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Spontaneously chiral cubic liquid crystal: three
interpenetrating networks with a twist†

Xiangbing Zeng *a and Goran Ungar ab

A new molecular-level model is proposed for the ‘‘Smectic-D’’ liquid crystal whose structure has

remained controversial since the 1960s. The phase has a body-centred cubic lattice, and all previous

structural models assumed an Im %3m space group. However, this contradicts the recent discovery

that the phase is always chiral, even in non-chiral compounds. The new model has the non-

centrosymmetric space group I23, and consists of three interpenetrating networks, with 3-way planar

network junctions like in the double gyroid phase. Rafts of 3–4 parallel molecules stack with an 81 twist

on top of each other, forming spontaneously chiral columnar network segments. Homochirality

throughout the network is enforced by matching the helical sense of all confluent segments at junctions.

The findings indicate that coordinated helicity, previously unrecognized, is a key driving force responsible

for the formation of a number of chiral and achiral, cubic and non-cubic bicontinuous phases of

rod-like molecules.

Introduction

Complex liquid crystals (LCs) are typically formed by micro-
phase separation of two or more immiscible covalently bonded
moieties, such as hydrophilic–hydrophobic in lyotropic LCs
or aromatic–aliphatic in thermotropics. In block polymers, a
similar situation arises, with the separation of blocks on a larger
scale. Such separation leads to partition of space into discrete
entities such as spheres, columns or layers. In a bicontinuous
phase, however, the space occupied by both moieties is
continuous. The best-known examples are bicontinuous cubic
(Cubbi) phases.1 The structure of one of them has never been
properly clarified, although its existence has been known for
over 60 years, originally termed ‘‘Smectic-D’’.2,3 In light of the
recently uncovered evidence of its intrinsic spontaneously
developing chirality, here, we present a new model of this most
complex of all liquid crystal phases, in the belief that we are
close to a final solution of this longest standing enigma in the
field of liquid crystal structure.

Three Cubbi phases have been observed in lyotropic (water–
surfactant) systems, and in all of them, one of the moieties
(e.g., water or alkyl chains) forms two interpenetrating infinite
periodic networks, separated by an infinite periodic surface

with minimum curvature (IPMS), around which the other moiety
aggregates. Lyotropic cubic phases have fancy names: ‘‘double
gyroid’’ (DG, space group Ia%3d, Fig. 1A), ‘‘double diamond’’
(DD, Pn%3m) and ‘‘plumber’s nightmare’’ (PN, Im%3m). They contain
3-, 4- and 6-way network junctions.4–6 Bicontinuous phases have
also been found in block polymers.7 For a recent review on IPMS
structures in biological and self-assembled systems, please refer to
Han and Che.8

In thermotropic LCs, the aromatic molecular cores are most
commonly found in the networks, while the attached flexible
chains fill the space between them.1,9,10 The DG is relatively
common, while the other two double network cubics are very
rare.11 This is believed to be due to the inability of the tethered
chains to reach distant voids present in these structures, while
in lyotropics, these are easily filled by the solvent. Another
obstacle to the formation of DD and PN thermotropic phases
is chain overcrowding around the 4- and 6-way junctions.
The exceptions are cubics whose networks consist of coaxial
bundles of rods, having side-chains but none of them attached
at the junctions. In these compounds, both double11 and single
diamond phases12 have recently been observed.

However, another Cubbi phase is often found in close
proximity of the DG phase in rod-like thermotropic ‘‘polycatenars’’,
i.e., compounds with one or more end-chains; some of the
examples are shown in Fig. 1G. This already mentioned phase
was originally thought to be a layered phase (‘‘Smectic-D’’)3 but
was subsequently recognized to have cubic symmetry.13 It has a
much larger unit cell, and more complex structure, compared
to the DG phase found in the same or similar compounds.
Observed X-ray diffraction peaks (hkl) of the phase obey the
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general rule that h + k + l = 2n, indicating a body centred lattice,
and the phase was assigned a space group of Im%3m. Initial
structural models of the phase were built on the Schwartz P
IPMS, with the two subspaces separated by the IPMS further
divided forming a multi-layer structure.14–17 However, such
models failed to explain the observed diffraction intensities
(e.g., (321) being the strongest peak), or the strong structural
relation to the DG phase. On the basis of a reconstructed
electron density map of the phase, we have proposed that this
phase should consist of three interpenetrating networks,
instead of two as in the DG phase, as shown in Fig. 1C and
Fig. S1a in the (ESI†).18,19 However, there have been some
difficulties with that model, as detailed below. An alternative
model of the phase has also been proposed, where it was
suggested that the inner and outer ‘‘networks’’ should be
vesicle-like instead, see Fig. S1b (ESI†).20–22 One of the key
problems with that model was the unexplained coexistence
of convex and concave surfaces in strongly curved layers of
symmetric molecules.

More recently, it has been discovered by optical microscopy
and circular dichroism that this cubic phase is in fact chiral
through spontaneous mirror symmetry breaking, even though

the compounds forming it were achiral.23 At the same time, the
DG phase shown by the same or similar compounds is always
achiral. For this reason, we are going to call the two phases
chiral and achiral bicontinuous cubic phases, respectively.
In similar but intrinsically chiral compounds, an undefined
body-centred cubic phase has been reported in place of the
DG.24,25 It appears that this phase was in fact the same chiral
cubic phase as found in achiral compounds: the diffraction
patterns are virtually the same.26

Another phase found in chiral polycatenar enantiomers is
the so-called smectic-Q (SmQ) phase, with a tetragonal unit cell
and a chiral I4122 space group.27–30 This long-known chiral
phase has recently also been discovered in achiral compounds,
and its structure was finally solved.31 It turned out to be another
bicontinuous phase with two inter-penetrating isochiral networks
(Fig. 1E).

In order to explain the intriguing spontaneous chirality of
the SmQ and chiral cubic phases, and the lack of it in DG, it has
been proposed that in all three phases, each columnar network
segment, formed from stacked rafts of 3–4 parallel rod-like
aromatic cores, is always chiral.23 The chirality originates from
slow twisting of the successive rafts about the segment helical

Fig. 1 Network models of Ia %3d (A), Im %3m triple network (C) and SmQ (E) phases, and proposed molecular arrangement around an Ia %3d 3-way junction
(B), an Im %3m triple network 3-way junction (D) and a SmQ 4-way junction (F). Note how the molecular arrangement in the previous proposed triple
network cubic phase model differs from the other two. (G) Some of the compounds that form the triple network cubic phase from previous literature.
I: 14; II: 15, III: 21; IV: 18; V: 23.
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axis in order to avoid clashes between their end-chains while
still maintaining reasonable p�p stacking of the aromatic cores
(Fig. 1B, E and F). Furthermore, segments joined together at
a network junction should possess the same handedness
for efficient packing, and consequently homochirality will
propagate through such matching at junctions. While in the
DG phase, the two interpenetrating networks have opposite
handedness and overall chirality cancels out, in the chiral cubic
phase either all three networks (in our model) are homochiral,
or their chiralities do not cancel completely.

The model is most satisfactorily explained in the DG (Ia%3d)
and SmQ phases. In DG, all network segments have the same

length of
ffiffiffi
2
p �

4
� �

aIa3d . (Fig. 1A). Three coplanar segments join
at each network junction of 3-fold symmetry (Fig. 1B). At the
junctions, the molecules are perpendicular to the junction
plane. Rotation of molecular rafts along each segment is
required as the dihedral angle between the planes of successive

junctions is 2� asin 1
� ffiffiffi

3
p� �

¼ �70:5�. The sign is positive or
negative depending on which of the two networks the segment
belongs to. From the experimentally measured lattice parameter
aIa3d, and assuming that the distance between neighbouring
molecular rafts is 4.5 Å, the twist angle between them is estimated
as B81. Note that this idea of twisted molecules in the DG phase
was already proposed as early as 198732 and in a later work,33 even
though both are different to our model in details, and neither of
them discussed the chirality of network segments and the
junctions.

The SmQ phase has a tetragonal lattice, and there are two
kinds of network segments, horizontal (>c) and vertical (8c),
with segment lengths aSmQ and cSmQ/4, respectively (Fig. 1E).
The length of the vertical segments is somewhat less than twice
that of the horizontal ones, as c/a is typically B1.75. All network
junctions are 4-way coplanar, with a horizontal column and a
vertical column crossing each other orthogonally (Fig. 1F).
Along a vertical segment, the molecules turn by 901 between
junctions, and by 1801 along a horizontal segment. The twist
between successive rafts is B9–101, only slightly larger than
that in the DG phase. In SmQ, the two interpenetrating networks
have the same chirality, as they are equivalent to each other due to
the body-centred symmetry.

However, when the same scheme was applied to our triple
network model of the chiral cubic phase, the result was less
satisfactory. The key problem is the non-chirality of the Im%3m
space group, a consequence being that it was impossible for
molecular orientation to always match at junctions. Another
problem was that in the best solution that we could find at the
time, the twist between successive molecular rafts was 30–351,
much larger than the 8–101 value found for the Ia%3d and SmQ
phases (Fig. 1D). A chiral model built in a similar way to ours,
but on the basis of the vesicle/network model, also has similar
problems.22 This is in contradiction to our expectation that the
local arrangement of these three phases should be very similar,
due to the experimental observation that the three phases are
often found in compounds with very similar chemical struc-
tures, or even in the same compound but depending on
temperature and thermal history.14,15,21,23

We thus undertook to re-examine this phase, with its longest
standing unsolved structure in the field of liquid crystals and,
probably, the most complex of all. Its structure solution has
been hampered by its complexity, but initially also by its
frequent coexistence with the DG phase.34–36 The chiral cubic
phase is the second most common bicontinuous phase in
thermotropic LCs, observed in hundreds if not thousands of
compounds. The importance of understanding its structure is
heightened by the fact that it sometimes appears, in achiral
compounds, immediately below a recently discovered highly
optically active isotropic liquid phase Iso* distinct from the
normal liquid Iso.23,37 Our understanding of the fascinating
Iso* phase is almost zero, but because of the similarities in
optical activity and the ease of transition between Iso* and the
chiral cubic phase, the solution of the cubic structure should
help understand Iso*.

Results and discussion

In the current paper, we construct a new structural model of the
chiral cubic phase that is compatible with all the experimental
observations so far, and bears more similarity with the double
network structures found in the Ia%3d (DG) and SmQ phases.
In the following, we start with examining the space group of the
chiral bicontinuous cubic phase and provide details on how the
new structure is constructed. The new model is then evaluated
by simulation of the diffraction pattern, and by reconstruction
of the electron density map based on the new space group.

Initial assumptions

In order to construct a new model of the chiral bicontinuous
cubic phase, it is assumed that the previous triple network
model as shown in Fig. 1C, even though having the wrong space
group, is related to the true, lower symmetry structure by
averaging. We also assume that the structure also consists of
three networks, inner, outer and middle, as in our previous
model albeit with lower symmetry. This assumption is also
supported by the fact that when the ‘‘Im%3m’’ and the double-
network DG phases appear in the same compound, the ratio of
their lattice parameters is always close to 3/2.

The observed X-ray hkl reflections of the chiral bicontinuous
cubic phase obey the h + k + l = 2n rule, indicating a body-
centred lattice, with no further general extinction rules
observed. There are six candidate space groups: I23, I213,
Im%3, I432, I%43m and Im%3m. The first three belong to the Laue
class m%3 and the latter three belong to m%3m, depending on
whether a general (hkl) diffraction peak is equivalent to (or has
the same intensity as) the corresponding (lkh) peak (m%3m) or
not (m%3). Previously, the Laue class was assigned to m%3m, based
on a single crystal diffraction study where (321) and (123) peaks
appeared to have had similar intensities.18 However, intensity
measurements using single domain samples are prone to
error, as they are very sensitive to the exact orientation of
the single crystal, making it impossible to unequivocally rule
out the m %3 Laue class. The triple network cubic phase was
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previously assigned the Im %3m space group on the assumption
that the structure is achiral and liquid crystals normally adopt
the space group of the highest symmetry compatible with the
observed extinctions. With the new experimental evidence
that the phase is in fact chiral, the phase is most likely to
also possess a chiral space group symmetry instead, i.e., I23,
I213 or I432.

Inner and outer networks

We will discuss the inner and outer networks first, which
should be exactly the same apart from a translation by (1/2,
1/2, 1/2) between them.

In the outer network of the previous model, there are 6
junction points around the origin of the lattice, at (�x, 0, 0),
(0, �x, 0) and (0, 0, �x), respectively, forming an octahedron
(Fig. 2A). Neighbouring octahedra are connected between their
closest corners, e.g., (x, 0, 0) and (1 � x, 0, 0), with a segment
along x, y or z edges of the unit cell. The main problem with
such a network is that the junctions (junction points coloured
blue, Fig. 2A) are 5-ways,22 and the segments connected are
not coplanar, meaning that there is no common direction of
molecules at the point of merger of all confluent segments.

The modification of the inner and outer networks that we
have now adopted is to change the 5-way junctions to 3-way
ones. To achieve this, we have added extra 3-way planar
junctions at the centre of every other triangular face of the
octahedron, i.e., at (x/3, x/3, x/3) (yellow in Fig. 2B and C). These
are now connected to the blue junctions at the apices of the
triangle, i.e., at (x, 0, 0), (0, x, 0) and (0, 0, x). These connections
replace the previous direct links between the apices of the
octahedron, making now the blue apex junctions also 3-way
planar, instead of 5-way non-planar. The rotational symmetry
along the x-axis must now be reduced from 4-fold to 2-fold. This
rules out the space group I432. This is also in line with the fact
that a segment with twisting molecular rafts possesses 2-fold, not
4-fold symmetry. The coordinates of the four face-centre (yellow)
junctions on the outer network are thus (x/3, x/3, x/3), (x/3, �x/3,
�x/3), (�x/3, x/3, �x/3), and (�x/3, �x/3, x/3), respectively. The
inner network is obtained from the outer one by simple transla-
tion by (1/2, 1/2, 1/2). A 3D interactive model of the new inner
network is available at https://materials.dept.shef.ac.uk/inner.
html. The new inner/outer networks are compatible only with
the space group symmetry I23, and hereafter we will refer to the
chiral bicontinuous cubic phase as the I23 cubic phase.

Fig. 2 (A) The previous model of the inner and outer networks of the triple-network cubic phase consists of 5-way junctions at the corners of the
octahedra. (B) Modified model where the corners of an octahedron (blue circles) connect through face centres (yellow circles). (C) 3D view of the
modified model. (D) The connection between modified octahedra in the y–z plane. There are two kinds of network segments, between a face centre
and a corner of an octahedron (red), and between the corners of neighbouring octahedra (green). The dihedral angles for both kinds of junctions are 901.
(E) Ribbon representation of the inner network, where the change in orientation of the molecules along each segment is represented by a twisted ribbon.
(F) Ribbon representation of the inner and outer networks.
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In the new inner/outer networks, the yellow junctions
(Fig. 2B, C and E) have 3-fold symmetry, as stated above, and
the angles between the segments are all 1201. The blue junc-
tions at the apices have a lower symmetry, with the angles
between segments of 144.71, 70.51 and 144.71 (Fig. 2D). There
are also two kinds of segments, those from an apex to a face
centre of the octahedron (coloured red in Fig. 2E), and those
from an apex to an apex of a neighbouring octahedron
(coloured green). The dihedral angle between the junction
planes at the ends of segments of both kinds turns out to be
the same, 901 (Fig. 2D). Assuming the dihedral angle is propor-
tional to segment length, the lengths of the two segments,

(1 � 2x) and
ffiffiffi
6
p

x
�
3, should be the same too. Consequently,

x ¼ 6�
ffiffiffi
6
p� ��

10 � 0:355 and the segment length E0.290aI23.
Using the previous lattice parameters of the chiral cubic phase,
the length of the segment ranges from 4.5–5.2 nm, consisting of
10–12 molecular rafts, assuming the distance between succes-
sive rafts is 0.45 nm, as found experimentally in most poly-
catenar cubic and columnar phases. This gives a twist angle
between neighbouring rafts of 7.5–91, very similar to that
observed in the achiral DG Ia%3d phase (B81) and SmQ phase
(9–101). In Fig. 2D, a twisting ribbon is placed on each segment
of the network showing the changing direction of molecules
along it. The interactive 3D model can be viewed at https://
materials.dept.shef.ac.uk/inner%20with%20ribbons.html. If we
try to keep the twist angle between neighbouring rafts the same,
we can in fact derive that the ratio between the lattice parameters
of the two phases should be aI23/aIa%3d = 1.56, while experimentally,
when one compound shows both phases, the ratio has been
measured as B1.53 at the transition temperature.14,15,36,38

Therefore, we have a new model of inner and outer networks,
where all junctions are 3-way planar, all segments have the same
length, with the same end-to-end twist angle of 901, and with the
twist angle between successive rafts being similar to that observed
in other bicontinuous phases. The inner/outer networks are
compatible with the space group symmetry I23, but not with the
other two candidate space groups, I213 or I432. Different views of
the inner and outer networks are shown in Fig. S2 and S3 (ESI†).

Middle network

Next, we attempt to construct a new middle network, under
the assumption that it should have the same I23 space group
symmetry. Unfortunately, previous models of the middle
network22,23 are incompatible with the I23 symmetry, if the
chirality of the segments is considered. As the previous middle
network has only 3-way coplanar junctions, it is assumed the
new lower symmetry network would also contain only 3-way
planar junctions. Starting with a junction point at a general
position (u,v,w) (Wyckoff position f ), there are 24 equivalent
points in the unit cell and all of them should be on the middle
network. The cubic unit cell can be divided into 8 sub-cubes by
three planes normal to x-, y- and z-axes through its body centre
(Fig. 3A). Assuming 0.5 4 u 4 v 4 w 4 0.0, there are three
equivalent junction points, at (u,v,w), (w,u,v), and (v,w,u), in the
sub-cube bounded by (0,0,0) and (0.5,0.5,0.5) – coloured green

in Fig. 3. The three junction points are related by a 3-fold axis
along the body diagonal, and so are their equivalents in other
sub-cubes. Direct connection between the three junction points
within each sub-cube is not an option as that would not make
all three segments joined at each junction coplanar.

In view of the above, we take the natural step to connect the
nearest two junction points in neighbouring sub-cubes (blue
segments, Fig. 3B). It turns out, due to the I23 symmetry of the
phase, that each junction point has two nearest neighbours. For
example, the nearest neighbours of the junction point at (u, v, w)
are at (1/2 + w, 1/2 � u, 1/2 � v) and (1/2 � v, 1/2 � w, �1/2 + u).
This leaves one more segment to be added to each junction
point, to comply with the principle that all network junctions
are 3-way coplanar. This can be achieved by adding another
eight junction points to the network, placed on the body
diagonal of the unit cell, at ((u + v + w)/3, (u + v + w)/3,
(u + v + w)/3) (Wyckoff positions c) and the symmetrical
equivalents (yellow junctions in Fig. 3). Thus, in each sub-
cube, there is a 3-way coplanar junction on the body diagonal
connected to the other three, with 3-fold symmetry, i.e., with
the same segment length and 1201 angle between segments
(red segments in Fig. 3B). Each of the three green junctions in
the sub-cube has one (red) segment joining it to the yellow
junction on the body diagonal, and the other two (blue)
segments connecting it to the nearest junctions in neighbouring
sub-cubes.

The requirement that the segments at junction points must
be co-planar puts limitations on the values that coordinates u,
v and w can take. Once this condition is satisfied, a network is
obtained with two different segment lengths. We have then
added an additional condition that the dihedral angle between
junction planes is proportional to the length of the segment
joining them. Numerical calculations show that all such con-
ditions can be satisfied with (u, v, w) = (0.410, 0.233, 0.233).
The new middle network is shown in Fig. 3C, along with
its ‘‘ribbon’’ view, which shows how molecular orientation
changes along each segment and in the network as a whole
(Fig. 3D) – see also the 3D models at https://materials.dept.shef.
ac.uk/middle%20network.html and https://materials.dept.shef.
ac.uk/middle%20network%20ribbon.html. Different views of
the middle network are shown in Fig. S4 (ESI†).

The new middle network therefore contains 8 yellow and
24 green junctions in a unit cell. The former can be generated
through symmetry operations of the I23 space group, starting
with (0.292, 0.292, 0.292) (Wyckoff position c). Each connects
three coplanar segments of length 0.145aI23. The 24 green
junctions are at (0.410, 0.233, 0.233) and its symmetrical
equivalent (Wyckoff position f). Each junction joins together
one shorter segment (0.145aI23) with two longer segments
(0.355aI23). In total, there are 24 shorter (red) segments and
24 longer (blue) segments. The cumulative twist angle of the
shorter segments is 44.61, and that of the longer segments is
109.31; these correspond to a twist of 308.21 per unit cell length
aI23. In comparison, for the inner and outer networks, the twist
is 310.51 per aI23, i.e., there is less than 1% difference between
the two. Using the experimental unit cell dimension, we can put
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5–6 and 12–14 molecular rafts on the shorter and longer
segments, respectively; again, this converts to B7.5–91 twist
between successive molecular rafts.

Properties of triple networks

The total length of the network segments in the new model of
the chiral bicontinuous cubic phase is calculated as 20.68aI23.
For comparison, for the double gyroid Ia%3d phase, the total
length of the network is 8.485aIa3d. As in both cases, the length
of the network should be proportional to the number of
molecules in the unit cell and hence its volume, thus we have

20:68aI23
8:458aIa3d

¼ VI23

VIa3d
¼ aI23

3

aIa3d3

Consequently the ratio aI23/aIa3d is expected to be 1.56. This
is extremely satisfactory as exactly the same ratio was derived in
the previous section by assuming the same twist per unit length
in the two structures, and very close to the experimentally
determined values of B1.53.

The complete new model of all three networks is shown in
Fig. 4, with the segments represented both as simple bars and
as ribbons describing the molecular twist (different views of the
complete model are shown in Fig. S5, ESI†). A close inspection
of the model shows that the three networks fit nicely around

each other, and the space in between is compatible with the
size of the molecules.

In the self-assembly of thermotropic LCs, space filling plays
a much greater role than in lyotropics, as the presence of
solvent in lyotropics makes it easier to fill interstices furthest
away from, e.g., the aromatic/aliphatic interface. This is believed
to be one of the reasons behind the prevalence of the DG Ia%3d over
other Cubbi phases in thermotropic LCs. We have previously used
dV/dr curves to quantify such space filling properties of LC
compounds in different phases. Here, V(r) is that part of the unit

Fig. 4 (A) New network model of the triple network cubic phase. (B) All
network segments are represented by twisted ribbons showing changing
molecular orientation.

Fig. 3 (A) A junction point (green sphere) at general position (u,v,w) (Wyckoff position f) has 24 equivalent points in a unit cell of the I23 cubic phase,
which can be divided into groups of 3 in 8 subcubes. (B) Long segments (blue) connect nearest green junction points in neighbouring subcubes. In each
subcube, another junction point (yellow) is added in the centre of the 3 green junctions, and connected to them by short segments (red). (C) The new
middle network consisting of long and short segments; all junctions are 3-way planar. (D) Twisted ribbon representation of the middle network showing
the molecular direction twisting along each segment and throughout the network.
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cell volume that is within a distance r of the closest network
segment.11,12 For infinite unbranched parallel and equidistant
cylinders, as in the hexagonal columnar (Colh) phase, dV/dr p r,
i.e., an ascending linear function, until the widening cylinders of
radius r touch; dV/dr then starts dropping steeply to zero at
which point all space is filled and V = Vcell. For branched
cylinders, the slope of the initial ascent slows down as r
increases. We calculated the dV/dr curve for the I23 phase based
on the above model and the plot is shown in Fig. 5A along with
those for the DG (Ia%3d) phase. Unlike dV/dr of the Ia%3d phase, the
I23 curve has an extended tail at large r. The longest distance
from the network in the I23 phase is 0.205aI23, which is signifi-
cantly larger than the longest distance of B0.167aI23 in the Ia%3d
phase (0.167aI23 = 0.255aIa3d taking aI23/aIa3d = 1.53). In Fig. 5B,
the regions furthest from the networks (green) are shown in
purple; they are found in the centres of the octahedra of the
inner and outer networks. A slight distortion of the network(s)
may be needed to improve the space filling of the I23 structure;
e.g., the above dV/dr calculations do not consider the non-
cylindrical nature of the network segments. However, the dV/dr
curve comparison in Fig. 5A already helps explain certain
experimental observations. Thus, in both ANBC-n and BABH-n
series of compounds,39 it was found that the compounds with
the shortest alkyl tails (smallest n) exhibit the Ia%3d phase, while
those with longer chains show ‘‘Im%3m’’ (now I23). Keeping in mind
that r = 0 at the centre of the rod-like molecules and that it is largest
at the chain ends, this observation is consistent with short chains
being unable to reach the octahedral centre voids in the I23 lattice.
Furthermore, where both phases are seen in the same compound,
it is Ia%3d that is most often found at higher temperatures, even
though examples of a reverse phase sequence are also known.18,36

This is again consistent with the chains adopting shorter and wider
conformations at high T, better suited to the high-peak-short-tail
dV/dr curve of Ia%3d. However, explaining the re-emergence of Ia%3d
for very long chains may not be so straightforward, but again the
preference for more coiled conformations of these long chains is
likely to favour dV/dr of Ia%3d. We recognize that the dV/dr model
will not be sufficient to explain all experimental observations.

Electron density map and chirality of the networks

While mathematically, the new model of the I23 phase is very
satisfactory on many counts, it also has to be tested for

compatibility with the observed X-ray intensities. For centro-
symmetric LC structures, an electron density map is usually
constructed using diffraction amplitudes and the phase angle
choices of only 0 or p being decided by trial and error. However,
I23 is a non-centrosymmetric space group, meaning that the
phase of a diffraction peak can be of any value between 0 and
2p. Another difficulty is that for I23, a general (hkl) peak with
h a k a l is only cyclically permutable: it is equivalent to (klh)
and (lhk) but not to (hlk), (lkh) and (khl) peaks. Consequently,
even though the (hkl) and (lkh) peaks coincide in a powder
diffractogram, their intensities and corresponding structure
factor phases are different. In order to circumvent these two
problems, we have calculated the diffraction intensities and
phases for each observed peak from the Fourier transform of
the model, where the electron density of a point in the unit cell
is chosen to be a higher constant value if it is within a certain
distance of the network segments, and a lower constant value if
it is not (ESI†). The distance is chosen so that the volume ratio
of the high electron density regions in the unit cell matches
that of the rigid aromatic core in the molecule. After that,
we have simply taken from the simulation the intensity ratio
of (hkl) and (lkh) peaks, and the phase angle of each peak,
combining them with experimentally observed diffraction
intensities (data previously published)23 to reconstruct the
electron density map shown in Fig. 6. The three networks can
be easily identified, and they are almost exactly as predicted by
the mathematical model. This is extremely satisfactory as no

Fig. 5 (a) Comparison of dV/dr curves of bicontinuous Ia %3d and I23 cubic
phases. (b) The furthest points from the networks in I23, shown in purple,
are inside the ‘‘octahedra’’ of the inner and outer networks.

Fig. 6 Reconstructed electron density maps of the triple network cubic
phase with space group symmetry I23. The green isosurfaces enclose the
high density (aromatic) regions of the 3D electron density map. (A) Inner
network; (B) middle network; (C) inner and middle networks; (D) inner,
middle and outer networks.
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additional optimization steps were used to ‘‘beautify’’ the map.
The largest discrepancy is that there is a certain waviness of the
columnar segments connecting the ‘‘octahedra’’ in the inner
and outer networks. This feature could be attributed to some
variation in the number of molecules in the rafts along the
segment, or simply to imperfect estimates of hkl/lkh intensity
ratios or of the phase angles. Further optimization of the
phases and hkl/lkh intensity ratios for a better reconstructed
electron density map is still ongoing. The diffraction peak
intensities used and their phases are listed in Table 1.

While the chirality of the middle network described above
is left-handed, a right-handed version of the network can be
generated by the application of a mirror symmetry operation,
e.g., by switching the y- and z-coordinates of all junction points.
In fact, as the y and z components of the starting point (0.410,
0.233, 0.233) are equal, a simple change of connections
between the junctions is all that is needed. Regarding the inner
and outer networks, since the dihedral angles around all
junctions are 901 (and +901 is equivalent to�901), their chirality
can be changed from left- to right-handed by merely changing
the twist sense of molecular rafts in each segment, while
the network itself is kept intact. However, the body centred
cubic symmetry of the phase requires that the inner and outer
networks must be identical in all respects, including chirality.

As the chirality of the inner and outer networks is not
predetermined by the networks themselves, their preferred
chirality must be decided by their interaction with the inter-
calated chiral middle network. There are indications that all
three networks have the same hand. For example, it can be
shown that the combined length of the inner and outer networks
in a unit cell is 8.697a, while that of the middle network alone is
11.985a. So, the difference between the middle and inner + outer
networks is 3.288a, or 15.9% of the total length of all network
segments. Thus, while it is the middle network that will determine
the sign of the overall optical activity, the magnitude of the effect
would be very different, i.e., more than 6 times stronger, in the
case of homochiral, compared to the antichiral case. While we

have no theoretical values of optical activity with which to
compare those observed, qualitatively, we have noted that in
similar dithiophene-based polycatenar compounds, optical
rotation in the I23 phase is comparable to that in the fully
isochiral Sm-Q phase.31 This makes a case for the isochirality of
all three networks in the I23 phase. However, a scenario where
the middle network has chirality opposite to that of the other
two networks cannot be ruled out completely at this stage.
Further work is needed to obtain fully conclusive proof of
isochirality.

Previously, it has been observed that on transition from
chiral isotropic (Iso*) phase to the triple network cubic phase,
no obvious change in material optical rotation power is
observed.23 If, as suggested by our model, in the I23 phase,
all the networks in each chiral domain are enantiopure, i.e., not
a mixture of left- and right, then this should be true for the Iso*
phase as well.

The proposed I23 space group, as mentioned above, belongs
to Laue class m%3 instead of the previously assigned m%3m.
In order to confirm or disprove this, a single crystal (single
LC domain) diffraction experiment will be needed to check
whether or not a general (hkl) diffraction peak is equivalent to,
i.e., has the same intensity as, its (lkh) counterpart. The quality
of the single crystal has to be high and it is probably best grown
from an enantiomer of an intrinsically chiral compound,
so that the possible coexistence of twins/domains of different
chiralities can be avoided.

Conclusions

A new model for the chiral bicontinuous cubic phase formed
by rod-like polycatenar LC molecules has been proposed.
It consists of three interpenetrating networks with a chiral
space group I23. Like in all other bicontinuous phases of such
compounds, cubic or non-cubic, the columnar network seg-
ments are helical, formed by stacking of transverse-lying rafts
of 3–4 mutually parallel rods, twisted along the segment axis.
All junctions in the three networks of this phase are 3-way
and coplanar, as in the double gyroid Ia%3d phase. Smooth
confluence at the junctions necessitates chirality matching of
all three adjoining segments, thus propagating homochirality
throughout the infinite network. The twist angle between
successive molecular rafts is found to be very similar to that
in Ia%3d and SmQ phases. The model can easily explain the ratio
between the unit cell parameters of the triple and double
network Cubbi phases, and is supported by reconstructed
electron density maps on the basis of the I23 space group.
All three networks in the I23 phase appear to be homochiral.

The results provide a better understanding of the formation
of bicontinuous phases from chiral and achiral LC compounds,
and of chirality synchronization and amplification in general.
Due to the close relation between I23 and the recently discovered
spontaneously chiral isotropic liquid phase Iso*, the current
results bring us a step closer to understanding this intriguing
new state of matter with long-range chirality but without

Table 1 Intensities and phases used to reconstruct the electron density
map of the I23 triple network cubic phase shown in Fig. 5. The original
intensity data are taken from Angew. Chem., Int. Ed. 2014, sample 1e at
140 1C

(hkl) Intensity Multiplicity Phase

(211) 0.1 24 �0.97p
(301)a 1.2 12 0
(222) 7.7 8 �0.24p
(321)b 27.9 24 �0.91p
(312)b 61.7 24 �0.59p
(400) 100 6 0
(411) 2.1 24 �0.81p
(330) 2.3 12 0
(420)a 21.2 12 0
(422) 0.9 24 �0.66p

a The simulated (310) peak is much weaker than (301) so no (310) peak
is used in the reconstruction; similarly, the (402) peak is omitted.
b (321) and (312) are overlapping in the powder diffraction pattern
but not equivalent to each other. The intensity ratio between the two is
taken to be the same as from the simulation.
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positional or orientational order. The results also suggest that
similar spontaneous chirality formation behaviour may exist
for other network-based mesophases, and further work in this
direction is currently being explored.

The fact that the three networks of the I23 structure are
likely to be homochiral makes this phase a good candidate
for circularly polarized luminescence materials. The addition of
a small amount of chiral dopant will be able to ensure the
homochirality of the entire film, without the need for stereo-
specific synthesis. Moreover, no alignment procedure will be
required, and problems with light scattering will be avoided, as
the material is isotropic and non-birefringent due to its cubic
symmetry. The phase could also be used as a template for chiral
porous ceramics.
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