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-bonded picolinaldehyde enables
enantiodivergent carbonyl catalysis in the
Mannich/condensation reaction of glycine ester†

Xia Zhong, a Ziwei Zhong, a Zhikun Wu, a Zhen Ye,b Yuxiang Feng,b

Shunxi Dong, a Xiaohua Liu, *a Qian Peng *b and Xiaoming Feng *a

A new strategy of asymmetric carbonyl catalysis via a chiral Lewis acid-bonded aldehyde has been

developed for the direct Mannich/condensation cascade reaction of glycine ester with aromatic

aldimines. The co-catalytic system of 2-picolinaldehyde and chiral YbIII-N,N0-dioxides was identified to

be efficient under mild conditions, providing a series of trisubstituted imidazolidines in moderate to good

yields with high diastereo- and enantioselectivities. Enantiodivergent synthesis was achieved via changing

the sub-structures of the chiral ligands. The reaction could be carried out in a three-component version

involving glycine ester, aldehydes, and anilines with equally good results. Based on control experiments,

the X-ray crystal structure study and theoretical calculations, a possible dual-activation mechanism and

stereo-control modes were provided to elucidate carbonyl catalysis and enantiodivergence.
Introduction

Asymmetric carbonyl catalysis,1 inspired by enzyme catalysis,2

represents a type of useful organo-covalent-activation method
via formation of various species, such as hemiacetal,3 or imine,4

as well as dioxirane from chiral ketone for epoxidation.5

Substantial efforts in developing aldehyde-based chiral orga-
nocatalysts have been made aer pioneering reports by Kuzu-
hara,6 Breslow and co-workers.7 Excellent contributions have
been documented in recent years by Beauchemin,8 Guo,9 Zhao
and Yuan10 et al. (Scheme 1a), and the reactions involve Cope-
type hydroamination,8 alkylation,9d transamination,10a and
addition reactions of glycine esters.9a,b,10b For instance, chiral N-
quaternized pyridoxal analogue A5 containing a chiral axis and
a carbon stereogenic center allowed a biomimetic asymmetric
Mannich reaction of tert-butyl glycine ester and N-diphenyl-
phosphinyl imines (Scheme 1b).10b Cooperative imine/
hydrogen-bond bifunctional activation guaranteed high
activity and stereoselectivity. On top of that, the dual-catalysis
by Lewis acid-bonded picolinaldehyde has been explored by
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Aron's group in the synthesis of chiral amino acids.11 They
found that the metal ion chelated quinonoid intermediate
facilitated racemization and Tsuji–Trost allylation, and
Scheme 1 Carbonyl catalysts and selected examples of a-function-
alization of glycine esters.
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Table 1 Optimization of reaction conditionsa

Entry Variation Yieldb (%) drc eec (%)

1 None 40 93 : 7 95(+)
2 Without C1 N.R. — —
3 C2 N.R. — —
4 C3 N.R. — —
5 C4 45 81 : 19 9(+)
6 L-Pi(OiBu)2 43 90 : 10 91(+)
7 L-Pe(OiBu)2 34 92 : 8 97(+)
8 L-TQtBu 34 86 : 14 87(�)
9 C1 (20 mol%) 44 93 : 7 95(+)
10d C1 (20 mol%), EtOH 46 94 : 6 97(+)
11d,e C1 (20 mol%), EtOH 62 95 : 5 97(+)
12d,e L-TQtBu, C1 (20 mol%) 50 88 : 12 95(�)

a Unless otherwise noted; all reactions were carried out with 1a (0.10
mmol), 2a (2.0 equiv.), NaOtBu (1.0 equiv.), carbonyl catalyst
(10 mol%) and ligand/Yb(OTf)3 (1 : 1, 10 mol%) in EtOAc (0.17 M) at
35 �C for 24 hours. N.R. ¼ no reaction. b Isolated yield of 3a based on
1a. c Determined by HPLC on a chiral stationary phase. d EtOH (8.0
equiv.). e 2a (3.0 equiv.) for 48 hours.
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enantiomerically enriched amino acids could be obtained in
concert with Alacase11a or a chiral palladium catalyst.11b

These studies, together with the ingenious imine-based
transient directing group strategy in transition metal-catalyzed
C–H activation,12 intrigue us to develop chiral Lewis acid-
bonded aldehyde as a new route for asymmetric carbonyl
catalysis in a-functionalization of glycine esters,13 which might
compensate for the design and synthesis of chiral aldehyde
organocatalysts de novo. Our research group focused on chiral
Lewis acid catalysts of N,N0-dioxides which are capable of
a number of asymmetric transformations due to their easy
preparation and structural modication.14,15 It is anticipated
that the stereo-environment created by the chiral Lewis acid
could deliver to the bonded-aldehyde for asymmetric carbonyl
catalysis, for instance, the asymmetric nucleophilic addition of
the azomethine ylides, generated from picolinaldehyde and
glycine ester (Scheme 1c). The study by Wang's group reported
the utilization of metallated azomethine ylides in [3 + 2] cyclo-
additions with a variety of electron decient alkenes.16 The
improved reactivity and efficient enantiocontrol from metal-
bonded amino esters shed light on our new chiral imine-
bonded activation method for the Mannich-type reaction of
glycine ester. Herein, we wish to disclose a new co-catalytic
system of 2-picolinaldehyde and a chiral YbIII complex of
N,N0-dioxides,17 which was optimized to be efficient to catalyze
the diastereo- and enantioselective Mannich/condensation
cascade reaction of glycine ester with aromatic aldimines
under mild conditions (Scheme 1c). Various enantioenriched
imidazolidines were provided in good yields with high stereo-
selectivities, even in the three-component version with glycine
ester, aldehydes and alinines. Interestingly, changing the sub-
structure of Feng N,N0-dioxides enabled enantiodivergent
synthesis.18 Two different working modes were provided to give
a rationale for carbonyl catalysis and enantiodivergence on the
basis of the X-ray crystal structures of chiral Yb(III) complexes
and DFT calculations.

Results and discussion

Initially, methyl glycine ester hydrochloride (1a) and N-phenyl
phenylmethanimine (2a)19 were chosen as the model substrates
to optimize the reaction conditions. In the preliminary
screening, the chiral complex of Yb(OTf)3 with Feng N,N0-
dioxide L-Ra(OiBu)2 was employed as the Lewis acid catalyst.
NaOtBu (1.0 equivalent) was used as the base to generate methyl
glycine ester from 1a in situ, and 2-picolinaldehyde C1
(10 mol%) was loaded as the carbonyl co-catalyst. The reaction
took place smoothly in EtOAc at 35 �C, affording imidazolidine
3a as the nal product in 40% yield, 93 : 7 dr, and 95% ee aer
24 hours (Table 1, entry 1), which is generated from the Man-
nich reaction of aldimine 2a with glycine ester, following
condensation with benzaldehyde (see Fig. 1 for details). The
comparison experiments in the absence of 2-picolinaldehyde or
in the presence of other aldehydes conrmed that both pyridine
and aldehyde groups were indispensable. No reaction occurred
without the addition of 2-picolinaldehyde (entry 2) or in the
presence of benzaldehyde C2 (entry 3), or isonicotinaldehyde C3
4354 | Chem. Sci., 2021, 12, 4353–4360
(entry 4). Although the addition of 2-formylpyridine N-oxide C4
benetted the generation of imidazolidine 3a, the enantiose-
lectivity dropped dramatically (entry 5, 9% ee vs. 95% ee). We
rationalized that the stronger chelated 2-picolinaldehyde and
the resultant azomethine ylide were involved in initiating the
Mannich reaction. We also identied other critical parameters
for this asymmetric transformation (see ESI Tables S1–S8† for
details). Subsequent investigation of Feng N,N0-dioxides with
different chiral backbones indicated that the (S)-2-pipecolic
acid-derived L-Pi(OiBu)2 exhibited comparable activity with
slightly lower stereoselectivity, while L-perindopril-derived L-
Pe(OiBu)2 showed lower activity with similar stereoselectivity
(entries 6 and 7). Notably, the introduction of (S)-1,2,3,4-
tetrahydroisoquinoline-3-carboxylic acid-derived N,N0-dioxide
ligand L-TQtBu, led to the enantiodivergent synthesis of the
corresponding product ent-3a in 34% yield, and 86 : 14 dr with
87% ee (entry 8). With the increase of the amount of co-catalyst
© 2021 The Author(s). Published by the Royal Society of Chemistry
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Table 2 Substrate Scope of Aldiminesa

a Reactions were carried out with 1a (0.10 mmol), 2 (3.0 equiv.), NaOtBu
(1.0 equiv.), C1 (20 mol%), EtOH (8.0 equiv.) and L/Yb(OTf)3 (1 : 1,
10 mol%) in EtOAc (0.17 M) at 35 �C for 48 hours. The isolated yield
of 3 based on 1a. The dr value was detected by 1H NMR analysis, and
the ee value was determined by HPLC on a chiral stationary phase.
b L-Pi(OiBu)2 was used as the ligand. c L-Pe(OiBu)2 was used as the
ligand.

Fig. 1 Proposed catalytic cycle.
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C1 to 20 mol%, the product was isolated in a slightly higher
yield with comparable stereoselectivity (entry 9, 44% yield,
93 : 7 dr, 95% ee). Besides, the addition of EtOH as a protonic
additive (entry 10), and increasing the amount of aldimine 2a
(entry 11) resulted in the formation of 3a with 62% yield, 95 : 5
dr and 97% ee. Under such conditions, the product ent-3a could
be afforded in 50% yield, 88 : 12 dr and 95% ee by the use of
ligand L-TQtBu instead (entry 12). Due to the occurence of
several side reactions, the attempt to improve the yield of the
product was unsuccessful (see the ESI† and control experiments
below for details).

With the optimized reaction conditions established (Table 1,
entry 11), the generality of the aldimines was explored (Table 2,
conditions A). Firstly, a series of aromatic aldehyde-derived
imines were investigated (3b–3p). Regardless of the electronic
nature or steric hindrance of the substituents on the phenyl ring
(Ar1), the imidazolidine products 3b–3k were obtained in 31–
66% yields with excellent stereoselectivities (82 : 18–95 : 5 dr,
73–97% ee). Aldimine derived from 3,4-dimethylbenzaldehyde
was tolerated (3l, 39% yield, 93 : 7 dr and 90% ee). The reaction
of aldimines derived from 2-naphthaldehyde or heteroaryl
aldehydes proceeded well, affording 3m–3p with comparative
results (50–56% yields, 90 : 10–94 : 6 dr, 94–97% ee). The
following screening of the N-aryl substituent (Ar2) of aldimines
showed that para-substituted aniline based aldimine had
a limited effect on the reaction (3q–3t, 35–46% yields, 90 : 10–
94 : 6 dr, 95–97% ee). The 4-methoxyaniline derived one resul-
ted in a high enantioselectivity with a decreased yield (3r, 35%
yield, 92 : 8 dr, 95% ee). It should be noted that for several
products, the use of the ligand L-Pi(OiBu)2 or L-Pe(OiBu)2
instead was necessary to get higher yields without the change of
stereo-preference. The absolute conguration of the product 3n
was determined to be (2S,4S,5S)-isomer by X-ray single crystal
analysis.20 The stereochemistry of other products was assigned
by comparing their CD spectra with those of the product 3n.

Next, we proceeded to prepare the antipodes of the product 3
by the employment of the chiral L-TQtBu/Yb(OTf)3 complex as
the Lewis acid catalyst. Representative aldimines were exam-
ined and the results are depicted in Table 2, condition B.
© 2021 The Author(s). Published by the Royal Society of Chemistry
Generally, these reactions occurred smoothly to deliver the
corresponding products ent-3 with high enantio- and diaster-
eoselectivity in slightly diminished yields (34–50% yields,
86 : 14–95 : 5 dr, 90–95% ee).
Chem. Sci., 2021, 12, 4353–4360 | 4355
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Table 3 Three-component reactiona

Entry Ar1/Ar2 Yield (%) dr ee (%)

1 Ph/Ph (3a) 55 93 : 7 96
2 4-MeC6H4/Ph (3b) 40 88 : 12 88
3b 4-ClC6H4/Ph (3g) 53 94 : 6 91
4 Ph/4-MeC6H4 (3q) 39 94 : 6 93
5b Ph/4-ClC6H4 (3s) 44 94 : 6 97
6c Ph/3-MeC6H4 (3v) 41 92 : 8 87

a Reactions were carried out with 1a (0.10 mmol), 4 (3.0 equiv.), 5 (3.0
equiv.), NaOtBu (0.10 mmol), C1 (20 mol%), 4 Å MS (20.0 mg), and
Yb(OTf)3/L-Ra(OiBu)2 (1 : 1, 10 mol%) in EtOAc (0.17 M) at 35 �C for
48 hours. The isolated yield of 3 based on 1a. The dr value was
detected by 1H NMR analysis and the ee value was determined by
HPLC on a chiral stationary phase. b With L-Pi(OiBu)2.

c With L-
Pe(OiBu)2. Scheme 2 Gram-scale synthesis and transformations.

Scheme 3 Control experiments.
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In order to improve the practicability of the reaction, we
investigated the three-component synthesis of imidazolidines,
from glycine ester, aldehyde and aniline. As shown in Table 3,
the three-component reaction was accomplished under slightly
modied conditions (see ESI Table S9† for details), and an array
of aldehydes 4 and anilines 5were surveyed. In comparison with
the two-component reaction system, similar results were given
(39–55% yields, 88 : 12–94 : 6 dr, 88–97% ee). By using this
protocol, the product 3v was yielded in moderate yield with
good diastereo- and enantioselectivity (Table 3, entry 6), which
is not possible from the two-component reaction of N-m-tolyl
substituted aldimine due to the separation and purication
problem of aldimine. Unfortunately, aliphatic amines and
aldehydes were not suitable in the current system.

To evaluate the synthetic potential of the catalytic system,
a scale-up preparation of imidazolidine 3h was carried out
(Scheme 2a). Upon treatment of 3.0 mmol of 1a with 9.0 mmol
of 2h under the optimized reaction condition A, the desired
product 3h was obtained in 62% yield (0.97 g), with 92 : 8 dr and
93% ee aer 60 hours. Furthermore (Scheme 2b), the product 3a
was successfully converted into the chiral vicinal diamine
product 6a via TsOH-mediated hydrolysis in 51% yield, 93 : 7 dr
and 98% ee aer two steps. The change of the ester group had
an obvious effect on the transformation, and ethyl glycine ester
1b led to a reduced yield (6b, 30% yield), and benzyl glycine
ester 1c provided a lower diastereoselectivity (6c, 78 : 22 dr,
91%/93% ee). Similarly, ent-6b diamine was obtained in
comparable yield when L-TQtBu was used (29%, 82 : 18 dr, 91%
ee). Noteworthily, the syn-diamine derivatives 6 were dominant
in the current case (Scheme 2b), which is different from the
chiral pyridoxal analogue A5 based catalytic system.10b Reduc-
tion of the ester to a primary alcohol led to the imidazolidine
derivative 7a in good yield with maintained stereoselectivity. In
addition, chiral 2-imdazoline 8a was produced by oxidation
with DDQ (Scheme 2c).
4356 | Chem. Sci., 2021, 12, 4353–4360
To get insight into the mechanism of the reaction, a series of
control experiments were conducted (Scheme 3). Treatment of
chiral diamine 6a with aldimine 2a in the presence of the L-
Ra(OiBu)2/Yb(OTf)3 complex delivered the imidazolidine 3a in
51% yield with maintained diastereoselectivity and enantiose-
lectivity (eqn (1)). In contrast, a yield of 90% was obtained if
benzaldehyde was used for the formation of imidazolidine 3a
(eqn (2)). These results clearly indicated that the nal imida-
zolidine product 3a was generated via a stepwise Mannich/
condensation cascade reaction with aldehyde released from
the decomposition of aldimine 2a. Therefore, this reaction was
different from the previous direct [3 + 2] cycloaddition of azo-
methine ylides with aldimines.21 When the Schiff base 9 of 2-
picolinaldehyde C1 andmethyl glycine ester was used instead of
2-picolinaldehyde, the product 3awas isolated in 42% yield with
92 : 8 dr and 96% ee (eqn (3)). It conrmed that 2-
© 2021 The Author(s). Published by the Royal Society of Chemistry
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picolinaldehyde probably serves as the carbonyl catalyst to
generate the Schiff base intermediate for the subsequent addi-
tion reaction. According to HRMS analysis of the reaction
mixture, Schiff base 10 and picolinaldehyde-derived imine 11
might exist in the reaction system (eqn (4) and (5)). However,
these species were unreactive under the current reaction
conditions (see ESI page S24–S27 for detail†). These side reac-
tions along with the instability of products were partly respon-
sible for the moderate yields of the titled process.

The inuence of the concentration of each component on
the reaction rate was detected from operando IR proles (see
ESI page S19–S22 for details†). The kinetic study showed that
the initial rate of the reaction was rst-order depending on the
chiral L-Ra(OiBu)2/Yb(OTf)3 complex, glycine ester, 2-picoli-
naldehyde C1 and aldimine 2, indicating that these species are
involved in the rate-determining process. Furthermore, the
HRMS spectra of the mixture of L-Ra(OiBu)2, Yb(OTf)3, C1, 1a,
and NaOtBu (1 : 1 : 1 : 1 : 1) in MeOH exhibited the ion peak at
m/z 1470.4521, referring to [L-Ra(OiBu)2 + Yb3+ + 2OTf� + 9]+
Fig. 2 Calculated stereo-models of transition states and intermediates

© 2021 The Author(s). Published by the Royal Society of Chemistry
species (calculated m/z 1470.4516). It conrmed that chiral
Lewis acid bonded 2-picolinaldehyde condenses with methyl
glycine ester to generate the metal-chelated Schiff base I (Fig. 1).

Based on the aforementioned results, a plausible catalytic
cycle is rationalized for the current reaction (Fig. 1). Initially,
chiral ytterbium-bonded picolinaldehyde reacts with glycine
ester to yield chiral cation bonded Schiff base species I. In view
of the large and variable coordination number of the ytterbium
ion, the tridentate coordination of Schiff base 9 and another
anion is anticipated to enhance the stability and reactivity of the
corresponding enolate species, as well as the quinonoid
tautomer. Then, H-bond activated aldimine species undergoes
the Mannich reaction via the enolate intermediate II to afford
the intermediate IV. Then, hydrolysis of the intermediate IV
produces the chiral diamine 6, regenerating the active catalytic
species Ligand/YbIII bonded-picolinaldehyde. Eventually, the
nal product imidazolidine 3 was yielded by the condensation
of vicinal diamine and aldehyde.
for L-RaEt2/Yb
III or L-TQtBu/YbIII complexes.

Chem. Sci., 2021, 12, 4353–4360 | 4357
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The X-ray crystal structures of the chiral Lewis acid
complexes L-RaEt2/Yb(OTf)3 and L-TQtBu/Yb(OTf)3 (ref. 22)
provide interesting spatial information (see ESI Fig. S2 and S3†
for full pictures), which might account for the enantiodivergent
outcomes. To unveil the different stereochemical control of L-
RaEt2 (ref. 23) and L-TQtBu in the formation of chiral inter-
mediate IV, preliminary density functional theory (DFT) calcu-
lations were performed at the SMD-B3LYP-D3/MWB59/6-
311+G(d,p) level of theory. Due to different thermodynamic
stabilities, �OtBu is more favorable to coordinate with YbIII for
about�10.2 kcal mol�1 rather than the triate anion. Moreover,
based on the binding orientation of the tridentate Schiff base 9
in different YbIII-chiral N,N0-dioxides complexes, �OtBu always
locates at the Si-face or Re-face site of the Schiff base for L-RaEt2/
YbIII or L-TQtBu/YbIII, respectively, which would block their
opposite sites by substrate/ligand interactions and avoid the
steric hindrance of the bulky ligand (bicycle or tert-butyl amide
subunits). As shown in L-RaEt2/Yb

III of Fig. 2a, the steric effect
of the bicycle ring on the ligand would lead to relatively weak
coordination 2.60 Å between ligands ON and YbIII in L-RaEt2/Yb-
Re, and thus its thermodynamic free energy is 2.2 kcal mol�1

higher than that of L-RaEt2/Yb-Si. On the other hand, the tert-
butyl amide in L-TQtBu/YbIII displays major steric hindrance
with �OtBu that results in unfavorable coordination in L-
TQtBu/Yb-Si.

Further discussion will depend on the most favorable YbIII/
chiral N,N0-dioxide complexes with the Schiff base substrate and
�OtBu ligand (Fig. 2b). To control the stereoselectivity, an effi-
cient inner-sphere hydrogen bond (around 1.7 Å) between the
coordinated �OtBu and protonated aldimine would drive the
nucleophilic attacking to form stable transition states in the
following Mannich reaction, compared to the outer-sphere
hydrogen bond interaction that affords 6.1 kcal mol�1 free
energy higher in the transition state 2S3R-TS_1 (see ESI Table
S10†). For both the L-RaEt2/Yb

III and L-TQtBu/YbIII complexes,
the stagger forms of transition states were favored via Si–Si
(2S3R-TS) and Re–Re (2R3S-TS-dis) facial selectivity, resulting in
(2S,3R)-6a and (2R,3S)-6a respectively, which are in agreement
with experimental observations (Fig. 2b). In contrast, the
eclipsed forms of transition states via Si–Re and Re–Si facial
attacking were calculated to be about 1–2 kcal mol�1 energy
higher than those of the most stable ones, indicating the
important substrate interactions between the Schiff base and
protonated aldimine under each chiral space, which account for
the diastereoselectivity. Furthermore, the transient ligand
dissociation of the L-TQtBu/YbIII complex at one carbonyl group
of amide was inspected in the most stable transition states
2R3S-TS-dis and 2R3R-TS-dis via Re–Re and Re–Si facial selec-
tivities, respectively, and the relative free energies are slightly
favorable to the full coordinated transition states (see ESI
Fig. S5–S7†), suggesting that the large steric hindrance of
transition states in this ligand would reduce the coordination
number also supported by the crystal structure of L-TQtBu/
Yb(OTf)3. However, the calculated ligand dissociation can be
recovered when the protonated aldimine is released from the
YbIII center displaying dynamic coordination.
4358 | Chem. Sci., 2021, 12, 4353–4360
Conclusions

In summary, a new asymmetric carbonyl-catalysis strategy was
developed for the Mannich/condensation of glycine ester with
aldimine under mild conditions. The chiral N,N0-dioxide/
Yb(OTf)3 complex bonded aldehyde enabled carbonyl activation
of glycine ester for a-addition transformation. This protocol
provided facile and feasible access to a variety of synthetically
useful chiral imidazolidine derivatives in moderate yields (up to
66% yield), and excellent diastereo- and enantioselectivities (up
to 95 : 5 dr, 97% ee). The reaction could be performed in either
two- or three-component versions. Interestingly, enantiodi-
vergent synthesis was accessible by modulating the sub-
structure of the Feng N,N0-dioxide ligand in connection with
a multi-coordinated ytterbium metal ion. Theoretical calcula-
tions suggested that the steric hindrance and CH–p interaction
between the substrate and ligand were responsible for this
reversal. And the inner-sphere hydrogen bond and the stagger
model of reaction substrates enable stabilization of key transi-
tion states leading to high stereoselectivity. Further application
of this co-catalytic system in other reactions is under
investigation.
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