqn (C5), we have

hCeffi ¼
N

V

Ð1
0 qp ap

� �
dap

CD
: (C7)

Next, we multiply and divide the result by the average pore
volume of the electrode

hVpi ¼
ð1
0

pap2‘pp ap
� �

dap; (C8)

which yields

Ceffh i ¼
N Vp


 �
V

Ð1
0 qp ap

� �
dap

CD

Ð1
0 pap2‘pp ap

� �
dap

: (C9)

Lastly, we write the charge of a pore in terms of its volumetric
effective capacitance, q = CeffCDpap

2cp, change variables in
the integrals from ap to ap/l and define the electrode porosity
f = NhVpi/V to get

Ceffh i
f
¼

Ð1
0 Ceffp

ap

l

� � ap

l

� �2
d

ap

l

� �
Ð1
0 p

ap

l

� � ap

l

� �2
d

ap

l

� � : (C10)

Next, we propose a definition of timescale for a distribution of
pore sizes which reduces to a single-pore solution for a mono-
disperse distribution. To this end, note that eqn (20) can be
integrated over the volume of a pore to give, using eqn (2d) and
(5) for a blocking electrode, to give

dqi

dt
¼ Jright;iAp; (C11)

where Jright = JZ|Z=0+ and the index i denotes the i-th pore.
Integrating over time and performing the change of variables
T = t/tc,i, we have

qiðtÞ ¼ tc;iAp

ðTðtÞ
0

Jright;idT : (C12)

Using (C11) and (C12), we find that

tc;i ¼
Jright;iðt ¼ 0ÞÐ1

0 Jright;iðTðtÞÞdT
qiðt!1Þ
dqi

dt

����
t¼0

: (C13)

Fig. 13 Dimensionless effective areal capacitance versus relative pore
size. The increase in capacitance for larger pores predicted by the model
developed in the current work accurately captures the trend observed in
experiments for nanopores (Section III of Fig. 4 of ref. 6) and qualitatively
agrees with the results of Fig. 1 of ref. 59.
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Our motivation in generalizing this is to construct a measure of
the total charging time of the electrode, not of the individual
pores. Therefore, noting that neither the initial value of the
flux nor its integral on time depend on pore size – see eqn (30) –
we opt to define the electrode charging timescale as

htci ¼
Jrightðt ¼ 0ÞÐ1

0
JrightðTðtÞÞdT

hqðt!1Þi
dq

dt

����
t¼0

	 
 ; (C14)

averaged over the ensemble of pore configurations, which
explicitly takes the form

htci ¼
Jrightðt ¼ 0ÞÐ1

0 JrightðTðtÞÞdT

Ð1
0 qðt!1Þp ap

� �
d ap
� �

Ð1
0

dq

dt

����
t¼0

p ap
� �

d ap
� � : (C15)

Using eqn (C11) and (C12) where Ap = pap
2 and changing

variables from ap to ap/l, we have

htci ¼

Ð1
0
tcp

ap

l

� � ap

l

� �2
d

ap

l

� �
Ð1
0 p

ap

l

� � ap

l

� �2
d

ap

l

� � : (C16)

Through this approach we define a physically relevant average of
charging timescale that is consistent with the single-pore definition.
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59 A. Garcı́a-Gómez, G. Moreno-Fernández, B. Lobato and T. A.
Centeno, Phys. Chem. Chem. Phys., 2015, 17, 15687–15690.

60 A. A. Kornyshev, J. Phys. Chem. B, 2007, 111, 5545–5557.
61 J. Kim, S. Davidson and A. Mani, Micromachines, 2019,

10, 161.
62 B. Balu and A. S. Khair, J. Eng. Math., 2021, 129, 1–18.
63 M. Mirzadeh, F. Gibou and T. M. Squires, Phys. Rev. Lett.,

2014, 113, 097701.

Paper Soft Matter

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

5 
 1

40
0.

 D
ow

nl
oa

de
d 

on
 2

6/
11

/1
40

4 
07

:5
9:

26
 ..

 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d1sm01239h



